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Abstract 

Bitcoin is the largest cryptocurrency in the world, but its lack of quantitative qualities makes fundamental 

analysis of its intrinsic value difficult. As an alternative valuation and forecasting method we propose a 

non-parametric model based on technical analysis. Using simple technical indicators, we produce point 

and density forecasts of Bitcoin returns with a feedforward neural network. We run several models over 

the full period of April 2011 – March 2018, and four subsamples, and we find that backpropagation 

neural networks dominate various competing models in terms of their forecast accuracy. We conclude 

that the dynamics of Bitcoin returns is characterized by predictive local non-linear trends that reflect the 

speculative nature of cryptocurrency trading. 
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1. Introduction 

Within the past ten years, the cryptocurrency market has emerged and its leading currency, Bitcoin, has 

captured global attention. There have been attempts to forecast Bitcoin prices using artificial neural 

networks (ANNs), but few papers have combined it with technical analysis, and none have pursued the 

combination presented in this paper. There is no physical good that gives Bitcoin value, so it is impossible 

to perform fundamental analysis on this currency. Instead, technical analysis could serve as a potential 

alternative method. 

The contribution of this paper is threefold: 1) we build a non-linear ANN forecasting model based 

on technical analysis in the spirit of Gençay (1998) and compare it to an array of parametric and non-

parametric models; 2) we demonstrate its predictive accuracy for the BTC/USD exchange rate in terms of 

both point and density forecasting, and; 3) we assess the impact of market volatility on predicting Bitcoin 

returns. Since all the predictors being applied in this paper are public information, in essence, we test 

whether Bitcoin prices are efficient in the weak and semi-strong forms (Fama, 1970). 

Our findings reveal that the ANN model with technical indicators as its inputs, in general, 

dominates the random walk model regarding the out-of-sample mean-squared prediction error (MSPE) 

and directional forecasts. The overall accuracy of the directional test was as high as 65%, while the MSPE 

improvements relative to the random walk model were 5-6%. It is important to note that the two most 

recent subsamples (October 1, 2014 – March 2, 2018), marked by a strong upward trend, produced 

substantial improvements in the MSPE statistic that ranged from 11% to 44%. The addition of the 

volatility index to the set of ANN inputs did not increase the out-of-sample predictive accuracy of the 

model. In all, the results indicate that Bitcoin prices followed local non-linear speculative trends that were 

most pronounced during the past 3-4 years. 

Our comparative forecasting analysis shows that the proposed comprehensive ANN model 

dominates the competing parametric and non-parametric approaches (ARIMAX, GARCH-M, linear 
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regression, quantile regression ANN, and kernel regression). The only comparable predictive accuracy is 

achieved by the recurrent ANN model. This suggests the existence of certain temporal dynamics and 

short-term memory characteristics in Bitcoin time series, which is consistent with Lahmiri and Bekiros 

(2019). With regards to density forecasting, the comprehensive ANN model appears to be well-calibrated 

at the daily horizon and it estimates uncertainty around point forecasts appropriately. The competing 

models such as quantile regression ANN and ARIMAX exhibit a degree of bias in their predictions.   

In all, this paper provides valuable insights into the dynamics of the BTC/USD exchange rate. 

First, it appears that the observed non-linearities in the BTC/USD return series require attention when 

modelling the conditional mean of the BTC/USD returns. Next, the BTC/USD returns exhibit sporadic 

periods of local trends (or bubbles) that might be predictable by using technical analysis. Finally, the 

accuracy of the proposed ANN model with technical indicators is sensitive to the period of consideration, 

with the superior predictive ability achieved during recent years (2014 – 2018) that were characterized by 

lower volatility. A possible explanation for this phenomenon is that, in a higher volatility market regime, 

moving average indicators ([1,50] and [1,200]) are more prone to mistiming shorter trend turning points1. 

The structure of the paper is as follows. In Section 2, we review the relevant literature. Next, in 

Section 3, we present the data, followed by the description of methodology in Section 4. The empirical 

results are reported and discussed in Section 5. Section 6 concludes and offers some directions for future 

research. 

 

2. Literature Review  

Balcilar et al. (2017) find that Bitcoin’s volume is a good predictor of returns only when normality of 

returns is observed. Adding social signals such as Twitter activity, polarization measures, and search 

engine volume increases predictive power (Garcia and Schweitzer, 2015). Similar literature suggests that 

                                                           
1 Gradojevic and Gençay (2013) show that moving average indicators are imperfect filters with a nonzero phase 

shift. Essentially, they may omit the temporal memory necessary to identify local trends and turning points. 



 

 

4 
 

market sentiment measures offer profitable trading strategies and that by using expert media it is possible 

to predict short-term Bitcoin price movements (Karalevicius et al., 2018). Using the above inputs and 

adding block size, exchange rates, mining rate and revenue, and several market indexes, Jang and Lee 

(2018) applied a Bayesian ANN and created a model capable of explaining and forecasting Bitcoin 

fluctuations. Furthermore, Bariviera et al. (2017) revealed time-varying long memory properties in 

Bitcoin returns. Finally, an ANN-GARCH model with several technical indexes and past Bitcoin returns 

as inputs dominated the benchmark model at forecasting volatility (Kristjanpoller and Minutolo, 2018).  

 If the random walk model produces the best prediction of future spot prices then a market is 

weak-form efficient (Fama, 1970). However, moving averages and trading-range breaks based on 

historical data were found to increase predictive power over the benchmark models of random walk as 

well as AR(1), EGARCH, and GARCH-M, thus rebutting the efficient market hypothesis (Brock et al., 

1992). Lo and MacKinlay (1988) also strongly reject the random walk model in their research covering 

the 1962-1985 period using a simple specification test.  

 Kuan and White (1994) establish the framework for neural network applications within financial 

economics, laying down the basics that Gençay (1998) followed, and thus we followed. Further research 

concerning the optimal number of hidden layers finds that a one or two-layer network is sufficient; 

however, as the number of inputs increases, the size of hidden layers may need to increase (Kuan and Liu, 

1995; Hornik et al., 1989; Gallant and White, 1988).  

 The combination of ANNs and technical analysis has been rigorously studied. It has been shown 

that ANNs have lower out-of-sample MSPE’s compared to the random walk when forecasting stock 

prices and exchange rate series (Gençay and Stengos, 1998; Gençay, 1998; Gençay, 1999; Gradojevic and 

Yang, 2006; Gradojevic, 2007). Using past buy and sell signals from the Dow Jones Industrial Average 

Index (DJIA), Gençay and Stengos (1998) find that the feedforward ANN model improves on the 

benchmark over a 25 year period. Gençay and Stengos’ (1995) results also suggest that performance 

generally increases with more lags, and that it varies between subsamples. Additional study of the DJIA 
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over a longer period of time suggests that ANN provides at least a 10% forecast improvement upon the 

random walk during volatile years of the Great Depression, with less pronounced results during calmer 

years when there is no strong positive or negative direction (Gençay, 1998). A similar study performed on 

foreign exchange rates supports these results (Gençay, 1999). The findings of Gençay (1999) are 

supported by Gradojevic and Yang (2006) who find that ANN improves out-of-sample MSPE and sign 

prediction for the Canadian-US Dollar (CAD/USD) exchange rate, and that ANN is more accurate for 

short term forecasts over the random walk. Gradojevic (2007) also introduces a fuzzy logic controller into 

the ANN model and finds, even with transaction costs accounted for, that the model is more profitable 

than a simple buy and hold strategy when trading CAD/USD. 

 Recently, Nakano et al. (2018) assessed the economic value of forecasting high-frequency (15-

minute) Bitcoin returns with ANNs and technical indicators over the 2016-2018 period. We complement 

this work by focusing on the statistical value and the directional value of ANN forecasts that are based on 

technical indicators. Also, we utilize a longer data set of daily BTC/USD observations (2010-2018) and 

analyze the impact of market volatility (i.e., market sentiment) on the model’s forecast performance. Most 

importantly, given that we concentrate exclusively on trend indicators, our approach uncovers certain 

stylized facts about Bitcoin price fluctuations that might be of value to government policy-makers and 

regulators. Specifically, if non-linear speculative trends exist at the market microstructure level of the 

Bitcoin fluctuations, policy prescriptions to remedy the situation may be necessary. However, the 

complexity of the Nakano et al. (2018)’s model precludes such lessons because it combines trend (i.e., 

exponential moving average), trend confirmation (i.e., stochastics), volume (i.e., on-balance-volume) and 

momentum (i.e., moving average convergence-divergence) technical predictors in a single model. This 

impedes a sensible economic interpretation as it is difficult to understand what is driving their results. In 

order to identify the nature of Bitcoin “market regimes”, it would be necessary to quantify the relative 

importance of technical trading ANN inputs over sequential time periods. 
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 The current paper also complements the contributions of Lahmiri and Bekiros (2019) and 

Stavroyiannis et al. (2019) that primarily analyze high-frequency time-series properties of Bitcoin. The 

former paper relies on an (autoregressive) deep learning neural network model to forecast returns on 

Bitcoin, Digital Cash, and Ripple, while the latter paper reveals consistent multifractal properties of 

Bitcoin prices. In contrast to our work, these recent additions to the literature do not consider the role of 

technical trading indicators and market volatility in forecasting cryptocurrencies, nor attempt to uncover 

the point and density predictors of BTC/USD returns.  

 

3. Data 

The data set was collected from a Bloomberg Terminal and it spans the period from July 19, 2010 to 

March 5, 2018. The primary time series is the daily BTC/USD exchange rate. Since Bitcoin’s inception in 

January 2009 its value has skyrocketed, visible in Figure 1. The aggressive appreciation over a short time 

is reflected in the daily volatility of the BTC/USD (Figure 2), and Bitcoin has become a very popular, yet 

equally risky, investment option.  

 

Figure 1: Daily price of BTC/USD 
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Figure 2: Daily volatility of the BTC/USD exchange rate. Notes: Day 1 refers to April 22, 2011 and the sample ends on March 

2, 2018 (day 1784). Subsample 1 runs from day 1 to day 445, subsample 2 from day 446 to day 891, subsample 3 from day 

892 to day 1337, and subsample 4 from day 1338 to day 1784. 

 

 Preparing the data for use in the ANN model required creating 50- and 200-day moving averages 

of the BTC/USD daily returns, and then using these indicators to create buy/sell signals by subtracting the 

price from the moving average at time t. These simple buy/sell signals were included as inputs along with 

log daily returns, as well as their lags of 1, 2, 3, and 4 days. After the adjustments, we were left with 

1,784 useable observations beginning on April 22, 2011 and running until March 2, 2018. We also 

produced four subsamples of the time series to test market efficiency and the robustness of our results 

over time. The first subsample runs from April 22/2011 – January 10/2013 (445 observations), the second 

from January 11/2013 – Sep 30/2014 (445 observations), the third from October 1/2014 – June 15/2016 

(445 observations), and the fourth from June 16/2016 – Mar 2/2018 (446 observations). We also included 

the CBOE Volatility Index (VIX) in a model to test whether the presence of a market volatility measure 

affects the neural network’s performance. We provide the summary statistics of data in the Appendix.  

4. Methodology 

Our goal was to follow a similar methodology to the one outlined in Gençay (1998). The daily spot 

exchange series for BTC/USD will be denoted by �� , � = 1, 2, 3, … , 
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log ��� ����⁄ �. To calculate the moving averages, we denote the length of the average as n, and let ��� be 

the moving average at time t, where 

��� = ��
�� ∑ ����

���
���           (1) 

From the moving averages we create buy/sell signals, ��, where  

��
��,�� = ��

�� − ��
��

          (2) 

and we use [1,50] and [1,200] day moving averages for [!�, !"]. When �� is negative (positive) it 

represents a sell (buy) signal. 

The random walk is simply 

�� = # + %�     %�~'(�0, *"�         (3) 

and is our benchmark model. 

 The comprehensive feedforward ANN is constructed as 

�� = #� + ∑ +,- �#, + ∑ .�,���� + ∑ .�,��
��,��/

���
/
��� �0

,�� + %�      %�~'(�0, *"�  (4) 

where G is the activation function (sigmoid or tan-sigmoid) with the Levenberg-Marquardt optimization 

method, chosen for its efficiency (Wilamowski and Yu, 2010), and we have d hidden layers. Overfitting is 

prevented by early stopping, i.e., stopping the training process when the validation set error starts to 

increase. For the whole sample and each subsample, the data were divided into three parts: estimation 

data (70%), validation data (15%) and testing (out-of-sample) data (15%). We also modified the 

comprehensive model to target individual effects of returns in (5), 50-day signal, and 200-day signal in 

(6): 

�� = #� + ∑ +,-1#, + ∑ .�,����
/
��� 20

,�� + %�      %�~'(�0, *"�    (5) 

�� = #� + ∑ +,- �#, + ∑ .�,��
��,��/

��� �0
,�� + %�     %�~'(�0, *"�    (6) 
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 We first construct the log returns, moving averages, buy/sell signals, and then lag returns and 

signals four times. VIX is a simple log return when it is added to the inputs of the network. 

5. Results   

5.1. Feedforward ANN 

Table 1 compares six different models applied to the full data range. The comprehensive model considers 

all 12 inputs (four lags of returns, four lags of [1,50] trading signals, and four lags of [1,200] trading 

signals) with 12 hidden layer neurons and is tested again with 6 hidden layer neurons. The three 

remaining models isolate only returns, 50-day signals, or 200-day signals. The subsample periods are 

shown in Tables 2-5 and they do not consider the 6 hidden layer size model, nor the VIX model. 

We can see in Table 1 that the comprehensive model with 12 neurons produced the best 

predictive performance, outperforming the random walk by about 5.46%. Table 1 shows that the isolated 

returns model predicted the correct direction over 65% of the time, while the comprehensive model (with 

the lowest MSPE ratio) predicted direction with nearly 63% accuracy. These success rates are higher than 

those recorded for foreign exchange rate series (Gençay, 1999). 

Model Comprehensive Comprehensive 

(6 neurons) 

VIX Returns 

Only 

50-Day 

Signal 

Only 

200-Day 

Signal 

Only 

MSPE of 

ANN 

0.00337 0.00339 0.00342 0.00348 0.00351 0.00339 

Random 

Walk 

MSPE 

0.00357 0.00357 0.00357 0.00357 0.00357 0.00357 

Ratio 0.94537 0.95041 0.95927 0.97613 0.98473 0.95058 

Sign 0.62921 0.58427 0.61049 0.65169 0.59551 0.6367 

Hidden 

Layer 

Size 

12 6 12 12 12 12 

Table 1: Comparison of ANN predictability following standard set-up with entire data range, 1,784 observations, allocated 70% 

training, 15% validation, 15% testing (last 267 days). Best model ratio and best sign prediction are in bold. 
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It is important to note that the VIX input was unable to improve performance over the 

comprehensive model. The 200-day signal is about 4.42% better than the random walk, compared to 

1.53% for the 50-day signal, and 2.39% for returns only. The six hidden layer size model did not 

drastically alter the results. Next, we will observe the performance of the competing models across four 

subsamples. 

Model Comprehensive Returns Only 50-Day Signal 

Only 

200-Day 

Signal Only 

MSPE of ANN 0.00047 0.00047 0.00049 0.00049 

Random Walk 

MSPE 

0.00052 0.00052 0.00052 0.00052 

Ratio 0.91947 0.9069 0.95572 0.94784 

Sign 0.56897 0.60345 0.58621 0.60345 

Hidden Layer 

Size 

12 4 4 4 

Table 2: Comparison of ANNs within subsample 1 (April 22, 2011 – January 10, 2013), 445 observations, allocated 70% training, 

15% validation, 15% testing (last 58 days). Best model ratio and best sign prediction are in bold.  

Table 2 is the first subsample from April 22, 2011 to January 10, 2013. The best-performing 

ANN was returns-only, outperforming the random walk by 9.31%. The comprehensive model in 

subsample 1 outperforms the random walk by about 8.05%, while the 50- and 200-day signals outperform 

by 4.43% and 5.22%, respectively. Referring to Figure 2 we can observe that subsample 1 had high daily 

volatility. This subsample finds itself between subsample 2’s extreme volatility and the average return 

volatility over the entire dataset. The summary statistics in Table 7 tell us that returns had a daily standard 

deviation of 7.52%, higher than the full dataset return standard deviation of 6.5% shown in Table 6, and 

lower than the 8.65% of the second subsample. Subsample 1 also has the lowest volatility of the 50 and 

200-day moving average signals. The isolated returns model also provides the best sign prediction with 

over 60% accuracy. This result is consistent in Table 3 with subsample 2. 

The second subsample, as mentioned above, has highly volatile returns, but lower moving 

average signal volatility than the full dataset as we observe in Table 8. The results from subsample 2, 

shown in Table 3, present the first failure of the comprehensive model to outperform the random walk. 
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The 50-day signal outperforms the random walk by approximately 10.84%, suggesting that the short-term 

trend is most successful during periods of higher return volatility. The 200-day signal outperforms the 

random walk by 6.93%, and the past returns by only 1.21%.  

Model Comprehensive Returns Only 50-Day Signal 

Only 

200-Day 

Signal Only 

MSPE of ANN 0.00181 0.00113 0.00102 0.00107 

Random Walk 

MSPE 

0.00115 0.00115 0.00115 0.00115 

Ratio 1.58172 0.98795 0.89162 0.93067 

Sign 0.55172 0.60345 0.56897 0.53448 

Hidden Layer 

Size 

12 4 4 4 

Table 3: Comparison of ANNs within subsample 2 (January 11, 2013 – September 30, 2014), 445 observations, allocated 70% 

training, 15% validation, 15% testing (last 58 days). Best model ratio and best sign prediction are in bold. 

From subsample 2 to subsample 3 we see a drastic change in the daily return volatility and 

ANN’s predictive performance. Subsample 3 has the lowest return standard deviation of 3.64% and lower 

signal volatility than subsample 2, but higher than that of subsample 1, as shown in Table 9. Figure 2 

suggests that this is the steadiest period of Bitcoin data we have. This period also saw a marked increase 

in Bitcoin trading. The ANN results in Table 4 are striking as the 200-day signal outperforms the random 

walk by 43.55%. The 50-day signal also saw an unprecedented improvement of 21.02%. The 

comprehensive and returns-only ANNs also outperform the random walk by 6.71% and 3.67%, 

respectively.  

 Subsample 3 strays from the sign prediction results of the first two subsamples and the full data 

set. The comprehensive model reaches nearly 59% successful sign prediction. Again, however, the best 

returns forecast was the isolated 200-day signal which offers only 53% sign accuracy.  

Model Comprehensive Returns Only 50-Day Signal 

Only 

200-Day 

Signal Only 

MSPE of ANN 0.00098 0.00102 0.00083 0.0006 

Random Walk 

MSPE 

0.00106 0.00106 0.00106 0.00106 

Ratio 0.93291 0.96334 0.7898 0.5645 
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Sign 0.58621 0.51724 0.55172 0.53448 

Hidden Layer 

Size 

12 4 4 4 

Table 4: Comparison of ANNs within subsample 3 (October 1, 2014 – June 15, 2016), 445 observations, allocated 70% training, 

15% validation, 15% testing (last 58 days). Best model ratio is in bold Best model ratio and best sign prediction are in bold. 

The fourth and final subsample has the highest signal volatility of any sample, and relatively low 

return volatility as shown in Table 10. Table 5 presents the results of the ANN models for subsample 4. 

The comprehensive model improves upon the random walk by 10.87%. The isolated returns model 

improves by about 0.1%. The isolated signals fail to dominate the random walk for the first time. Like in 

subsample 3, the comprehensive model provides the best sign prediction for subsample 4 with about 59%.  

Model Comprehensive Returns Only 50-Day Signal 

Only 

200-Day 

Signal Only 

MSPE of ANN 0.0053 0.00594 0.00599 0.00606 

Random Walk 

MSPE 

0.00594 0.00594 0.00594 0.00594 

Ratio 0.89127 0.99898 1.00837 1.0192 

Sign 0.59322 0.55932 0.42373 0.52542 

Hidden Layer 

Size 

12 4 4 4 

Table 5: Comparison of ANNs within subsample 4 (June 16, 2016 – March 2, 2018), 446 observations, allocated 70% training, 

15% validation, 15% testing (last 59 days). Best model ratio and best sign prediction are in bold. 

Overall, feedforward ANNs improve prediction performance over the random walk; however, 

this may not hold true over all periods. Regarding sign predictions, it appears the buy-sell signals overall 

do the poorest job at forecasting direction, while the isolated returns model and the comprehensive do the 

best. 

5.2. Comparative forecast performance 

This subsection performs a comparative predictive analysis that aims at establishing how the proposed 

feedforward ANN model fares against a variety of parametric and non-parametric alternatives. All the 

predictive models are tested on the most recent 15% of the data (267 daily observations) that is held out-

of-sample, while the first 70% of the sample is used for estimation (training) and the subsequent 15% of 

the sample is used as validation data. In addition to the comprehensive ANN (Equation 4) and the random 
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walk models that were utilized in the previous subsection, the following predictive models will be 

considered: 1) autoregressive integrated moving average with exogenous variables – ARIMAX (2,1,1); 2) 

generalized autoregressive conditional heteroscedasticity in mean – GARCH-M (1,1); 3) linear 

regression; 4) quantile regression ANN; 5) recurrent ANN; 6) kernel regression. All the competing 

models are based on the 12 inputs that were used in the comprehensive ANN model (Equation 4). The 

statistical significance of the difference in the performance of alternative models is tested by using the 

Diebold-Mariano (DM) test (Diebold and Mariano, 1995).  The null hypothesis is that there is no 

difference in the MSPE of two alternative models (the random walk and the other models). 

 

 Statistic  

 Sign (%)  MSPE  

(DM) 

Comprehensive ANN 

RW 

63% 

- 

0.0033 (-2.33*) 

0.0036 

ARIMAX (2,1,1) 

GARCH-M (1,1) 

60% 

62% 

0.0193 (4.54) 

0.0223 (4.78) 

Linear regression 59% 0.1080 (6.82) 

Quantile regression ANN  62% 0.0283 (3.15) 

Recurrent ANN 62% 0.0034 (-1.71**) 

Kernel regression 60% 0.0164 (5.15) 

Table 6: Comparison of predictive models for the entire data range, 1,784 observations, allocated 70% training, 15% validation, 

15% testing (last 267 days). The Sign and MSPE statistics are used for the out-of-sample (testing) data. The models that are 

considered are 1) comprehensive ANN model (Equation 4), 2) the random walk (RW) model, 3) ARIMA (2,1,1) model, 4) GARCH-

M (1,1) model, 5) linear regression, 6) quantile regression ANN model, 7) recurrent ANN model, and 8) kernel regression model. 

The Diebold-Mariano (DM) test statistics are reported in the parentheses below MSPEs, where applicable. The critical values are 

+/- 1.64 and +/- 2.58 for a confidence level of 90% and 99%, respectively. (*) and (**) indicates the DM statistic is significant at 

1% and 10% significance level, respectively. 

 The MSPE’s and PERC’s of the predictive models are presented in Table 6. Both statistical 

measures of forecast accuracy are reported in levels. The results in Table 6 indicate that the out-of-sample 

forecast performance of the linear estimators (GARCH-M (1,1), ARIMAX (2,1,1) and linear regression) 

do not outperform the random walk model. The DM statistics of the MSPE’s of all three linear models are 

greater than 2.58, which shows statistically significant forecast improvements (at the 1% significance 
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level) of the random walk model over the linear models. Of the three alternative non-linear models 

evaluated, only the recurrent ANN model offers statistically significant forecast accuracy improvements 

over the random walk model. The quantile regression ANN (Taylor, 2000), for any quantile considered 

(Table 6 reports the MSPE for the 50th percentile), and kernel regression models are markedly inferior in 

terms of their out-of-sample forecast accuracy to the competing ANN models as well as to the random 

walk model. We conjecture that the observed forecast improvements of a feedforward ANN lie in its 

ability to process 12 inputs, whereas higher dimensional data plague the usefulness of kernel regression 

models. Similarly, training quantile regression ANNs with as many as 12 predictors may lead to 

overfitting. 

 

5.3. Density forecasting 

In addition to the Bitcoin point forecasting that measures the expected (central) tendency of the model 

output, this subsection explores the precision (uncertainty) around the forecasted values generated by the 

prediction models. This uncertainty is typically gauged by using density forecasts. In what follows, we 

will evaluate density forecasts from probability integral transforms (PITs) which are defined as 

cumulative probabilities (measured by density forecasts) at the realized value of the output. More 

formally, the PIT of a time series (yt) is defined as follows (Diebold et al., 1998): 

3'
� = 4 ���5�6578
�9 = 3��:��    (7) 

where Pt is the cumulative distribution function of the density forecasts pt.  

 Diebold et al. (1998) show that the PIT is uniform (U[0,1]), independent and identically 

distributed if the density forecast is correctly specified. In line with Bekiros and Paccagnini (2014), we 

test the uniformity property of our density forecasts by plotting the empirical distribution of the PIT (i.e., 

its histogram). We construct the histograms with ten bins and observe the contribution of each bin. 

Uniform density forecasts would have histograms that resemble equally-sized rectangles, i.e., each bin 

would contribute 10% of the probability mass. The histograms of the PITs associated with one-day-ahead 
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density forecasts for the four competing predictive models are displayed in the panels A, B, C and D of 

Figure 3. The height of each bin reflects the fraction of observations that fell within different deciles of 

the density forecasts. Hence, the correct specification of density forecasts contains 10% in each bin, as 

represented by the horizontal solid line.  

 Panel A of Figure 3 suggests that the PITs for the comprehensive ANN model are closest to a 

uniform distribution, thus, indicating the most accurate density forecasts. Also, the PITs generated by the 

recurrent ANN model have an unconditional distribution that is approximately uniform, although the 

histogram exhibits a minor peak in the middle (Panel B, Figure 3). The PIT histogram in Panel C of 

Figure 3 is not correctly specified because it displays a hump in the middle. This can be interpreted as a 

slight tendency of the quantile regression ANN model to under-predict the Bitcoin returns which results 

in the underestimation of uncertainty by the density forecasts. Finally, the ARIMAX model (Panel D, 

Figure 3) forms a “U” shaped PIT histogram that arises from over-confident predictions. In all, we 

conclude that the comprehensive ANN model with technical indicators represents the optimal method for 

both point and density one-day-ahead forecasting of Bitcoin returns. 

  

Panel A Panel B 
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Panel C Panel D 

Figure 3: Histograms of the PITs for the competing predictive models. Notes: The focus is on the one-day-ahead density 

forecasts of the BTC/USD exchange rate returns on the out-of-sample part of the data (last 267 days). Panel A: 

Comprehensive ANN model; Panel B: Recurrent ANN model; Panel C: Quantile regression ANN model; Panel D: ARIMAX 

model. The horizontal solid line (10% probability mass in each bin) represents a well-specified model. The histograms 

resemble a uniform distribution when the heights of all bins are at 10. 

 

  

6. Conclusions 

The results in this paper suggest that BTC/USD returns can be forecasted with feedforward ANNs using 

past returns and simple technical trading rules. ANN can improve point and density forecasting over the 

range of competing parametric and non-parametric models. There is, however, variability in the predictive 

performance of the ANNs over time, possibly due to the volatile nature of Bitcoin. It can be concluded 

that the dynamics of the daily BTC/USD returns exhibits episodes of local trends that potentially arise 

from the speculative nature of cryptocurrency trading. 

Further research should expand on the inputs used, perhaps considering volume, number of daily 

blocks added to the chain, or various other measurements. As well, similar studies should be done with a 

larger dataset and subsamples, and should investigate the profitability of other non-linear, non-parametric 

models. In terms of extending the model, a large variety of high-frequency technical trading inputs could 

be fed into a deep learning ANN where the relative importance of ANN inputs would be tracked over 
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time. This would enable us to differentiate distinct “market regimes” in Bitcoin fluctuations and explain 

market forces behind Bitcoin volatility. Finally, other significant cryptocurrencies could also be studied.  
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Appendix 

 Log Return 50-Day Signal 200-Day Signal 

Mean 0.00513 143.28726 510.90161 

Std. Deviation 0.06498 966.20554 1645.01526 

Sample Variance 0.00422 933553.14983 2706075.19711 

Kurtosis 17.00856 42.71676 28.38834 

Skewness -0.38037 4.20856 4.98645 

Table 7: Summary statistics for overall dataset, April 22, 2011 – March 2, 2018 

 Log Return 50-Day Signal 200-Day Signal 

Mean 0.00552 0.67935 2.38929 

Std. Deviation 0.07520 3.40990 4.83931 

Sample Variance 0.00566 11.62741 23.41895 

Kurtosis 7.94823 12.36359 3.86129 

Skewness 0.05044 2.29904 1.38454 

Table 8: Summary statistics for Subsample 1, April 22, 2011 – January 10, 2013 

 Log Return 50-Day Signal 200-Day Signal 

Mean 0.00737 25.32859 119.29650 

Std. Deviation 0.08650 142.94177 206.38868 

Sample Variance 0.00748 20432.35006 42596.28660 

Kurtosis 15.53803 10.31652 3.15659 

Skewness -0.65036 2.70574 1.76560 

Table 9: Summary statistics for Subsample 2, January 11, 2013 – September 30, 2014 

 Log Return 50-Day Signal 200-Day Signal 

Mean 0.00137 1.43376 -25.25517 

Std. Deviation 0.03643 50.95643 123.16758 

Sample Variance 0.00133 2596.55810 15170.25367 

Kurtosis 8.77809 1.41577 -1.18461 

Skewness -0.55987 0.15418 -0.01474 

Table 10: Summary statistics for Subsample 3, October 1, 2014 – June 15, 2016 

 Log Return 50-Day Signal 200-Day Signal 

Mean 0.00616 551.03600 1912.60464 

Std. Deviation 0.04969 1868.91181 2830.51856 

Sample Variance 0.00247 3492831.34772 8011835.29887 

Kurtosis 3.67048 8.44078 5.26176 

Skewness -0.35876 1.67345 2.32334 

Table 11: Summary statistics for Subsample 4, June 16, 2016 – March 2, 2018 
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