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1.Introduction

Generation of light pulses in the range of picoseconds or less is typically based on modelocked lasers. This technique can be described as active (Pockels or acoustooptic cells) or passive (saturable absorber) mode-locking, and has been developed since the 1960's [START_REF] Yariv | Internal modulation in multimode laser oscillator[END_REF][START_REF] Demaria | Self mode-locking of lasers with saturable absorber[END_REF].

More later in 1990's, a new concept of mode-locking technique has been experimented by using the optical Kerr effect (OKE) leading to a nonlinear lensing effect inducing timedependent losses when combined with an intracavity iris [START_REF] Spence | 60-fsec pulse generation from a self-mode locked Ti:sapphire laser[END_REF]. This peculiar regime of laser oscillation is usually called as Kerr-lens-mode-locking (KLM). Its theoretical modelling has been proposed at the beginning of the ninety decade [START_REF] Magni | ABCD matrix analysis of propagation of Gaussian beams through Kerr media[END_REF][START_REF] Hermann | Theory of Kerr-Lens mode locking: role of self-focusing and radially varying gain[END_REF]. Since these pioneer works various studies dedicated to KLM lasers can be found in literature and well summarised and analysed in [START_REF] Yefet | A review of cavity design for Kerr Lens mode-locked solid-state lasers[END_REF].

Two contradictory necessities are seen when designing a KLM laser in which the laser medium acts as both the gain and the Kerr media:

-the laser mode has to be sufficiently tight for making the light intensity to be high in order to induce the adequate Kerr lensing effect, -the size of the laser mode has to be sufficiently large in order to fulfil the required good overlap with the pumped region of the active medium for achieving a high laser efficiency.

A possible solution of this dilemma should be to separate the gain medium and Kerr medium. This is currently the trend of the laser cavity design for achieving a high performing KLM laser [START_REF] Akbari | Kerr-lens mode locking of a diode-pumped Yb:KGW laser using an additional intracavity Kerr medium[END_REF]. The knowledge of the focusing action of the nonlinear Kerr lens effect is fundamental for the design procedure of a KLM laser, especially since the laser cavity is usually operated close the stability limit. In addition, the Kerr lens has to achieve the required loss discrimination between the continuous wave (CW), and the mode-locking regimes in favour of the pulsed operation as shown in Fig. 1. These differential losses are generated by introducing an intracavity aperture which may be termed as hard (diaphragm) or soft (radial gain profile). In both cases, the resulting self-amplitude-modulation (SAM) is organised by the time varying Kerr lens effect. 

Assessment of the parabolic approximation adequacy

Let us recall the concept of Kerr lens effect by considering a collimated Gaussian laser beam of width 0 W and having a transverse intensity profile given by:
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which is incident on a slice of transparent Kerr material characterised by its thickness d and refractive index I n n n .
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; where 2 n is the nonlinear refractive index of the material.

The phase shift φ ∆ associated with the Gaussian beam emerging from the Kerr medium writes as follows
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where

λ π / 2 = k
. Note that the first term in Eq. ( 2) is usually omitted since it does not contribute to the lensing effect under study. Finally, the phase shift given in Eq. ( 2) reduces to The phase distribution expressed in Eq. (3) has to be considered as a phase aberration behaving as an aberrated lens. The later is usually called as Kerr lens which definition is not unique as recently shown [START_REF] Leghmizi | On the different ways for defining the effective focal length of a Kerr lens effect[END_REF]. However, the key point of KLM lasers modeling involves the Kerr lens in term of ABCD formalism based on approximation of the Gaussian term in Eq. ( 3) into a parabolic term. This technique is known as parabolic approximation and consists to develop at first order the exponential function in Eq. ( 3) leading to the following approximate phase distribution:
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The phase distribution given in Eq. ( 5) corresponds to a pure distributed lens (without aberration). This case has been already considered in [START_REF] Kogelnik | Imaging of optical modes-resonators with internal lenses[END_REF] by defining the equivalent focal length f of a transparent medium of length d having a refractive index ) (ρ n distributed along a parabola given by
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In the peculiar case where γ << d , Eq. ( 7) reduces to the well known result given by
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which takes the following form in the literature addressing the KLM modelling

4 0 2 . . 8 1 W d P n f π = (9) 
The context of the parabolic approximation which has been presented above is questionable at least on two main points given below:

-At first sight, it is difficult to have confidence in the foundation of the parabolic approximation which consist to approximate ) ( Gaussian beam has 99% of its total power in a circle of radius 1.5W0. Note that the parabolic approximation is of a common use in optical thermal effect studies because the refractive index distribution due to thermal effects is very close to a parabola for lateral pumping [START_REF] Koechner | Solid-State Laser Engineering[END_REF] or end-pumping [START_REF] Chénais | On thermal effects in solid state lasers : the case of ytterbium-doped materials[END_REF].

-In fact, the approximation γ << d leading to Eq. ( 9) cannot be justified in most cases since it assumes 0 W d << . This condition is generally not fulfilled in KLM lasers since the length d is about some millimeters either in the case where the amplifying medium plays the role of Kerr medium [START_REF] Li | The characteristics of Kerr lens mode-locked Nd:YVO4 laser with a symmetrical z-shaped cavity[END_REF], or when the gain medium and Kerr medium are separated [START_REF] Akbari | Kerr-lens mode locking of a diode-pumped Yb:KGW laser using an additional intracavity Kerr medium[END_REF]. On the other hand, the size W0 of the phase profile 1 φ ∆ has a magnitude of some tens of micrometers so that the condition 0 W d << cannot be fulfilled. As a consequence, the Kerr lens focal length given by Eq. ( 9), although of common use in KLM laser literature, seems to be not appropriate for describing the Kerr lens effect.
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where r is the radial coordinate in the aperture plane, J0 the zero-order Bessel function of first order, λ=1064nm is the light wavelength. given by Eq. ( 5), and in the framework of the parabolic approximation is equivalent to a thin lens of focal length given by Eq. ( 9) which after rearrangement writes as follows
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We are dealing with a simple transformation of a collimated Gaussian beam of width 0 W by a lens of focal length f given by Eq. ( 12) into a new Gaussian beam [START_REF] Kogelnik | Imaging of optical modes-resonators with internal lenses[END_REF] having a beam-waist of
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This new beam-waist occurs at a distance, denoted f z , from the Kerr medium.
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Finally, the width L W of the Gaussian beam incident on the aperture is given by
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In accordance with Fig. 4, then the transmission 2 D T of the aperture of the above Gaussian beam writes as follows: 
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. The diaphragm of radius D r is set at a distance z=L from the Kerr medium assumed to be thin (thickness very small in comparison with the associated equivalent focal length).

Let us introduce the "initial transmission" of the diaphragm, denoted ini T , which corresponds to the diaphragm transmission without Kerr lens effect, and which is supposed to be the 5 and6 where the diaphragm transmissions are plotted with a logarithmic scale. Note that in Fig. 6 the combination (Kerr lens+diaphragm) acts like a "saturable absorber" for L=10mm and for the lower values of 0 φ , while it is rather an "inverse saturable absorber" for higher values of 0 φ . 
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. The diaphragm of radius D r is set at a distance z=L from the Kerr medium (thickness very small in comparison with the associated equivalent focal length).

In Fig. 5 it is seen that for L=150mm the behaviour is that of an inverse saturable absorber since the aperture transmission is essentially decreasing with 0 φ , i.e. with the light intensity.

The role of distance L is relatively simple to understand since before (after) the focal plane associated with the Kerr lens the beam width reduces (increases), and thus the aperture transmission increases (decreases). This is the case in Fig. 5 for all values of π φ / 0 . In contrast, it should be recognised that in Fig. 6 the Kerr focal length is probably larger (smaller) than the distance L for the lower (higher) values of 0 φ . . The distance between the Kerr lens and the hard aperture is L=10mm. The transmission of the diaphragm without the Kerr lens is Tini=40%, and the width of the incident beam is W0=100µm.
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Before to examine the validity of the focal length given by Eq. ( 12), let us consider a second important hypothesis on which relies the parabolic approximation. This hypothesis consists to assume that the beam emerging from the Kerr lens, i.e. the Kerr aberration described by Eq.

(3), keeps its Gaussian nature. For evaluating the relevance of this assumption, let us consider the beam factor quality M 2 of the Gaussian beam passing through the Kerr lens. In the case where the beam crossing through the Kerr lens should be Gaussian, it is expected to have 
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The results are shown in Fig. 7, and it is seen that the 2 M factor increases roughly linearly with the on-axis phase shift 0 φ . In addition, we have established that the 2 M factor does not depend upon 0 W , the value of the incident Gaussian beam. In Fig. 7, it is seen that the Let us now return on the discussion about the validity of the parabolic approximation for expressing (see Eq. ( 12)) the equivalent focal length of a Kerr lens characterised by the phase
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. For that we need a certain reference with regard to the focusing properties of the Kerr lens which can be deduced from the true position of the beam focus position min z where is located the beam-waist of the beam passing through the combination (Kerr lens of focal length K f + thin lens of focal length fL). These two lenses assumed to be in contact can be replaced by a lens having a focal length noted eq f and given by L K eq f f f
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In the framework of the Gaussian optics, the actual focal spot of a laser beam having a width 0 W incident on a lens of focal length eq f located in its beam-waist plane gives rise to a focal spot which is not exactly located at the geometrical focus eq f but is shifted towards the lens at position min z given by
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is the Rayleigh distance of the incident Gaussian beam. In the case where From Fig. 8 it is seen that the focal length f (Eq. ( 12)) deduced from the usual parabolic approximation of the Gaussian phase shift distribution does not describe the location of focus plane associated with a Gaussian Kerr phase shift distribution.

We have empirically found that the focal length f multiplied by a factor equal to 3 allows to The plots of K f and p f shown in Fig. 9 demonstrate that Eq. ( 21) is a good compromise for describing the focal length of a Gaussian Kerr lens, and can be considered as resulting from a corrected parabolic approximation. A given in Table (A-2) for the Gaussian beam.
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where R is the radius of the unit circle (Appendix-1) which is chosen so that the circle of radius R contains 99% of the incident Gaussian beam. Consequently, the radius of the unit circle is set to 

Conclusion

We have considered the accuracy of the parabolic approximation, widely used in KLM lasers modelling, to express the lensing effect associated to a Kerr phase shift Gaussian in shape. A priori this approximation could be considered as rough in view of the fact that a parabola is a very bad approximation of a Gaussian function (see Fig. 2). To evaluate the accuracy of the equivalent focal length of a Kerr lens determined in the framework of this parabolic approximation we need a focal length of reference. For that, in a first step, we have defined a The second important conclusion that can be drawn concerns the second assumption of the parabolic approximation which states that the beam emerging from the Kerr lens remains , i.e. the aberrations associated with the Kerr effect are neglected. Otherwise, these aberrations have to be taken into account so that the fundamental mode of the laser cavity including a Kerr lens is probably no longer Gaussian, and its determination should be complicated.

For a plane wave [START_REF] Mahajan | Zernike circle polynomials and optical aberrations of system with circular pupils[END_REF] : The integral in Eqs. (A-2) and (A-4) implements the product of a Gaussian function and a polynomial. Its calculation can be made analytically by using the table of integrals in REF. 
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 1 Figure 1: High (low) transmission through the iris due to self focusing by nonlinear Kerr medium for pulsed (CW) operation represented by the dark (light) beam.

  P and the on-axis intensity 0 I of the Gaussian beam of width 0 W , we obtain the following expression for the on-axis phase

and 2 φ∆

 2 that, we have only to examine the radial distributions of 1 φ ∆ shown in Fig. 2. It is seen that the parabolic approximation is valid only very close the axis 0 = ρ while the incident

Figure 2 :

 2 Figure 2: Transverse distribution of the normalised phase shift: Gaussian phase shift (solid line), parabolic phase shift (dashed line)
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 112 of the diaphragm of radius D r is then deduced from the following ratio will be considered as a reference since the calculation of the diffracted field any assumption except that the Kerr medium is assumed to be thin, i.e. we ignore propagation effects in the Kerr medium.-Second: The transmission of the diaphragm, denoted is calculated by assuming that the beam emerging the Kerr lens remains Gaussian. The Kerr medium is characterised by a phase distribution )

Figure 3 :

 3 Figure 3: Set-up showing the geometry of the diffraction of a Gaussian beam of width W0 on a Kerr phase shift ] / 2 exp[ ) (

1 D T and 2 DT

 12 diaphragm, inside a KLM laser, for the CW regime . Note that ini T has to be sufficiently low in order to prevent the CW laser oscillation. The variations of as a function of the normalised on-axis phase shift π φ / 0 are shown in Fig.

Figure 4 :

 4 Figure 4: Set-up showing the geometry of the focusing of the Gaussian beam of width W0 through a thin lens of focal length ) 2 /( 0

Figure 5 :Figure 6 :

 56 Figure 5: Variations of diaphragm transmissions 1 D T (Gaussian phase shift) and 2 D T (parabolic approximation) versus the normalised on-axis Kerr phase shift π φ / 0. The distance between the Kerr lens and the hard aperture is L=150mm. The transmission of the diaphragm without the Kerr lens is Tini=40%, and the width of the incident beam is W0=100µm.

2 M 2 Mof the beam propagation factor 2 M

 222 larger than unity is a signature of an aberrated beam having lost its Gaussian character. Note that the diffracted field ) 's diffraction integral given by Eq. (10) whose integrand is multiplied by presence of a focusing thin lens of focal length L f .In practice, the collimated Gaussian beam of width W0=0.25mm crosses two adjoining lenses:the first one is the Kerr lens, and the second one is the thin lens of focal length fL=125mm.The factor of the emerging beam through the combination (Kerr lens+thin lens of focal length fL) is deduced from the longitudinal variations of the diffracted beam width W2 based on the second-order intensity moment[START_REF] Siegman | New developments in laser resonators[END_REF] defined as follows for 60 values of coordinate z, the distance from the combination (Kerr lens+thin lens of focal length fL). The longitudinal distribution of 2 is deduced from a fit of the plot 2 W versus z with the following parabola
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 2227 Fig.7 indicates prospectively that the
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 8 Figure 8: Variations of the two focal length of interest versus the normalised phase shift ) / ( 0 φ π : (a) Triangles: Kerr focal length K f deduced from the beam-waist position of the Gaussian beam of width mm W 25 . 0 0 = focused by the combination (Kerr lens+thin lens of focal length fL=125mm). (b) Circles: Focal length f obtained from the parabolic approximation (Eq. 12)) for mm W 25 . 0 0 =

  get values slightly equal to the focal length K f . Consequently, we can adopt as a focal length describing the focusing properties of a Gaussian Kerr lens, characterised by a
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 92102 Figure 9: Variations of the two focal length of interest, K f (triangle) and p f (circle), versus the normalised phase shift ) / ( 0 φ π : (c) Triangles: Kerr focal length K f deduced from the beam-waist position of the Gaussian beam of width mm W 25 . 0 0 = focused by the combination (Kerr lens+thin lens of focal length fL=125mm). (d) Circles: Focal length p f obtained from the corrected parabolic approximation (Eq. 21)) for mm W 25 . 0 0 =

T 2 M

 2 that the focal lengths p f and Z f given by Eqs. (21) and (23) are very close, and this strengthens the present study of the Kerr lensing, and validates the concept of corrected parabolic approximation described above. The corrected parabolic approximation giving the focal length p f (Eq. (21)) is able to provide the right location of the focus min z associated with the Kerr lens. It remains now to examine if the focal length p f allows to get the right beam transmission through a diaphragm (see Fig. 5 and 6), on the usual hypothesis of keeping the Gaussian nature of the beam. For that, let us determine the transmission 3 D T of the diaphragm calculated along similar lines used previously when calculating 2 DT , but by replacing the focal length f by p f . The result is shown in Fig.11and it is seen that the focal length p f allows an accurate determination of the aperture transmission ( does not describe faithfully the aperture transmission because the beam is no longer Gaussian since its factor is beginning to be important as shown in Fig.7.
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 0 Figure 11: Variations of diaphragm transmissions 1 D T (Gaussian phase shift), 2 D T (f: parabolic approximation) and 3 D T ( p f : corrected parabolic approximation) versus the normalised on-axis Kerr phase shift π φ / 0

f f p 3 = 1 .

 31 "true" focal length for the Kerr lens characterised by the phase shift distribution ] collimated Gaussian beam of width 0 W . The resulting diffracted field distribution has been determined without any approximation by using the usual Fresnel-Kirchhoff integral allowing the knowledge of the true focal plane zmin where the width, based on the second-order intensity moment, of the diffracted beam is minimum. The first important conclusion is that the usual parabolic approximation is not able to provide the right location of the focus associated with the Kerr lens. Note that we have recently shown [8] that the different possible modellings of a distributed lensing effect characterised by the phase shift ] effective focal lengths without being able to identify the best one because neither focal length could be considered as a reference. In the present work, we believe that we have stated unambiguously the focal length K f of a Kerr lens from the position zmin of the true focal plane, and we have found that the parabolic approximation through the focal length ) of the Kerr lens focal plane. We have demonstrated that the focal length describe correctly the Kerr lens in the sense that ) The expression of the focal length p f of the Kerr lens resulting from the corrected parabolic approximation has been confirmed by the focal length

  to use the dimensionless aberration coefficients Aj which are expressed in unit of wavelength, and defined as λ
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 20244 . The results are shown in Table (A-2) proving that the phase aberration ) coefficients which are very different according to the probe beam (plane wave or Gaussian beam). Dimensionless aberration coefficients associated to a phase aberration ] noting that the aberration term for j=4 is known as "defocus term" which has to be considered as a pure lensing effect which we will hereafter use for defining the equivalent focal length associated with phase shift ] consider the WAF, noted SL, of a collimated laser beam after crossing a thin lens of focal length f : associated with the WAF given by Eq. (A-5). For that, we have to calculate the following integral: given by Eq. (A-6) to the defocus coefficient a4, we find the expression of the equivalent focal length, noted Z f , resulting from the Zernike decomposition:

  Gaussian, has been demonstrated to be wrong. Indeed, a probe Gaussian beam of width 0 W Kerr lens is above all basically a phase aberration. As a result, it has been found that the parabolic approximation is not able to estimate the losses due to a simple diaphragm by assuming a Gaussian nature of the beam. However, the corrected parabolic approximation introduced in this work, i.e. the focal length p f , is able to describe the losses due to a hard aperture on the hypothesis of a Gaussian beam but only for

	passing through a Kerr lens characterised by the phase shift	1 φ ∆	(	ρ	)	=	0 φ	exp[	2 -	ρ	2	/	2 0 W	]	has a
	beam propagation factor M 2 greater than unity, approximately proportional to 0 φ and
	independent from 0 W . It is found that the M 2 factor increases from 1 to 4.5 when the on-axis
	phase shift 0 φ increases from 0 to π 3 . The Optical Kerr effect induced by a Gaussian laser
	beam should not be reduced only to a simple pure thin lens. It is important to keep in mind
	that a π φ 6 . 0 0 ≤	. This should be a
					length		f p =	3 πW 0 2	/(	0 λφ	)	obtained in
	the framework of the so-called corrected parabolic approximation is credible to describe the
	stability limits of a KLM laser cavity, and the losses induced by the intracavity hard aperture
	only if	φ 0 ≤	0	.	π 6										

crucial issue for modelling accurately the laser cavity operating in KLM regime. Since the parabolic approximation gives a Kerr focal length deduced from the ABCD formalism unable to correctly provide the focal plane, this raises serious doubts about the stability limits of a KLM laser cavity obtained in the context of the usual parabolic approximation. We believe that reducing the Kerr lens effect to a thin lens of focal

Appendix-1: Zernike polynomial decomposition of the OKE

The propagating term of the collimated incident Gaussian beam emerging from the distributed lens writes [ ]

. The phase distribution ) , ( θ ρ S is independent of angle θ , and is usually called as wave aberration function (WAF) according to the terminology of optical aberration modelling [START_REF] Mahajan | Optical Imaging and Aberration[END_REF]. As usual, the WAF is expanded as a linear combination of Zernike polynomials (ZP), j Z , as follows

where the index j is a polynomial-ordering number, and j a the aberration coefficients. The normalised radial coordinate is defined as

, where R is the radius of the unit circle.

In the following we set R equal to 1.5W0 since this circle contains 99% of the incident Gaussian beam power. The Zernike polynomials ) , ( θ ρ j Z are a set of orthogonal functions over the unit circle ( 1 0 ≤

≤ ρ

).

The sum in Eq. (A-1) is infinite, but is usually truncated. Here, we will work arbitrarily until j=22, and because of the rotational symmetry of 1 φ ∆ most of coefficients j a are equal to zero except four of them: a1, a4, a11 and a22.