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Abstract

In many wireless sensor network (WSN) applications, where a plethora of
nodes are deployed to sense physical phenomena, erroneous measurements
could be generated mainly due to the presence of harsh environments and/or
to the depletion of a sensor’s battery. The measurements that significantly
deviate from a normal behavior of sensed data are considered as outliers. To
address the problem of detecting these outliers in wireless sensor networks,
we propose a new algorithm, called Distributed Outlier Detection Scheme
(DODS), in which multiple sensed data types are considered and where out-
liers are detected locally by each node, using a set of classifiers, so that neither
information about neighbors is needed to be known by other nodes nor a com-
munication is required among them. These characteristics allow the proposed
scheme to be scalable and efficient in terms of both energy consumption and
communication cost. The functionalities of the proposed scheme have been
validated through extensive simulations using real sensed data obtained from
Intel-Berkeley Research Lab. The obtained results demonstrate the efficiency
of the proposed scheme in comparison to the surveyed algorithms.
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1. Introduction1

The advances in the fields of transistors and semiconductor devices have2

led to the deployment of wireless sensor networks (WSNs). A wireless sensor3

network (WSN) is a self-organized network that consists of a large number4

of low-cost and low-powered sensor devices, which can be deployed in a field,5

in the air, in vehicles, on bodies, underwater, and inside buildings. These6

small sensing devices can cooperatively monitor real world physical or envi-7

ronmental conditions, such as temperature, pollution, pressure, light, volt-8

age, humidity and motion. They are also considered as particular networks9

which are widely used in commercial and industrial areas, for example, trans-10

portation tracking, environmental and habitat monitoring, healthcare, etc.11

Moreover, in a military applications, WSNs can be used for target tracking12

and battlefield surveillance. In many of these applications, the data sensed13

by nodes are often unreliable. The quality of the data is affected by multiple14

noises and errors, missing values, duplicated data, or inconsistent data [1],15

without forgetting the low performance of nodes in terms of energy, com-16

putational and memory capabilities. These issues generally lead into having17

the generated data unreliable and inaccurate. One of the most sources that18

influence the quality of sensed data are outliers. We can define outliers as19

those measurements that significantly deviate from the normal pattern of the20

sensed data [1]. It means that the sensed data should be in coherence with a21

pattern which represents the reality of the sensed data. Therefore, it is clear22

that outlier detection is a crucial task in WSNs as It improves the quality of23

data, the security of the system, and maximizes the lifetime of the network.24

Historically, research in outlier detection started in data management25

field [2, 3]. A definition of an outlier is given by Hawkins [4] where he con-26

sidered outlier as an observation that deviates a lot from other observations27

and can be generated from a different mechanism. In WSN, outlier detection28

technique is the process of identifying those data instances that deviate from29

the rest of the data patterns based on a certain measure [5]. So, every mea-30

surement whose features dissent significantly from the normal behaviors is31

considered as outliers. In this paper, we present a new outlier detection algo-32

rithm, called DODS (for Distributed Outlier Detection Scheme). The main33

idea is to clean sensed data (measurements) from outlier (incorrect data).34

The proposal is base on a classification method to classify sensed data in a35

distributed manner. The scheme operates in nodes which made the sensing36

operation and does not require any neighbor’s communication. In short, our37
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main contributions can be summarized as follows:38

• Design of multiclassifier-based outlier detection algorithm in nodes;39

• Parameterization of classifiers to deal with different types of sensed40

data;41

• Simulation of the proposal in order to show its effectiveness in terms42

of detection accuracy, false alarm, and energy consumption.43

The remainder of this paper is organized as follows. Section 2 mainly reviews44

the literature related to outlier detection techniques in WSN. In Section 3, we45

first introduce some formulations and definitions used in our approach and46

then, we describe in detail our scheme. Section 4 presents the experimental47

results. We conclude the paper and suggest future work in Section 5.48

2. Related Work49

Outlier detection in WSNs has been studied and a number of schemes50

and surveys have been proposed in the literature [6, 7, 8, 9, 10]. However,51

designing a solution that does not require neighborhood information remains52

a challenging issue in WSNs research. Wu et al in [11] present two local53

techniques for identification of outlying sensors. The identification of event54

boundary is also proposed in this work. The authors use the spatial corre-55

lation exists among neighbors. To exploit this characteristic, nodes compute56

the difference between its own measurements and the median of those of the57

neighborhood. If the result is greater than a pre-defined threshold, the node58

is considered as outlying one. The accuracy is not high due to the fact that59

ignorance of the temporal correlation of sensors’ measurements decreases the60

performance of the proposed protocol. In contrary, the authors in [12] pro-61

pose a technique which exploits the temporal correlation concept. Each node62

computes a distance similarity to detect outliers and communicates the result63

to the neighborhood by a broadcasting message. This technique permits the64

identification of global outliers, but the use of the broadcasting technique65

increases communication overhead. Zhang et al. present in [13], a technique66

based on distance to identify a set of global outliers in a snapshot. This tech-67

nique uses a structure of aggregation tree to minimize the broadcasting of68

messages and reduce communication overhead. The identification of n global69

outliers is done by sending a useful data from nodes to the sink. After that,70
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the sink treats these data and then broadcasts outlier to network’s nodes for71

agreement. The result of the identification of outliers is not sure due to the72

fact that the topology of WSN is not stable. Zhuang and Chen in [14] present73

two in-network outlier cleaning techniques for data collection applications of74

sensor networks. The first technique uses wavelet analysis to detect outliers.75

The second uses dynamic time warping (DTW). These techniques exploit the76

advantage of spatiotemporal correlations existing in readings of sensor nodes.77

The disadvantage of these techniques is the use of many thresholds which are78

difficult to define. Other categories of techniques use the concept of clustering79

where they start by grouping similar data instances into clusters with similar80

behavior. Data instances are identified as an outlier if they do not belong to81

clusters or if the cluster is significantly smaller than other clusters. In [15],82

authors propose a technique that minimizes the communication overhead by83

clustering the sensor measurements and merging clusters before communi-84

cating with other nodes. The advantage of this technique is that it does not85

need any prior knowledge on data distribution, but it needs to fix the width86

of the cluster. However, in spectral decomposition-based approaches, several87

techniques are proposed in the literature, using principal component analysis88

(PCA) for outlier detection. Chatzigiannakis et al.[16] propose a technique89

based on PCA to resolve the problem of accuracy in data generated by faulty90

nodes. The technique develops a model for the spatiotemporal correlations91

existing between sensed data in a distributed way. This model is used to de-92

tect outlier in sensor node through neighboring sensor nodes readings. The93

disadvantage of this technique is computationally expensive; which is caused94

by the selection of a good model. Furthermore, other solutions are based95

on classification to detect outliers. These approaches are often used in data96

mining and machine learning community. These approaches allow learning a97

classification model using the set of data instances (training phase) and clas-98

sify an unseen instance into one of the learned (normal/outlier) class (testing99

phase) [1]. Abid et al. [17] proposed a solution called OPTICS. The method-100

ology developed is a density-based classification technique and method or-101

dering points to detect the clustering structure. The proposal can configure102

automatically the parameters without previous known environmental condi-103

tions. However, the comparative results show a low outlier detection rate.104

Rajasegarar et al. [18] propose a technique using one-class quarter-sphere to105

identify outliers in each node in a distributed manner. All nodes analyze106

sensed data offline after collecting all readings, which causes an outlier de-107

tection delay. So, it cannot be applied in real-time applications. Lu et al. [19]108
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presented an outlier detection method based on Cross-correlation. The pro-109

posal involves three essential parts: using linear interpolation in order to110

reprocess the data, cross-correlation analysis for outlier analysis and a mul-111

tilevel Otsu’s method for outlier rank. The proposed method can detect and112

isolate outliers in high dimensional time series datasets, and the hierarchical113

output of detection results. The authors in [20] propose a technique based114

on spatiotemporal correlations to learn contextual information statistically.115

Markov models are used and every sensor node computes the probabilities116

of its readings being in one predefined interval. If the probability of the117

sensed data is not being in the target interval, it will be considered as an118

outlier. A similar approach was proposed by Bahrepour et al. [21], they used119

the näıve bayesian networks in collaboration with neural networks for the120

detection of outliers. In [22], authors propose two techniques using dynamic121

Bayesian networks (DBN) to detect outliers locally in each sensor node. The122

aim of using DBN is to prevent the dynamic network topology. Recently, the123

authors in [23] present a new approach called Combined Kernelized Outliers124

Detection Technique (CKODT) based WSNs in the domain of water pipeline.125

The authors combined numerous methods for dimensionality reduction tech-126

niques and fault detection such as the Kernel Fisher Discriminant Analysis127

(KFDA) and the One Class Support Vector Machine (OCSVM). The ex-128

perimental results showed the efficiency of the proposal compared to other129

approaches in the literature.Contrary to the ideas developed in the above130

reviewed works in which the neighbor’s information is required and only one131

type of sensed data is considered, our proposal mainly focused on the design132

and development of self-detection nodes that are able to detect autonomously133

outliers where several sensed data types are collected by sensors.134

3. Distributed Outlier Detection Scheme135

The main goal of the DODS algorithm is in-network outlier detection.136

The solution exploits the temporal correlations existing in the sensed data137

(current and history sensed data) of the same node and its remaining energy138

level. Outlier detection is performed using Bayes’ classifier for each type139

of data. This technique permits a multivariate classification sensed data in140

a distributed fashion. Figure 2 shows the structure of our approach which141

is represented by a data type identifier and a set of classifiers. The data142

type identifier allows knowing the type of measured data to direct it to the143

good classifier (classifier 1, 2, 3, ..., n). In our simulation experiences, we144
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Figure 1: Nodes randomly deployed over an area.

use only four classifiers (temperature, light, voltage, and humidity classifier)145

according to the real datasets used in different scenarios. So, nodes belong146

to an interesting region (IR) participate in the outlier detection process. We147

mean that when a BS sends request reqi for example, only nodes of this148

region perform the classification task and not all nodes of the network. As149

shown in Figure 1, the black circles represent a set of nodes belongs to IR150

of the request reqi. The white circles are nodes belong to an uninteresting151

region by the request reqi. We describe the proposed algorithm and details152

its behavior in the next sub-sections.153

3.1. System Assumptions154

In the design of the proposed approach, some assumptions have been con-155

sidered in order to be complying with a distributed detection. We assume156

that all static nodes are homogeneous, the computation and power capabil-157

ities of all of them are the same. Nodes’ batteries cannot be recharged and158

each node is equipped with a power control device that has capabilities to159

vary their transmit/receive power. We assume that nodes are locations un-160

aware. Let us say that S = {s1, s2, ..., sn} is the set of n stationary randomly161

deployed nodes with unique identifiers ID ∈ [1, n] ∩ N , on a 2-dimensional162

square field. The hierarchical structure of WSN adopted in our approach,163

consist of a set of clusters CL = {cl1, cl2, ..., clm}. These clusters have not164

necessarily the same size. Furthermore, each node si ∈ S, S = {s1, s2, ..., sn}165

gathers information from the environment after receiving a request reqi from166

the base station. Finally, we summarize the used notations in Table 1.167
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Figure 2: Classification structure of our approach.

Notation Description
S Set of static nodes
ID Identificator of a node
CL Set of clusters
BS Base Station
CH Cluster Head
reqi Request i sent by BS
CPTi Conditional Probability Table of the node i
ELi Energy Level of the node i
HSDi History of Sensed Data of the node i
CSDi Current Sensed Data of the node i

Table 1: Notation.

3.2. Problem formulation168

In order to classify sensed data, we employ the formalism of Bayesian169

networks. A Bayesian network is a directed acyclic graph (DAG) that rep-170

resents a probability distribution. In such a graph, each random variable Xi171

is denoted by a node. A directed edge between two nodes indicates a proba-172

bilistic influence (dependency) of a child. Consequently, the structure of the173

network denotes the assumption that each node Xi in the network is con-174

ditionally independent of its non-descendants given its parents. To describe175

a probability distribution satisfying these assumptions, each node Xi in the176

network is associated with a conditional probability table (CPTi ), which177

specifies the distribution over Xi given any possible assignment of values to178

its parents[24]. A Bayesian classifier is simply a Bayesian network applied to179
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Figure 3: Our Bayesian Network.

a classification task[24]. It contains a node C representing the class variable180

and a node Xi for each of the features. Given a specific instance x (an assign-181

ment of values x1, x2, . . . , xn to the feature variables), the Bayesian network182

allows us to compute the probability P (C = ck|X = x) for each possible183

class ck . This is done via Bayes’ theorem, giving us184

p(C = c|X = x) =
p(C = c) p(X = x|C = c)

p(X = x)
(1)

The critical quantity in Eq.1 is P (X = x|C = ck), which is often impractical185

to compute without imposing independence assumptions. The oldest and186

most restrictive form of such assumptions is embodied in the näıve Bayesian187

classifier [25] which assumes that each features Xi is conditionally indepen-188

dent of every other feature, given the class variable C. Formally, this yields189

p(X = x|C = c) =
∏
i

p(Xi = xi|C = c) (2)

In our approach, we consider the Bayesian Network presented in Figure 3.190

Our model consists of one observed variable (evidence), the Current Sensed191

Data (CSD) and two hidden data: the first one is the Energy Level (EL)192

of the node, the second one is the History of Sensed Data (HSD). The use193

of such data helps us to infer the classifier and give more accuracy in the194

detection of outliers. The HSD permits to exploit the temporal correlation195

exists between sensed data of the same node. On the other hand, the remain-196

ing energy represented by Energy Level is one of the influenced parameters197

on sensing operation [26], it is useful to verify if a node has enough energy198

to perform its function properly. Such a parameter can be computed by199

the node itself. According to the Eq.1, we obtain the following conditional200
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probabilities equations:201

p(CSD|EL) =
p(EL|CSD) p(CSD)

p(EL)
(3)

202

p(CSD|HSD) =
p(HSD|CSD) p(CSD)

p(HSD)
(4)

Now, we compute the joint probability distribution PJ(x1, x2, . . . , xn)203

which encapsulates all the variables (parameters). It is defined by using the204

chain rule, which is the result of the following product:205

PJ(x1, x2, . . . , xn) =
n∏

i=1

p(xi|par(xi)) (5)

Where x1 represents the variable defined on the network and par(xi)206

represents the parents of the node. Matching the Eq.5 on the Bayesian207

network described by Figure 3, we obtain the following equation:208

PJ(CSD|EL,HSD) = p(CSD|HSD) p(CSD|EL) p(CSD) (6)

In order to learn the prior probability and to compute all CPTs, we use a209

supervised off-line method. Such a technique permits to reduce computation210

and maximizes outlier detection accuracy.211

3.3. Inference algorithm212

The process of detecting outliers begins by inferring the classifier. To213

achieve this purpose, we use the maximum a posteriori (MAP) concept [22,214

27]. The aim of this technique is to determine all optimal classes c =215

c1, c2, . . . , cm by maximization of MAP given the evidence. The MAP formula216

of our approach is described in the following equation.217

cMAP = arg max
ci∈C

p(CSDi|ELi, HSDi) (7)

218

cMAP = arg max
ci∈C

p(ELi|CSDi) p(HSDi|CSDi) p(CSDi) (8)

We can apply Bayes’ theorem to the formula above, we obtain:219

cMAP = arg max
ci∈C

p(ELi, HSDi|CSDi) p(CSDi)

p(ELi, HSDi)
(9)
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220

cMAP = arg max
ci∈C

p(ELi|CSDi) p(HSDi|CSDi) p(CSDi)

p(ELi, HSDi)
(10)

We note that the denominator is a constant and its value does not affect221

the argmax, so we can drop it. We obtain the following formula:222

cMAP = arg max
ci∈C

p(ELi|CSDi) p(HSDi|CSDi) p(CSDi) (11)

We note that in our design, we consider different classes for different223

sensed data. To do that, we suppose T = t1, t2, . . . , tn, as a set of classes for224

the sensed data ”Temperature”. For ”Humidity”, we put H = h1, h2, . . . , hm225

as classes of the classifier. The set of classes proposed to ”Light” and ”Volt-226

age” is L = l1, l2, . . . , lk and V = v1, v2, . . . , vp respectively. So, ci in Eq.7227

represents one of the classes mentioned above. According to the sensed data,228

a node can use a specific classifier with a specific class. Figure 2 shows dif-229

ferent classifiers implemented in nodes. For example, if the sensed data are230

measured by temperatures sensor unit, the classifier i specified to Tempera-231

ture Data will use the classes T = t1, t2, . . . , tn for inference’s process and so232

on.233

We summarize our approach in the following algorithm:234
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Algorithm 1 The DODS Algorithm

BEGIN
Step 1: Initialize parameters

1: N : node in an interesting region (IR)
//we consider only 4 classifiers (temperature, humidity, light and voltage)

2: T = t1, t2, . . . , tn: set of classes of temperature data
3: H = h1, h2, . . . , hm: set of classes of humidity data
4: L = l1, l2, . . . , lk: set of classes of light data
5: V = v1, v2, . . . , vp: set of classes of voltage data
6: type of CSD = typeT , typeH , typeL, typeV
7: Let ELN be the energy level of the node N
8: Let CSDN be the Current Sensed Data of the node N
9: Let HSDN be the History (Last) Sensed Data of the node N

Step 2: Computing of maximum a posteriori (MAP)
10: Switch type of CSD do
11: typeT : cMAP = arg max

c∈T
p(ELN |CSDN) p(HSDN |CSDN) p(CSDN)

12: typeH : cMAP = arg max
c∈H

p(ELN |CSDN) p(HSDN |CSDN) p(CSDN)

13: typeL : cMAP = arg max
c∈L

p(ELN |CSDN) p(HSDN |CSDN) p(CSDN)

14: typeV : cMAP = arg max
c∈V

p(ELN |CSDN) p(HSDN |CSDN) p(CSDN)

15: end Switch
Step 3: Comparison of result

16: Switch type of CSD do
17: typeT : use T to find class of CSD;
18: if class of CSD = class of cMAP then
19: CSD is Normal DATA; FORWARD CSD
20: else CSD is Outlier DATA;REMOV E CSD endif
21: typeH : use H to find class of CSD;
22: if class of CSD = class of cMAP then
23: CSD is Normal DATA; FORWARD CSD
24: else CSD is Outlier DATA;REMOV E CSD endif
25: typeL : use L to find class of CSD;
26: if class of CSD = class of cMAP then
27: CSD is Normal DATA; FORWARD CSD
28: else CSD is Outlier DATA;REMOV E CSD endif
29: typeV : use V to find class of CSD;
30: if class of CSD = class of cMAP then
31: CSD is Normal DATA; FORWARD CSD
32: else CSD is Outlier DATA;REMOV E CSD endif
33: end Switch
END
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Figure 4: Sensors in the Intel Berkeley Research Lab[28].

4. Performance Evaluation235

In order to evaluate our scheme, a set of data were obtained and a num-236

ber of experiments were conducted. Section 4.1 describes the datasets, while237

Section 4.2 defines evaluation metrics; Section 4.3 shows the simulation pa-238

rameters and in the Section 4.4 reports the final results.239

4.1. Datasets240

In order to be close to the reality, experiments have been performed by241

using the realistic sensed data collected from 54 Mica2Dot sensors deployed242

in Intel Berkeley Research Lab between February 28 and April 5, 2004 (see243

Figure 4) [28].244

The sensed data included temperature, humidity, light, and voltage values245

collected once in 31s. The quantity of data is about 2.3 million readings; it246

was collected using the TinyDB in-network query processing system, built247

on the TinyOS platform[28]. All values measured by sensors are presented in248

Table 2. The epoch is a monotonically increasing sequence number from each249

mote. Moteids range from 1 to 54; data from some motes may be missing250

or truncated. Temperature is in degrees Celsius. Humidity is ranging from251

0 to 100%. Light is in Lux (a value of 1 Lux corresponds to moonlight,252

400Lux to a bright office, and 100, 000 Lux to full sunlight). Voltage is253

expressed in volts, ranging from 2 to 3; the batteries, in this case, were254

lithium ion cells which maintain a fairly constant voltage over their lifetime.255
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Date Time Epoch Moteid Temp Humidity Light Voltage
(yy −mm (hh : mm (int) (int) (real) (real) (real) (real)
−dd) ss : xxx :)

Table 2: Dataset schema.

In the experiments, we first selected some measurements from the nodes256

with IDs = 36, 37 and 38 (see Figure. 2), for the time period from 2004-03-257

11 to 2004-03-14 corresponding to 15763 log rows. We separate this dataset258

according to features (temperature, humidity, light, and voltage). We obtain259

4 synthetic datasets named: Dataset-Tmp, Dataset-Hmd, Dataset-Lght, and260

Dataset-Volt. To evaluate our approach, we add 1000 outliers (Abnormal261

value) to each previous Datasets.262

4.2. Evaluation metrics263

To evaluate the performance of the proposed algorithm, we analyzed three264

principle metrics: Detection Accuracy Rate (DAR), False Alarm Rate (FAR)265

and Energy Consumption. To do that, we use a confusion matrix (CM) [29].266

CM determines True and False Positives (TP, FP), thus True and False267

Negatives (TN, FN). TP can be defined as real outlier detection by a node.268

On the other side, FP is occurring when a node concludes that a sensed data269

are an outlier but is not. The TN denotes that when a node it signals that270

there is no outlier in a correct data. Finally, when a node does not detect271

an existing outlier, FN increases. This matrix allows us to evaluate carefully272

the accuracy of our approach. DAR and FAR can be computed using the273

following equations:274

DAR =
TP

(TP + FN)
(12)

275

FAR =
FP

(FP + TN)
(13)

As regards energy consumption, this metric represents the total energy dis-276

sipated by all nodes to sense and transmit the measured data. The en-277

ergy consumed by the radio of each node has been estimated basing on the278

model proposed by Heinzelman [30]. In this model, sending and receiving279

a k -bit packet with distance d, generate a radio consumption ETX(k, d) =280

Eelec ∗ k + εamp ∗ k ∗ d2, and ERX(k) = Eelec ∗ k respectively, Where:281
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Parameters Value(s)
Square m2 100 ∗ 100
Number of nodes 81
Cluster size 10
Number of clusters 8
Node radio range 40 m
Transmission channel Wireless channel
Propagation model log Normal path loss model
Data packet size 32 bytes
Bandwidth 200 Kilobytes per second
Radio layer CC2420 radio layer
Queue size 50 packets

Table 3: Simulation parameters.

• Eelec = 50nJ/bit : energy for running the transmitter/receiver circuitry.282

• εamp = 100pJ/bit/m2 : energy for running the transmitter amplifier.283

4.3. Simulation parameters284

Our experiments are conducted under TOSSIM tool [31]. TOSSIM is a285

TinyOS simulation tool which simulates WSN physical and link layer features286

accurately. This allows validating the solution under realistic WSN deploy-287

ment conditions. In the experiments, we chose one of the most popular sensor288

platforms, Mica2. We use 81 sensor nodes to form 10 clusters. We Consider289

sensor node with ID = 1 as the sink and sensor nodes with IDs = 36, 37, 38290

represent sensor nodes 36, 37 and 38 respectively of our Berkeley’s dataset291

selected in section 4.1. Sensor node 2 is the CH of the previous set’s sensor292

nodes. The simulation parameters are depicted in Table 3.293

4.4. Results and discussion294

In this section, we present our experimental results for the proposed al-295

gorithm. We compare the performance of our proposed DODS scheme with296

CollECT event detection proposed by Wang et al [32], and with the outlier297

detection algorithm (OD) proposed by Asmaa et al [33]. To do that, experi-298

ences are conducted according to three scenarios. We use different intervals299

(Small, medium and large) to compute cMAP . Table. 4 and 5 summarize the300

initialization of these intervals. We also consider the initial energy of nodes301

with IDs = 36, 37, 38 equal to 18, 720 Joules, that corresponds to the energy302

of two AA batteries.303
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Temperature(◦ C)
Small interval [−50,−45][−45,−40][−40,−35][−35,−30][−30,−25]

[−25,−20][−20,−15][−15,−10][−10,−5][−5, 0][0, 5]
[5, 10][10, 15][15, 20][20, 25][25, 30][30, 35][35, 40][40, 45]
[45, 50]

Medium interval [−50,−40][−40,−30][−30,−20][−20,−10][−10, 0]
[0, 10][10, 20][20, 30][30, 40][40, 50]

Large interval [−50,−30][−30,−10][−10, 10][10, 30][30, 50]

(a) Intervals (case of Temperature).

Voltage(Volt)
Small interval [2.000, 2.025][2.025, 2.050][2.050, 2.075][2.075, 2.100]

[2.100, 2.125][2.125, 2.150][2.150, 2.175][2.175, 2.200]
[2.200, 2.225][2.225, 2.250][2.250, 2.275][2.275, 2.300]
[2.300, 2.325][2.325, 2.350][2.350, 2.375][2.375, 2.400]
[2.400, 2.425][2.425, 2.450][2.450, 2.475][2.475, 2.500]
[2.500, 2.125][2.525, 2.550][2.550, 2.575][2.575, 2.600]
[2.600, 2.625][2.625, 2.650][2.650, 2.675][2.675, 2.700]
[2.700, 2.725][2.725, 2.750][2.750, 2.775][2.775, 2.800]
[2.800, 2.825][2.825, 2.850][2.850, 2.875][2.875, 2.900]
[2.900, 2.925][2.925, 2.950][2.950, 2.975][2.975, 3.000]

Medium interval [2.00, 2.05][2.05, 2.10][2.10, 2.15][2.15, 2.20][2.20, 2.25]
[2.25, 2.30][2.30, 2.35][2.35, 2.40][2.40, 2.45][2.45, 2.50]
[2.50, 2.55][2.55, 2.60][2.60, 2.65][2.65, 2.70][2.70, 2.75]
[2.75, 2.80][2.80, 2.85][2.85, 2.90][2.90, 2.95][2.95, 3.00]

Large interval [2.0, 2.1][2.1, 2.2][2.2, 2.3][2.3, 2.4][2.4, 2.5][2.5, 2.6]
[2.6, 2.7][2.7, 2.8][2.8, 2.9][2.9, 3.0]

(b) Intervals (case of Voltage).

Table 4: Initialization of intervals (case of Temperature and Voltage)
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Light(Lux)
Small interval [0, 62.5][62.5, 125][125, 187.5][187.5, 250][250, 312.5]

[312.5, 375][375, 437.5][437.5, 500][500, 562.5]
[562.5, 625][625, 687.5][687.5, 750][750, 812.5]
[812.5, 875][875, 937.5][937.5, 1000][1000, 1062.5]
[1062.5, 1125][1125, 1187.5][1187.5, 1250][1250, 1312.5]
[1312.5, 1375][1375, 1437.5][1437.5, 1500][1500, 1562.5]
[1562.5, 1625][1625, 1687.5][1687.5, 1750][1750, 1812.5]
[1812.5, 1875][1875, 1937.5][1937.5, 2000]

Medium interval [0, 125][125, 250][250, 375][375, 500][625, 750][750, 875]
[875, 1000][1000, 1125][1125, 1250][1250, 1375]
[1375, 1500][1625, 1750][1750, 1875][1875, 2000]

Large interval [0, 250][250, 500][500, 750][750, 1000][1000, 1250]
[1250, 1500][1500, 1750][1750, 2000]

(a) Intervals (case of Light).

Humidity(%)
Small interval [0, 5][5, 10][10, 15][15, 20][20, 25][25, 30][30, 35][35, 40]

[40, 45][45, 50][50, 55][55, 60][60, 65][65, 70][70, 75][75, 80]
[80, 85][85, 90][90, 95][95, 100]

Medium interval [0, 15][15, 30][30, 45][45, 60][60, 75][75, 90][90, 100]
Large interval [0, 25][25, 50][50, 75][75, 100]

(b) Intervals (case of Humidity).

Table 5: Initialization of intervals (case of Light and Humidity).

For all scenarios, we proceed to 30 runs under the same test conditions.304

We execute temperature, light, voltage and humidity simulations separately.305

Figure. 5a shows the number of outliers detected in case of temperature, ver-306

sus the simulation time. The rest of figures (Fig. 5b, Fig. 5c and Fig. 5d)307

concerns voltage, light and humidity. From the curves visible in Fig. 5a,308

it can be observed that the DODS-L with large intervals produces a good309

result. It can detect all outliers in a minimum of time. On the other hand,310

when the intervals become smaller, the detection of outlier needs more time311

(case of DODS-M and DODS-S). The Fig. 5a also shows clearly that our312

proposed approach DODS-L with large intervals outperforms outlier detec-313

tion (OD) approach and the CollECT algorithm. Indeed, the use of wide314

intervals in DODS-L allows more possibility for a calculated value (cMAP )315
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(a) Case of Temperature. (b) Case of Voltage.

(c) Case of Light. (d) Case of Humidity.

Figure 5: Detection accuracy for different types of data.

in Eq.11, to be in the range of the current sensed data. However; the OD316

approach is based on four steps to classify data; (a) first: clustering algo-317

rithm is applied to group data into clusters; (b) second: for each cluster,318

an algorithm of outlier detection is launched to classify normal and outlier319

cluster; (c) third step: outlier classification is executed to separate error and320

event data; (d) finally, computing the degree of trustfulness of the readings321

of each node. Each step requires time and energy to be finalized, which is not322

acceptable in WSN. In addition, if it occurs an error in the construction of323

clusters in step 1 of the approach, the process of classification will generate324

false results. For the case of CollECT algorithm, it is based on several pro-325
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(a) Case of Temperature. (b) Case of Voltage.

(c) Case of Light. (d) Case of Humidity.

Figure 6: False alarm rate for different types of data.

cedures (vicinity triangulation, event determination, and border sensor node326

selection). It started by the construction of the estimated attribute region327

to determine the occurrence of the event (outlier), and to identify in some328

cases, the event boundary. However, the algorithm requires a collaboration329

of nodes to get high accuracy. This condition increases time and energy con-330

sumption. In our approach, DODS-L detects all outliers and the execution331

time is less than that outlier detection approach and CollECT algorithm.332

The good performance of DODS-L comes from the idea used to delegate the333

outlier detection process in a distributed manner. This solution attributes a334

twofold role to the node: at the same time, it serves as a measurement node335

and as a cleaning tool.336

Besides the evaluation of the detection accuracy metric, Figure. 6 shows337
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(a) .

Figure 7: Energy consumed vs. Number of outliers.

the false alarm rate versus the simulation time. From results, there is a clear338

trend that the scenario with large interval (DODS-L) outperforms all ap-339

proaches (outlier detection approach and CollECT algorithm), which reveals340

the effectiveness and efficiency of the proposed scheme. This gain is mainly341

favored by the adopted features of DODS and by the proposed model (see342

Figure. 2 ) for types of sensed data. However, from Figure. 6, we observe that343

DODS-S obtains higher false alarm rate than the other variants (DODS-M,344

DODS-L). The reason for this increase lies in the use of small intervals which345

increases the number of classes. That means, when we computed cMAP of a346

current sensed data, even it is normal (not an outlier), the probability where347

it falls in the same interval is very low.348

Finally, Figure. 7 depicts the energy consumed in joules by nodes. As349

shown, the histograms represent the consumption of energy when we variate350

the number of outliers (from 200 until 1000 outliers) in case of temperature.351

It is clear that our DODS-L outperforms OD approach and CollECT algo-352

rithm. In wireless sensor networks, three units consume energy: wireless353

communication, CPU and sensing unit. We note that the communication354

unit consumes more energy compared to other components. Since our algo-355

rithm detects outliers locally in nodes and does not require any neighbors356
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information exchanging, so it performs better than the other approaches and357

consumes less energy.358

5. Conclusion359

Most of the proposed approaches for outlier detection in wireless sensor360

networks require having some information and knowledge about the neigh-361

boring nodes. However, due to the high energy consumption due to wireless362

communications, these approaches are proven to not be optimal and efficient,363

and more research is needed to further enhance the performances of such algo-364

rithms. To this goal, we proposed in this paper a highly efficient algorithm,365

called Distributed Outlier Detection Scheme (DODS). The effectiveness of366

this scheme derived from its fully distributed way of operation as it does not367

involve any messages exchange in the neighborhood. To evaluate the perfor-368

mance of the proposed algorithm, a large number of experiments have been369

performed using real and synthetic datasets. The proposed algorithm de-370

livers very interesting performances, thereby demonstrates its effectiveness.371

As a future work, we plan to introduce new models for a better and precise372

separation of the outlier detection from the event detection.373
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(Berlin, Heidelberg), pp. 158–169, Springer Berlin Heidelberg, 2007.415

[14] Y. Zhuang and L. Chen, “In-network outlier cleaning for data collection416

in sensor networks,” in In CleanDB, Workshop in VLDB 2006, pp. 41–417

48, APPENDIX, 2006.418

[15] S. Rajasegarar, C. Leckie, M. Palaniswami, and J. C. Bezdek, “Dis-419

tributed anomaly detection in wireless sensor networks,” in 2006 10th420

21



IEEE Singapore International Conference on Communication Systems,421

pp. 1–5, Oct 2006.422

[16] V. Chatzigiannakis, S. Papavassiliou, M. Grammatikou, and423

B. Maglaris, “Hierarchical anomaly detection in distributed large-scale424

sensor networks,” in 11th IEEE Symposium on Computers and Commu-425

nications (ISCC’06), pp. 761–767, June 2006.426

[17] A. Abid, A. Masmoudi, A. Kachouri, and A. Mahfoudhi, “Outlier de-427

tection in wireless sensor networks based on optics method for events428

and errors identification,” Wireless Personal Communications, vol. 97,429

pp. 1503–1515, Nov 2017.430

[18] S. Rajasegarar, C. Leckie, M. Palaniswami, and J. C. Bezdek, “Quarter431

sphere based distributed anomaly detection in wireless sensor networks,”432

in 2007 IEEE International Conference on Communications, pp. 3864–433

3869, June 2007.434

[19] H. Lu, Y. Liu, Z. Fei, and C. Guan, “An outlier detection algorithm435

based on cross-correlation analysis for time series dataset,” IEEE Access,436

vol. 6, pp. 53593–53610, 2018.437

[20] E. Elnahrawy and B. Nath, “Context-aware sensors,” in Wireless Sensor438

Networks (H. Karl, A. Wolisz, and A. Willig, eds.), (Berlin, Heidelberg),439

pp. 77–93, Springer Berlin Heidelberg, 2004.440

[21] M. Bahrepour, N. Meratnia, and P. Havinga, “Use of ai techniques441

for residential fire detection in wireless sensor networks,” in AIAI 2009442

Workshop Proceedings, pp. 311–321, CEUR-WS.org, 7 2009.443

[22] D. J. Hill and B. S. Minsker, “Real-time bayesian anomaly detection for444

environmental sensor data,” 2007.445

[23] A. Ayadi, O. Ghorbel, M. BenSalah, and M. Abid, “Kernelized tech-446

nique for outliers detection to monitoring water pipeline based on wsns,”447

Computer Networks, vol. 150, pp. 179 – 189, 2019.448

[24] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of449

Plausible Inference. San Francisco, CA, USA: Morgan Kaufmann Pub-450

lishers Inc., 1988.451

22



[25] G. H. John and P. Langley, “Estimating continuous distributions in452

bayesian classifiers,” in Proceedings of the Eleventh Conference on Un-453

certainty in Artificial Intelligence, UAI’95, (San Francisco, CA, USA),454

pp. 338–345, Morgan Kaufmann Publishers Inc., 1995.455

[26] K. Ni, N. Ramanathan, M. N. H. Chehade, L. Balzano, S. Nair, S. Za-456

hedi, E. Kohler, G. Pottie, M. Hansen, and M. Srivastava, “Sensor net-457

work data fault types,” ACM Trans. Sen. Netw., vol. 5, pp. 25:1–25:29,458

June 2009.459

[27] T. M. Mitchell, Machine Learning. New York, NY, USA: McGraw-Hill,460

Inc., 1 ed., 1997.461

[28] “Intel lab data home page, last consultation april 2018,”462

http://db.csail.mit.edu/labdata/labdata.html, 2014.463

[29] A. Lazarevic and V. Kumar, “Feature bagging for outlier detection,”464

in Proc. of the Eleventh ACM SIGKDD International Conference on465

Knowledge Discovery in Data Mining, KDD ’05, (New York, NY, USA),466

pp. 157–166, ACM, 2005.467

[30] W. B. Heinzelman, A. P. Chandrakasan, and H. Balakrishnan, “An468

application-specific protocol architecture for wireless microsensor net-469

works,” IEEE Transactions on Wireless Communications, vol. 1,470

pp. 660–670, Oct 2002.471

[31] P. Levis, N. Lee, M. Welsh, and D. Culler, “Tossim: Accurate and472

scalable simulation of entire tinyos applications,” in Proceedings of the473

1st International Conference on Embedded Networked Sensor Systems,474

SenSys ’03, (New York, NY, USA), pp. 126–137, ACM, 2003.475

[32] K.-P. Shih, S.-S. Wang, H.-C. Chen, and P.-H. Yang, “Collect: Col-476

laborative event detection and tracking in wireless heterogeneous sensor477

networks,” Computer Communications, vol. 31, no. 14, pp. 3124 – 3136,478

2008.479

[33] A. Fawzy, H. M. Mokhtar, and O. Hegazy, “Outliers detection and clas-480

sification in wireless sensor networks,” Egyptian Informatics Journal,481

vol. 14, no. 2, pp. 157 – 164, 2013.482

23




