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Abstract:  

The usual parabolic approximation used for modelling the focusing properties of a Kerr lens 

induced by a Gaussian laser beam, through optical Kerr effect, consists to roughly 

approximate a Gaussian profile by a parabola. The Kerr focal length deduced from the ABCD 

formalism is found to not correctly provide the focal plane position. The latter has been 

numerically determined from a numerical diffraction analysis, and we have empirically found 

that the right focal length is obtained by multiplying, by a factor equal to 3, the focal length 

given by the usual parabolic approximation. The expression of the focal length associated 

with the Kerr lens that we have obtained is in a good agreement with the expression of the 

focal length determined on the basis of a Zernike decomposition. In addition, it is 

demonstrated that the emerging beam from the Kerr lens is no longer Gaussian since its 

propagation factor M2 is larger than unity. It is found that the M2 factor increases linearly with 

the on axis phase shift. 
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1.Introduction 

Generation of light pulses in the range of picoseconds or less is typically based on mode-

locked lasers. This technique can be described as active (Pockels or acoustooptic cells) or 

passive (saturable absorber) mode-locking, and has been developed since the 1960’s [1,2]. 

More later in 1990’s, a new concept of mode-locking technique has been experimented by 

using the optical Kerr effect (OKE) leading to a nonlinear lensing effect inducing time-

dependent losses when combined with an intracavity iris [3]. This peculiar regime of laser 

oscillation is usually called as Kerr-lens-mode-locking (KLM). Its theoretical modelling has 

been proposed at the beginning of the ninety decade [4,5]. Since these pioneer works various 

studies dedicated to KLM lasers can be found in literature and well summarised and analysed 

in [6]. 

Two contradictory necessities are seen when designing a KLM laser in which the laser 

medium acts as both the gain and the Kerr media: 

- the laser mode has to be sufficiently tight for making the light intensity to be high in 

order to induce the adequate Kerr lensing effect, 

- the size of the laser mode has to be sufficiently large in order to fulfil the required 

good overlap with the pumped region of the active medium for achieving a high laser 

efficiency. 

A possible solution of this dilemma should be to separate the gain medium and Kerr medium. 

This is currently the trend of the laser cavity design for achieving a high performing KLM 

laser [7]. The knowledge of the focusing action of the nonlinear Kerr lens effect is 

fundamental for the design procedure of a KLM laser, especially since the laser cavity is 

usually operated close the stability limit. In addition, the Kerr lens has to achieve the required 

loss discrimination between the continuous wave (CW), and the mode-locking regimes in 

favour of the pulsed operation as shown in Fig. 1. These differential losses are generated by 

introducing an intracavity aperture which may be termed as hard (diaphragm) or soft (radial 

gain profile). In both cases, the resulting self-amplitude-modulation (SAM) is organised by 

the time varying Kerr lens effect.  
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Figure 1: High (low) transmission through the iris due to self focusing by nonlinear Kerr 

medium for pulsed (CW) operation represented by the  dark (light) beam. 

 

 

2. Assessment of the parabolic approximation adequacy 

Let us recall the concept of Kerr lens effect by considering a collimated Gaussian laser beam 

of width 0W  and having a transverse intensity profile given by: 
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which is incident on a slice of transparent Kerr material characterised by its thickness d and 

refractive index Innn .21 += ; where 2n  is the nonlinear refractive index of the material.  

The phase shift φ∆  associated with the Gaussian beam emerging from the Kerr medium 

writes as follows 
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where λπ /2=k . Note that the first term in Eq. (2) is usually omitted since it does not 

contribute to the lensing effect under study. Finally, the phase shift given in Eq. (2) reduces to 

1φ∆  given in Eq. (3) by setting 020 ... Idnk=φ .  
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Knowing the relationship )2/( 0
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0 IWP π=  between  the power P and the on-axis intensity 0I  

of the Gaussian beam of width 0W , we obtain the following expression for the on-axis phase 
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The phase distribution expressed in Eq. (3) has to be considered as a phase aberration 

behaving as an aberrated lens. The later is usually called as Kerr lens which definition is not 

unique as recently shown [8]. However, the key point of KLM lasers modeling involves the 

Kerr lens in term of ABCD formalism based on approximation of the Gaussian term in Eq. (3) 

into a parabolic term. This technique is known as parabolic approximation and consists to 

develop at first order the exponential function in Eq. (3) leading to the following approximate 

phase distribution: 
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The phase distribution given in Eq. (5) corresponds to a pure distributed lens (without 

aberration). This case has been already considered in [9] by defining the equivalent focal 

length f of a transparent medium of length d having a refractive index )(ρn  distributed along 

a parabola given by 
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In the peculiar case where γ<<d , Eq. (7) reduces to the well known result given by 

      
dn

f
0

2

4

γ=      (8) 

which takes the following form in the literature addressing the KLM modelling 
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The context of the parabolic approximation which has been presented above is questionable 

at least on two main points given below: 

- At first sight, it is difficult to have confidence in the foundation of the parabolic 

approximation which consist to approximate )(1 ρφ∆  by )(2 ρφ∆ . For that, we have 

only to examine the radial distributions of 1φ∆  and 2φ∆  shown in Fig. 2. It is seen that 

the parabolic approximation is valid only very close the axis 0=ρ  while the incident 
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Gaussian beam has 99% of its total power in a circle of radius 1.5W0. Note that the 

parabolic approximation is of a common use in optical thermal effect studies because 

the refractive index distribution due to thermal effects is very close to a parabola for 

lateral pumping [10] or end-pumping [11]. 

- In fact, the approximation γ<<d  leading to Eq. (9) cannot be justified in most cases 

since it assumes 0Wd << . This condition is generally not fulfilled in KLM lasers since 

the length d is about some millimeters either in the case where the amplifying medium 

plays the role of Kerr medium [12], or when the gain medium and Kerr medium are 

separated [7]. On the other hand, the size W0 of the phase profile 1φ∆  has a magnitude 

of some tens of micrometers so that the condition 0Wd <<  cannot be fulfilled. As a 

consequence, the Kerr lens focal length given by Eq. (9), although of common use in 

KLM laser literature, seems to be not appropriate for describing the Kerr lens effect.  
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Figure 2: Transverse distribution of the normalised phase shift: Gaussian phase shift (solid 

line), parabolic phase shift (dashed line)  
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Now, we have to evaluate the accuracy of the usual parabolic approximation for 

predicting the losses induced by the hard aperture in Fig. 1. For that we will determine the 

aperture transmission DT  by two different ways: 

- First: The light incident on the aperture results from the diffraction of the collimated 

Gaussian beam of width W0 upon the phase profile )(1 ρφ∆ .  First, we determine the 

diffracted field ),( LrEd  in the aperture plane z=L in accordance with Fig. 3 by using 

the FRESNEL-KIRCHHOFF integral: 
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where r is the radial coordinate in the aperture plane, J0 the zero-order Bessel function of first 

order, λ=1064nm is the light wavelength. 

The transmission 1DT  of the diaphragm of radius Dr  is then deduced from the following ratio 
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In the following, 1DT  will be considered as a reference since the calculation of the diffracted 

field ),( LrEd  is made without any assumption except that the Kerr medium is assumed to be 

thin, i.e. we ignore propagation effects in the Kerr medium. 

- Second: The transmission of the diaphragm, denoted 2DT  is calculated by assuming 

that the beam emerging the Kerr lens remains Gaussian. The Kerr medium is 

characterised by a phase distribution )(2 ρφ∆ given by Eq. (5), and in the framework of 

the parabolic approximation is equivalent to a thin lens of focal length given by Eq. ( 

9) which after rearrangement writes as follows 

-  

2
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021

Wf π
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We are dealing with a simple transformation of a collimated Gaussian beam of width 0W  by a 

lens of focal length f given by Eq. (12) into a new Gaussian beam [9] having a beam-waist of 

width '

0W  given by 
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This new beam-waist occurs at a distance, denoted fz , from the Kerr medium. 
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 Finally, the width LW  of the Gaussian beam incident on the aperture is given by 
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In accordance with Fig. 4, then the transmission 2DT  of the aperture of the above Gaussian 

beam writes as follows: 
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Figure 3: Set-up showing the geometry of the diffraction of a Gaussian beam of width W0 on a 

Kerr phase shift  ]/2exp[)( 2

0

2

01 Wρφρφ −=∆ . The diaphragm of radius Dr  is set at a distance 

z=L from the Kerr medium assumed to be thin (thickness very small in comparison with the 

associated equivalent focal length). 
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transmission of the diaphragm, inside a KLM laser, for the CW regime . Note that  iniT  has to 

be sufficiently low in order to prevent the CW laser oscillation. The variations of 1DT  and 2DT  

as a function of the normalised on-axis phase shift πφ /0  are shown in Fig. 5 and 6 where the 

diaphragm transmissions are plotted with a logarithmic scale. Note that in Fig. 6 the 

combination (Kerr lens+diaphragm) acts like a “saturable absorber” for L=10mm and for the 

lower values of 0φ , while it is rather an “inverse saturable absorber” for higher values of 0φ . 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Set-up showing the geometry of the focusing of the Gaussian beam of width W0 

through a thin lens of focal length )2/( 0

2

0 λφπWf =  corresponding to the quadratic phase shift 

profile [ ]2

0

2

02 /21)( Wρφρφ −=∆ . The diaphragm of radius Dr  is set at a distance z=L from the 

Kerr medium (thickness very small in comparison with the associated equivalent focal 

length). 

 

In Fig. 5 it is seen that for L=150mm the behaviour is that of an inverse saturable absorber 

since the aperture transmission is essentially decreasing with 0φ , i.e. with the light intensity. 

The role of distance L is relatively simple to understand since before (after) the focal plane 

associated with the Kerr lens the beam width reduces (increases), and thus the aperture 

transmission increases (decreases).  This is the case in Fig. 5 for all values of πφ /0 . In 

contrast, it should be recognised that in Fig. 6 the Kerr focal length is probably larger 

(smaller) than the distance L for the lower (higher) values of 0φ . 
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Figure 5: Variations of diaphragm transmissions 1DT  (Gaussian phase shift) and 2DT  

(parabolic approximation) versus the normalised on-axis Kerr phase shift πφ /0  . The 

distance between the Kerr lens and the hard aperture is L=150mm. The transmission of the 

diaphragm without the Kerr lens is Tini=40%, and the width of the incident beam is 

W0=100µm. 

 

0 1 2 3 4 5 6
0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

T
ini

T
ini

=0.4

L=10mm

W
0
=100µm

T
D2

T
D1

A
p

e
rt

u
re

 t
ra

n
s
m

is
s
io

n

φ
0
/π

 

Figure 6: Variations of diaphragm transmissions 1DT  (Gaussian phase shift) and 2DT  

(parabolic approximation) versus the normalised on-axis Kerr phase shift πφ /0  . The 

distance between the Kerr lens and the hard aperture is L=10mm. The transmission of the 

diaphragm without the Kerr lens is Tini=40%, and the width of the incident beam is 

W0=100µm. 
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Before to examine the validity of the focal length given by Eq. (12), let us consider a second 

important hypothesis on which relies the parabolic approximation. This hypothesis consists to  

assume that the beam emerging from the Kerr lens, i.e. the Kerr aberration described by Eq. 

(3), keeps its Gaussian nature. For evaluating the relevance of this assumption, let us consider 

the beam factor quality M2 of the Gaussian beam passing through the Kerr lens. In the case 

where the beam crossing through the Kerr lens should be Gaussian, it is expected to have 

12 ≈M . In contrast, a value for 2M  larger than unity is a signature of an aberrated beam 

having lost its Gaussian character. Note that the diffracted field ),( LrEd  is calculated by 

using the Kirchhoff’s diffraction integral given by Eq. (10) whose integrand is multiplied by 

the phase term )]2/(exp[ 2

Lfikρ for accounting the presence of a focusing thin lens of focal 

length Lf .  

In practice, the collimated Gaussian beam of width W0=0.25mm crosses two adjoining lenses: 

the first one is the Kerr lens, and the second one is the thin lens of focal length fL=125mm. 

The 2M  factor of the emerging beam through the combination (Kerr lens+thin lens of focal 

length fL) is deduced from the longitudinal variations of the diffracted beam width W2 based 

on the second-order intensity moment [13] defined as follows 
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The calculation of )(2 zW  has been done for 60 values of coordinate z, the distance from the 

combination (Kerr lens+thin lens of focal length fL). The longitudinal distribution of 2W  is 

characterised by two quantities: 

(i) the minimum value of 2W , denoted  min2W  

(ii) the longitudinal position, denoted minz , where the beam focuses, i.e. where 

min22 WW = . 

The value of the beam propagation factor 2M is deduced from a fit of the plot 2W  versus z 

with the following parabola 
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The results are shown in Fig. 7, and it is seen that the 2M  factor increases roughly linearly 

with the on-axis phase shift 0φ . In addition, we have established that the 2M  factor does not 

depend upon 0W , the value of the incident Gaussian beam. In Fig. 7, it is seen that the 2M  

factor increases rapidly with on-axis phase shift 0φ , and this calls into question the common 

assumption of the Gaussian nature of the beam emerging from a Kerr lens and that as soon as 

0φ  exceeds a fraction of π .  We will come back to this point below. The results shown in 

Fig.7 indicates prospectively that the 2M  factor of a KLM laser beam should have a time-

dependent 2M factor in the pico or femtoseconde scale. Such a situation of a time-dependent 

M2 factor [14] or far-field beam spreading  has been already studied in a Q-switching regime 

of a laser showing a mechanism of intensity-dependent refractive index which is different 

from the optical Kerr effect [15,16]. In any case, it is probably impossible or very difficult to 

determine experimentally the time-dependence of the M2 factor of ultra-short laser pulses. 
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Figure 7: Variations of the beam quality factor M2 of the Gaussian beam passing through the 

Gaussian Kerr lens described by ]/2exp[)( 2

0

2

01 Wρφρφ −=∆  as a function of the normalised 

on-axis phase shift πφ /0 for W0=0.25mm. 

 

Let us now return on the discussion about the validity of the parabolic approximation for 

expressing (see Eq. (12)) the equivalent focal length of a Kerr lens characterised by the phase 

shift distribution ]/2exp[)( 2

0

2

01 Wρφρφ −=∆ . For that we need a certain reference with regard 

to the focusing properties of the Kerr lens which can be deduced from the true position of the 
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beam focus position minz  where is located the beam-waist of the beam passing through the  

combination (Kerr lens of focal length Kf + thin lens of focal length fL).  These two lenses 

assumed to be in contact can be replaced by a lens having a focal length noted eqf  and given 

by  

      
LKeq fff

111 +=     (19) 

 

In the framework of the Gaussian optics, the actual focal spot of a laser beam having a width 

0W  incident on a lens of focal length eqf  located in its beam-waist plane gives rise to a focal 

spot which is not exactly located at the geometrical focus eqf  but is shifted towards the lens at 

position minz  given by 
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where λπ /2

0WzR =  is the Rayleigh distance of the incident Gaussian beam. In the case where 

eqR fz >>  then Eq. (20) reduces to eqfz ≈min . 

The knowledge of the variations of the beam-width )(2 zW as function coordinate z, used 

previously for M2 calculation, gives the true location minz of the beam focus. Its identification 

with Eq.(20) leads to a quadratic equation from which we select the solution Leq ff ≤ . Finally, 

we deduce the value of Kf from Eq. (19). The results are given in Fig. 8 showing that the 

focal length Kf describing the “true” focal plane of the beam passing through the Kerr lens 

increases continuously as a function of ( 0/φπ ) with values larger than the focal length 

)2/( 0

2

0 λφπWf =  resulting from the parabolic approximation (see Eq. (12)), and this 

difference increases for lower values of 0φ . 
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Figure 8: Variations of the two focal length of interest versus the normalised phase 

shift )/( 0φπ : 

(a) Triangles: Kerr focal length Kf  deduced from the beam-waist position of the Gaussian 

beam of width mmW 25.00 =  focused by the combination (Kerr lens+thin lens of focal 

length fL=125mm). 

(b) Circles: Focal length f obtained from the parabolic approximation (Eq. 12)) for 

mmW 25.00 =  

 

Now, in order to check that this agreement between Kf and f observed in Fig. 8 for 

mmW 25.00 =  occurs also for other values of width 0W , we have plotted in Fig. 9 the 

variations of Kf  and  f for mmW 10 = .  

 

From Fig. 8 it is seen that the focal length f (Eq. (12)) deduced from the usual parabolic 

approximation of the Gaussian phase shift distribution does not describe the location of focus 

plane associated with a Gaussian Kerr phase shift distribution.  

We have empirically found that the focal length f multiplied by a factor equal to 3 allows to 

get values slightly equal to the focal length Kf . Consequently, we can adopt as a focal length 

describing the focusing properties of a Gaussian Kerr lens, characterised by a phase shift 

distribution ]/2exp[)( 2

0

2

01 Wρφρφ −=∆ , the focal length noted pf  and given by 
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The plots of Kf and pf shown in Fig. 9 demonstrate that Eq. (21) is a good compromise for 

describing the focal length of a Gaussian Kerr lens, and can be considered as resulting from a 

corrected parabolic approximation. 
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Figure 9: Variations of the two focal length of interest, Kf (triangle) and pf (circle), versus the 

normalised phase shift )/( 0φπ : 

(c) Triangles: Kerr focal length Kf  deduced from the beam-waist position of the Gaussian 

beam of width mmW 25.00 =  focused by the combination (Kerr lens+thin lens of focal 

length fL=125mm). 

(d) Circles: Focal length pf  obtained from the corrected parabolic approximation (Eq. 

21)) for mmW 25.00 =  

 

However, for the sake of completeness, we have to check if the Kerr focal length Kf  is really 

proportional to 2

0W  like the focal length pf . The result is shown in Fig. 10 which displays the 

variations of Kf  with 2

0W  for πφ =0  which is found to be linear and allows to consider the 

focal length pf  given by Eq. (21) as worthy of confidence for describing the location of the 

focusing plane of a Gaussian Kerr lens. Similar results are obtained with other values of 0φ , 

the on-axis phase shift.  
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Figure 10: Variations of Kerr focal length Kf versus 2

0W  for an on-axis phase shift πφ =0 . 

 

Now, it should be interesting to compare the analytical formulation of the focal length given 

by Eq. (21) to another one resulting from a Zernike decomposition. The wavefront 

]/2exp[)( 2
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01 Wρφρφ −=∆  can be expanded as a linear combination of Zernike polynomials, 

and the coefficients of this decomposition are precisely the aberration coefficients. The later 

are calculated in Appendix-1 by taking into account the Gaussian beam intensity profile. The 

result is distinct from the usual plane wave calculation. The focal length Kf  of the Kerr lens 

can be expressed as a function of the defocus term by Eq. (A-7) in Appendix-1 associated 

with the aberration coefficient 4A  given in Table (A-2) for the Gaussian beam.  
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where R is the radius of the unit circle (Appendix-1) which is chosen so that the circle of 

radius R contains 99% of the incident Gaussian beam. Consequently, the radius of the unit 

circle is set to 05.1 WR =  and the effective focal length noted Zf is expressed as follows 
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It is seen that the focal lengths pf  and Zf  given by Eqs. (21) and (23) are very close, and this 

strengthens the present study of the Kerr lensing, and validates the concept of corrected 

parabolic approximation described above. The corrected parabolic approximation giving the 

focal length pf  (Eq. (21)) is able to provide the right location of the focus minz  associated 

with the Kerr lens. It remains now to examine if the focal length pf  allows to get the right 

beam transmission through a diaphragm (see Fig. 5 and 6), on the usual hypothesis of keeping 

the Gaussian nature of the beam. For that, let us determine the transmission 3DT  of the 

diaphragm calculated along similar lines used previously when calculating 2DT , but by 

replacing the focal length f  by pf . The result is shown in Fig. 11 and it is seen that the focal 

length pf  allows an accurate determination of the aperture transmission ( 13 DD TT ≈ ) only if 

πφ 6.00 ≤ . Beyond this value, 3DT  does not describe faithfully the aperture transmission 

because the beam is no longer Gaussian since its 2M  factor is beginning to be important as 

shown in Fig. 7.  
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Figure 11: Variations of diaphragm transmissions 1DT  (Gaussian phase shift), 2DT  (f: 

parabolic approximation) and 3DT  ( pf : corrected parabolic approximation) versus the 

normalised on-axis Kerr phase shift πφ /0  . The distance between the Kerr lens and the hard 
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aperture is L=10mm. The transmission of the diaphragm without the Kerr lens is Tini=40%, 

and the width of the incident beam is W0=100µm.  

 

 

3. Conclusion 

We have considered the accuracy of the parabolic approximation, widely used in KLM lasers 

modelling, to express the lensing effect associated to a Kerr phase shift Gaussian in shape. A 

priori this approximation could be considered as rough in view of the fact that a parabola is a 

very bad approximation of a Gaussian function (see Fig. 2). To evaluate the accuracy of the 

equivalent focal length of a Kerr lens determined in the framework of this parabolic 

approximation we need a focal length of reference. For that, in a first step, we have defined a 

“true” focal length for the Kerr lens characterised by the phase shift distribution 

]/2exp[)( 2

0

2

01 Wρφρφ −=∆  probed by a collimated Gaussian beam of width 0W . The 

resulting diffracted field distribution has been determined without any approximation by using 

the usual Fresnel-Kirchhoff integral allowing the knowledge of the true focal plane zmin where 

the width, based on the second-order intensity moment, of the diffracted beam is minimum.  

The first important conclusion is that the usual parabolic approximation is not able to 

provide the right location of the focus associated with the Kerr lens. Note that we have 

recently shown [8] that the different possible modellings of a distributed lensing effect 

characterised by the phase shift ]/2exp[)( 2

0

2

01 Wρφρφ −=∆  lead to different effective focal 

lengths without being able to identify the best one because neither focal length could be 

considered as a reference. In the present work, we believe that we have stated unambiguously 

the focal length Kf  of a Kerr lens from the position zmin of the true focal plane, and we have 

found that the parabolic approximation through the focal length  )2/( 0

2

0 λφπWf =  

underestimates the value of the Kerr lens focal plane. We have demonstrated that the focal 

length ff p 3= describe correctly the Kerr lens in the sense that )/(3 0

2

0 λφπWff pK =≈  in a 

large range of values for 0φ  until π6.1 .  The expression of the focal length pf  of the Kerr 

lens resulting from the corrected parabolic approximation has been confirmed by the focal 

length Zf  resulting from the Zernike decomposition of the phase term 

]/2exp[)( 2

0

2

01 Wρφρφ −=∆ . 

The second important conclusion that can be drawn concerns the second assumption of 

the parabolic approximation which states that the beam emerging from the Kerr lens remains 
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Gaussian, has been demonstrated to be wrong. Indeed, a probe Gaussian beam of width 0W  

passing through a Kerr lens characterised by the phase shift ]/2exp[)( 2

0

2

01 Wρφρφ −=∆  has a 

beam propagation factor M2 greater than unity, approximately proportional to 0φ  and 

independent from 0W . It is found that the M2 factor increases from 1 to 4.5 when the on-axis 

phase shift 0φ  increases from 0 to π3 . The Optical Kerr effect induced by a Gaussian laser 

beam should not be reduced only to a simple pure thin lens. It is important to keep in mind 

that a Kerr lens is above all basically a phase aberration. As a result, it has been found that the 

parabolic approximation is not able to estimate the losses due to a simple diaphragm by 

assuming a Gaussian nature of the beam. However, the corrected parabolic approximation 

introduced in this work, i.e. the focal length pf , is able to describe the losses due to a hard 

aperture on the hypothesis of a Gaussian beam but only for πφ 6.00 ≤ . This should be a 

crucial issue for modelling accurately the laser cavity operating in KLM regime. Since the 

parabolic approximation gives a Kerr focal length deduced from the ABCD formalism unable 

to correctly provide the focal plane, this raises serious doubts about the stability limits of a 

KLM laser cavity obtained in the context of the usual parabolic approximation. We believe 

that reducing the Kerr lens effect to a thin lens of focal length )/(3 0

2

0 λφπWf p = obtained in 

the framework of the so-called corrected parabolic approximation is credible to describe the 

stability limits of a KLM laser cavity, and the losses induced by the intracavity hard aperture 

only if πφ 6.00 ≤ , i.e. the aberrations associated with the Kerr effect are neglected. Otherwise, 

these aberrations have to be taken into account so that the fundamental mode of the laser 

cavity including a Kerr lens is probably no longer Gaussian, and its determination should be 

complicated.   
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Appendix-1: Zernike polynomial decomposition of the OKE 

 

The propagating term of the collimated incident Gaussian beam emerging from the distributed 

lens writes [ ]),(exp θρikS , where )(),( 1 ρφθρ ∆−=kS  and ]/2exp[)( 2

0

2

01 Wρφρφ −=∆ . The 

phase distribution ),( θρS is independent of angle θ , and is usually called as wave aberration 

function (WAF) according to the terminology of optical aberration modelling [17]. As usual, 

the WAF is expanded as a linear combination of Zernike polynomials (ZP), jZ , as follows 

),(),(
1

θρθρ ∑
∞

=

=
j

jjZaS ,   (A-1) 

where the index j is a polynomial-ordering number, and ja the aberration coefficients. The  

normalised radial coordinate is defined as R/ρρ = , where R is the radius of the unit circle. 

In the following we set R equal to 1.5W0 since this circle contains 99% of the incident 

Gaussian beam power. The Zernike polynomials ),( θρjZ  are a set of orthogonal functions 

over the unit circle ( 10 ≤≤ ρ ).  

The sum in Eq. (A-1) is infinite, but is usually truncated. Here, we will work arbitrarily until 

j=22, and because of the rotational symmetry of 1φ∆  most of coefficients ja  are equal to zero 

except four of them: a1, a4, a11 and a22. Table A-1 gives the corresponding ZP’s [18]. 

 

j 
jZ  Type of aberration 

1 1 Piston 

4 )12(3 2 −ρ  Defocus 

11 )166(5 24 +− ρρ  Primary spherical 

22 )1123020(7 246 −+− ρρρ  Secondary spherical 

 

 

Table A-1: Zernike polynomials allowing to calculate the four non-zero aberration 

coefficients 1a , 4a , 11a and 22a . 

 

 

The aberration coefficient ja takes a different form depending on the type of incident wave: 

plane wave of amplitude 0A , or Gaussian beam of amplitude ]/exp[)( 2

0

2

0 WAA ρρ −= . The 

expression of ja ’s write as follows: 
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 For a plane wave [18] :   θρρθρθρφ
π

π

ddZ
k

a jj ),(),(
1

1

0

2

0

1∫ ∫∆−=  (A-2) 

 

 For a Gaussian beam [19]:  

∫ ∫

∫ ∫ ∆−
=

1

0

2

0

1

0

2

0

1

)(

),(),()(

π

π

θρρρ

θρρθρθρφρ

ddAk

ddZA

a

j

j  (A-3) 

 

It is convenient to use the dimensionless aberration coefficients Aj which are expressed in unit 

of wavelength, and defined as 

      
λ

j

j

a
A =     (A-4) 

 

The integral in Eqs. (A-2) and (A-4) implements the product of a Gaussian function and a 

polynomial. Its calculation can be made analytically by using the table of integrals in REF. 

[20]. The results are shown in Table (A-2) proving that the phase aberration )(1 ρφ∆ is 

characterised by aberrations coefficients which are very different according to the probe beam 

(plane wave or Gaussian beam). 

 

Incident wave A1 A4 A11 A22 

Plane wave 
0

2102 φ−×−  0

2105.2 φ−×+  0

2107.4 φ−×−  0

2101 φ−×+  

Gaussian beam 
0

2103.5 φ−×−  0

2107.7 φ−×+  0

2107 φ−×−  0

2109.4 φ−×+  

 

Table A-2: Dimensionless aberration coefficients associated to a phase aberration 

]/2exp[)( 2

0

2

01 Wρφρφ −=∆  when the incident wave is plane or Gaussian of width W=1mm 

and nm1064=λ . 

 

 

It is worth noting that the aberration term for j=4 is known as “defocus term” which has to be 

considered as a pure lensing effect which we will hereafter use for defining the equivalent 

focal length associated with phase shift ]/2exp[)( 2

0

2

01 Wρφρφ −=∆  . Let us consider the 

WAF, noted SL, of a collimated laser beam after crossing a thin lens of focal length f : 
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f

R

f
SL

22

222 ρρ ==      (A-5) 

 

Let us determine the coefficient '

4a  associated with the WAF given by Eq. (A-5). For that, we 

have to calculate the following integral: 

f

R
ddZSa L

12

3
),(),(

1 2

4

1

0

2

0

'

4 == ∫ ∫ θρρθρθρ
π

π

   (A-6) 

By identifying '

4a  given by Eq. (A-6) to the defocus coefficient a4, we find the expression of 

the equivalent focal length, noted Zf , resulting from the Zernike decomposition: 

4

2

12

3

A

R
fZ λ

=      (A-7) 

 




