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Abstract

The introduction, from the matrix free-surface, of dislocations in the interfaces

of strained precipitates embedded in a semi-infinite matrix has been theoreti-

cally investigated. For two consecutive interfaces between the matrix and two

neighboring precipitates, the different equilibrium positions of two edge disloca-

tions have been determined versus the misfit strain, the precipitate/precipitate

and precipitate/free-surface distances, when each dislocation is gliding in a dif-

ferent interface. The evolution of the critical misfit strain for the dislocation

formation in the interfaces has been finally discussed versus the precipitate size.

Keywords: dislocations, misfit, precipitates

1. Introduction

The study of the mechanical properties of multiphase materials is currently

the topic of extensive researches in the fields of metallurgy, materials science

and solid mechanics, because of the numerous applications of such structures

in engineering. For example, nickel based-superalloys are used as turbine blade5

materials, whose creep behavior is a key phenomenon controlling the service life

of the blades. It is well-know that, for this type of superalloys which consist in

a high volume fraction of γ′ precipitates embedded in a γ matrix, the lattice
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mismatch between γ′ and γ phases results in misfit stress (Pollock et al., 1992)

[1] that could be (with applied stress) a driving force of the dislocation motion10

during high-temperature low-stress creep (Louchet et al., 1997) [2]. Among the

different mechanisms activated during creep, one can cite dislocation gliding

and climbing or γ′ cutting by dislocations (Zhang et al., 2005) [3, 4]. The creep,

during the early stages, is governed by the gradual filling of the γ channels by

dislocations (Hafez Haghighat et al., 2013) [5] and during the later stages, by15

the rafting process leading to microstructure evolution (Pollock et al., 1994) [6].

Taking into account tensile strength for metal alloys (9Cr-1Mo steel and Ni base

superalloy), a new creep model has been proposed where the stress exponent has

been found to be dependent on stress range but independent on temperature,

the creep activation energy being independent on stress (Yao et al., 2019) [7].20

The modeling of the plasticity development and microstructure evolution

in superalloys has also been the topic of numerous numerical studies at the

mesoscopic scale. For example, the overall stress field in the γ channels due

to dislocations, misfit and applied stress has been numerically calculated and

the Peach-Koëhler forces on the γ/γ′ interface dislocations have been calculated25

using a thermo-elastic finite element procedure coupled with a simplified discrete

dislocation model (DDM) (Probst-Hein et al., 1999) [8]. The influence of the

γ′ volume fraction and dislocation density in the γ channels have been then

characterized. More recently, interfacial dislocation motion has been studied

in the channels of single crystal superalloys and the effects of the interfacial30

dislocation interaction and misfit stress have been analyzed on the dynamic

recovery (Liu et al., 2014) [9]. Using discrete three-dimensional dislocation

dynamics simulations (DDD), the substructure of the γ/γ′ interface dislocations

has been characterized (Hafez Haghighat et al., 2013) [5]. In the low stress-

regime, a network of dislocations has been observed near the corner of the γ′35

precipitates and at high stress-regime, the dislocations have been observed to

squeeze into the γ channels. Likewise, for Ni3Al precipitates in a Ni matrix,

the stress-driven inter-diffusion of Al within the Ni has been found to modify,

through discrete dislocation plasticity (DDP) analyzes, the mechanical behavior

2



of the superalloys (Shishvan et al., 2017) [10]. Indeed, at relatively low applied40

uniaxial tensile stresses, the creep rate has been found to increase and secondary

and ternary creep regimes have been identified. Concerning the rafting of Ni-

based single crystals, an anisotropic elastic-plastic model has been developed to

determine the rafting directions in agreement with experiments (Wen-Ping et

al., 2019) [11].45

From a theoretical point of view, the formation of dislocations, in order to

release the misfit strain, has been also investigated for several multi-phase struc-

tures developing a number of geometries. In the case of film-substrate composite

wires of cylindrical geometry, the formation of misfit dislocations has been stud-

ied from an energy variation calculation and the effects of the misfit strain, film50

thickness and wire radius have been characterized (Gutkin et al., 2000; Ovid’ko

et al., 2004; Gutkin et al., 2011) [12, 13, 14]. Likewise, taking into account the

surface/interface effects, the image force and strain energy of an edge disloca-

tion embedded in a core-shell nanowire have been determined (Gutkin et al.,

2013) [15]. Considering the interface slip and diffusion through a deformation55

model, the transient elastic field generated by an edge dislocation located in the

vicinity of a nanosized circular inhomogeneity has been also determined (Wang

et al., 2017) [16]. Similarly, the nucleation of dislocations from a cylindrical void

or nanovoid under combined loading has been examined by Lubarda (Lubarba,

2011; Lubarda, 2011, Lubarda, 2018) [17, 18, 19]. The problem of nucleation60

of circular loops of dislocations in icosahedral (Gutkin et al., 2015) [20] and

decahedral (Krauchanka et al., 2018; Krauchanka et al., 2019) [21, 22] core-shell

nanoparticles has been recently considered. The generation of loops, semi-loops

and dipoles along the interfaces of a nanowire of rectangular cross-section has

been also discussed, when the defects are emitted from the free-surface of the65

semi-infinite matrix, and the effects of geometric parameters have been analyzed

(Gutkin et al., 2003) [23]. Recently, the possibility of misfit strain relaxation

through the formation of a dipole of partial edge dislocations lying in the in-

terfaces has been discussed in the case of a misfitting nanowire assimilated to

a long parallelepiped embedded in a free-standing nanolayer (Mikaelyan et al.,70
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2019) [24]. The energy barriers and equilibrium positions of the dislocations

have been determined and the critical conditions for their nucleation have been

discussed.

In this framework, the formation of edge dislocations has been theoretically

investigated in this Paper, from an energy variation calculation, when the dis-75

locations are supposed to glide in two consecutive interfaces of two neighboring

two-dimensional precipitates embedded in a semi-infinite matrix. The influence,

on the equilibrium positions of two dislocations, of the misfit strain, precipitate

size, precipitate/precipitate and precipitate/matrix free-surface distances have

been characterized, when each dislocation is lying in a different interface.80

2. Modeling

Two identical square-shaped precipitates 1 and 2 of size d are considered in

a semi-infinite matrix (see Fig. 1 for axes), with d > 0. The shear modulus and

Poisson ratio of the two-dimensional precipitates and matrix phases are assumed

to be equal and are labeled µ and ν, respectively. The centers O1 and O2 of85

the precipitates 1 and 2 are located at (xp, yp) and (−xp, yp), with xp < 0 and

yp < 0, respectively. The first step of the work has been to determine, in the

framework of the plane strain hypothesis of the linear and isotropic elasticity

theory (Timoshenko et al., 1951; Landau et al., 1970) [25, 26], the misfit stress

due to the eigenstrain ε∗ > 0 located into the precipitates which results from90

the lattice mismatch between both phases. To do so, the concept of virtual

dislocation distribution (Hirth et al., 1982) [27] has been used as well as the

Airy function formalism (Timoshenko et al., 1951) [25]. The stress field of an

edge dislocation of Burgers vector bvux located at (x0, y0) in a semi-infinite

solid has been first determined as follows (Hirth et al., 1982) [27]. Starting from95

an infinite-size medium, the biharmonic Airy function φ0 of the corresponding

dislocation located at (x0, y0) which satisfies:

∆2φ0(x, y, x0, y0) = 0, (1)
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is given by:

φ0(x, y, x0, y0) = −Ky − y0
2

ln
[
(x− x0)2 + (y − y0)2

]
, (2)

with ∆ the Laplacian operator, K = µbv/[2π(1− ν)] and bv the Burgers vector

of the virtual dislocation. The stress tensor ¯̄σ0 generated by the dislocation is100

then derived from the formulae (Timoshenko et al., 1951) [25]:

σ0
xx(x, y, x0, y0) =

∂2φ0
∂y2

(x, y, x0, y0), (3)

σ0
xy(x, y, x0, y0) = − ∂

2φ0
∂x∂y

(x, y, x0, y0), (4)

σ0
yy(x, y, x0, y0) =

∂2φ0
∂x2

(x, y, x0, y0). (5)

When the free-surface of the matrix is now considered in the plane y = 0,

the stress relaxation can be determined considering an image dislocation of

Burgers vector −bvux located at (x0,−y0) whose Airy function is defined as

−φ0(x, y, x0,−y0) and a supplementary Airy function φsup(x, y, x0, y0):105

φsup(x, y, x0, y0) = 2Ky0

{
y(y + y0)

(x− x0)2 + (y + y0)2

− 1

2
ln
[
(x− x0)2 + (y + y0)2

]}
, (6)

such that the total stress is fully determined with the help of the following Airy

function (Hirth et al., 1982) [27]:

φbxv (x, y, x0, y0) = φ0(x, y, x0, y0)− φ0(x, y, x0,−y0) + φsup(x, y, x0, y0), (7)

through formulae equivalent to the ones displayed in Eqs. 3, 4 and 5. The stress

field of the dislocation ¯̄σbxv satisfies thus the mechanical equilibrium condition

on the free-surface ¯̄σbxvn = 0, where n is the unit normal vector to the surface.110

For a dislocation of Burgers vector bvuy, the same procedure can be used and

the Airy function φbyv writes:

φbyv (x, y, x0, y0) = K

{
x− x0

2
ln
[
(x− x0)2 + (y − y0)2

]
− x− x0

2
ln
[
(x− x0)2 + (y + y0)2

]
+

2y0y(x− x0)

(x− x0)2 + (y + y0)2

}
, (8)
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where the first term is attached to the dislocation in an infinite-size solid, the

second one is due to its image dislocation located at (x0,−y0) once the free-

surface is introduced, and the third one is the supplementary term added to115

satisfy the mechanical equilibrium ¯̄σbyvn = 0 at the matrix free-surface. The Airy

function characterizing the stress field generated by the precipitate 1 can be now

determined using the concept of distributions of infinitesimal dislocations (Hirth

et al., 1982; Colin, 2018) [27, 28]. Indeed, to model the lattice mismatch at the

four interfaces of the precipitate, four distributions (one in each interface) can120

be introduced. A distribution of virtual dislocations of Burgers vector ±bvux

can be introduced at the precipitate-matrix interface located at y = yp ∓ d
2 ,

respectively. Two other distributions of virtual dislocations of Burgers vector

±bvuy are placed at the interfaces located at xp ± d
2 , respectively. The Burgers

vector bv is related to the misfit through the relation bv = ε∗aeq, where aeq is125

the equilibrium parameter of the structure. The corresponding Airy function

φp1
of the precipitate p1 is thus derived from Eqs. (7) and (8) as:

φp1
(x, y, xp, yp) =

∫ xp+
d
2

xp− d
2

{
φbxv (x, y, x, yp − d/2)

− φbxv (x, y, x, yp + d/2)
} dx
aeq

+

∫ yp+
d
2

yp− d
2

{
φbyv (x, y, xp + d/2, y)

− φbyv (x, y, xp − d/2, y)
} dy

aeq
, (9)

whose analytic expression is given in Eq. (22) of the Appendix. The expression

of the Airy function for the precipitate 2 located at (−xp, yp) is then defined as:

φp2
(x, y, xp, yp) = φp1

(x, y,−xp, yp). (10)

Finally, the Airy function associated with the misfit stress due to the two mis-130

fitting precipitates is written as:

φmis(x, y, xp, yp) = φp1
(x, y, xp, yp) + φp2

(x, y, xp, yp), (11)

the corresponding stress components σmis
ij being derived from formulae given in

Eqs. (29), (30) and (31) of the Appendix. The problem of the introduction of
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edge dislocations from the matrix free-surface in the precipitate-matrix inter-

faces perpendicular to the free-surface, to release the elastic energy, can be now135

investigated. An edge dislocation of Burgers vector −buy (labeled dislocation 1)

is thus introduced at y1 in the interface located at xp+ d
2 +b of the precipitate 1,

while an edge dislocation of Burgers vector buy (labeled dislocation 2) is intro-

duced at y2 in the interface of the precipitate 2 which is located at −xp− d
2 − b,

where the b term has been introduced to slightly shift the dislocations, from140

the interfaces into the matrix, in order to avoid misfit stress divergence at the

precipitate corners. Both Airy functions φd1 and φd2 for the dislocations 1 and

2 are easily derived from Eq. (8) as:

φd1(x, y, xp, y1) = −φby (x, y, xp + d/2 + b, y1), (12)

φd2
(x, y, xp, y2) = φby (x, y,−xp − d/2− b, y2), (13)

respectively. Since all stress fields are known in the vicinity of the matrix free-

surface, the elastic energy Eel stored into the structure can be now calculated145

for a given volume V , with the help of the general formula (Timoshenko et al.,

1951; Landau et al., 1970) [25, 26]:

Eel =
1

2

∫
V

(
σmis
ij + σd1

ij + σd2
ij

)(
εmis
ij + εd1

ij + εd2
ij

)
dV, (14)

where σmis
ij , σd1

ij , σ
d2
ij are the stress components and εmis

ij , εd1
ij , ε

d2
ij the correspond-

ing strain components, due to the precipitates and to the dislocations 1 and 2,

respectively. The elastic energy variation ∆Eel due to the introduction of the150

two dislocations can be then expressed as:

∆Eel = Eel − E0, (15)

with

E0 =
1

2

∫
V

σmis
ij εmis

ij dV, (16)

the energy of the dislocation-free structure. Transforming the volume integral

in Eqs. (15) into a surface integral (Hirth et al., 1982) [27], the elastic energy
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variation per unit length writes:155

∆Eel =
b

2

∫ 0

y1+rc

{
2σmis

xy (xp + d/2 + b, y, xp, yp)

+ σd1
xy(xp + d/2 + b, y, xp, y1) + σd2

xy(xp + d/2 + b, y, xp, y2)
}
dy

− b

2

∫ 0

y2+rc

{
2σmis

xy (−xp − d/2− b, y, xp, yp)

+ σd1
xy(−xp − d/2− b, y, xp, y1) + σd2

xy(−xp − d/2− b, y, xp, y2)
}
dy,(17)

with rc the cut-off length taken to be equal to b without lost of generality.

Taking advantage of the Airy function representation of the stress components,

i.e. σmis
xy = −∂2φmis/∂x∂y and σdi

xy = −∂2φdi/∂x∂y, with i = 1, 2, Eq. (17)

can be integrated as:

∆Eel =
b

2

{
−χ(xp + d/2 + b, 0) + χ(xp + d/2 + b, y1 + b)

+ χ(−xp − d/2− b, 0)− χ(−xp − d/2− b, y2 + b)
}
, (18)

with160

χ(u, v) =
∂

∂x

{
2φmis(u, v, xp, yp) + φd1

(u, v, xp, y1) + φd2
(u, v, xp, y2)

}
, (19)

where the analytical expression of ∆Eel in Eq. (18) is not displayed for the

sake of compactness. Finally, the total energy variation per unit length ∆Et

associated with the formation of the dislocations 1 and 2 writes:

∆Et = ∆Eel + 2Ec, (20)

with Ec the core energy per unit length of one edge dislocation (Hirth et al.,

1982) [27]:165

Ec =
µb2

4π(1− ν)
. (21)

Assuming in the following that aeq = b and introducing the dimensionless pa-

rameters x̃p = xp/b, ỹp = yp/b, d̃ = d/b, ỹ1 = y1/b and ỹ2 = y2/b, the total

energy variation per unit length ∆Et has been rescaled as ∆Ẽt = ∆Et/E∗,

with E∗ = µb2/[2π(1 − ν)]. It is underlined at this point that the position pa-

rameters defined above have been normalized by the magnitude of the Burgers170

vector of the dislocations b, and the energy by twice the core energy of one edge

dislocation (µb2/[2π(1− ν)]).
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3. Discussion

The first problem that can be investigated is related to the configuration

where the two precipitates are embedded in an infinite-size matrix. Setting175

y1 = yp − p1 and y2 = yp − p2 and assuming yp → −∞, the free-surface terms

cancel in the expression of the energy variation ∆Ẽt displayed in Eq. (20). In

this more simple configuration, the formation of the dislocations 1 and 2 are

thus assumed to take place from the center of each precipitate interface. In

Fig. (2), the contourplot of ∆Ẽt has been displayed versus d̃1 and d̃2, with180

x̃p = −280, d̃ = 500. Assuming the eigenstrain in both precipitates is ε∗ =

0.02, it is found that there exists two finite-size regions in the (d̃1, d̃2) plane

(symmetric with respect to the first diagonal in the (|d̃1|, |d̃2|) plane) where the

reduced energy variation ∆Ẽt is negative and the formation of the dislocations

becomes energetically favorable, leading to misfit strain relaxation. The different185

equilibrium positions d̃eq1 and d̃eq2 of the dislocations 1 and 2, respectively, have

been then determined minimizing ∆Ẽt with respect to d̃1 and d̃2 and have been

displayed in Fig. (3) versus ε∗ assuming, without lack of generality, that d̃eq1 < 0

and d̃eq2 > 0, with x̃p = −280 and d̃ = 500. After a numerical shift of +1 for

the d̃eq1 and d̃eq2 values to restore the symmetry with respect to the (O1O2)190

horizontal axis of symmetry of both precipitates which has been artificially

broken while introducing a cut-off in the calculation of the elastic energy in Eq.

(17), i.e. d̃eq1 + 1→ d̃eq1 and d̃eq2 + 1→ d̃eq2 , it is found that the two dislocations

are, as expected, symmetrically distributed with respect to the (O1O2) axis,

their equilibrium positions corresponding thus to the negative minimum values195

of ∆Ẽt. Finally, the effect of the distance between the two precipitates has

been investigated in Fig. (4), where d̃eq1 and d̃eq2 have been plotted versus |x̃p|,

with d̃ = 500 and ε∗ = 0.02. It is found that the equilibrium positions of the

dislocations depend significantly on the distance |2x̃p| between the precipitate

centers, d̃eq1 and d̃eq2 going to zero when 2|x̃p| reaches 2×334 = 668, this distance200

being of the order of magnitude of each precipitate size (d̃ = 500). Beyond this

distance ( 2|x̃p| >> 668), the problem reduces to the study of the formation of
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one dislocation lying in the interface of an isolated precipitate and the selected

position is found to be in the middle of the interface, as once again expected.

The general case of the formation of the dislocations from the matrix-free205

surface, when a misfit strain is present, has been then investigated. In Fig.

(5), the dimensionless total energy variation ∆Ẽt has been plotted versus |ỹ1|

and |ỹ2|, with x̃p = −280, ỹp = −280, d̃ = 500 and ε∗ = 0.02. It is observed

in this Fig. (5) that beyond a region near the matrix free-surface obtained for

small values of |ỹ1| and |ỹ2|, where ∆Ẽt is positive ( with a maximum), ∆Ẽt210

becomes negative (when |ỹ1| and |ỹ2| both increase). Two symmetric regions

(with respect to the first diagonal in the (|ỹ1|, |ỹ2|) plane) are thus identified

which are assumed to be preferential sites for the dislocations to stand, once

nucleated. Minimizing ∆Ẽt with respect to ỹ1 and ỹ2, the equilibrium positions

of the dislocations d̃1eq and d̃2eq, which have been again corrected to restore215

the symmetry with respect to the (O1O2) horizontal axis of symmetry of the

precipitates in the energy calculation, have been then determined and displayed

in Fig. (6) versus |ỹp|, with x̃p = −280, d̃ = 500 and ε∗ = 0.02. The relaxation

effect of the free-surface can be observed on this Fig. (6), since for low values

of |ỹp|, d̃1eq and d2eq are negative meaning that the equilibrium positions of the220

dislocations are both shifted below the (O1O2) horizontal axis. As |ỹp| increases,

a first narrow range of |ỹp| values, i.e. |ỹp| ∈ [400, 1000], has been identified,

where d̃1eq and d2eq are both positive, before the symmetric configuration with

respect to the (O1O2) symmetry axis is reached when |ỹp| → ∞, and d̃1eq = −d2eq.

The next step of this work has been to analyze the interaction effect between the225

two precipitates on the equilibrium positions of the dislocations 1 and 2, when

the precipitates are located in the vicinity of the matrix-free surface. To do so,

d̃1eq and d2eq have been plotted versus |x̃p| in Fig. (7) when ỹp = −280, with

d̃ = 500 and ε∗ = 0.02. It is found that the two dislocation equilibrium positions

are shifted with respect to the (O1O2) horizontal axis of symmetry, into the230

matrix part, this effect being due to the elastic relaxation of the misfit strain near

the matrix surface. Then, the equilibrium positions significantly vary when the

precipitate/precipitate distance increases and tend to d̃1eq = d2eq ∼ −76, when

10



the distance between the precipitate centers reaches the value 2|x̃p| = 640,

which is of order of magnitude of the precipitate size, and their interaction235

cancels. Finally, the critical strain εc∗ for which the minima in ∆Ẽt become

negative and the formation of the dislocations is assumed to be energetically

favorable, has been determined versus the precipitate size d̃ in Fig. (8), with

x̃p = −280 and ỹp = −280. Although, ∆Ẽt and thus εc∗ are slightly dependent

on the way the cut-off length rc is introduced into Eq. (17), it is believed240

that this diagram provides qualitative information concerning the threshold of

eigenstrain required for the introduction of the dislocations, once the size of the

precipitates is prescribed. In the region II, the structure should be dislocation-

free, while in region I their formation is suspected to be favorable. It is also

observed on this Fig. (8), that for d̃ < 350, the interaction effect between the245

two precipitates cancels (both equilibrium positions along (Oy) axis being equal

since each precipitate can be separately treated) and the eigenstrain εc∗ is found

to increase due to the reduction of the precipitate size. Likewise, εc∗ is observed

to increase with d̃ when d̃ > 350. This evolution can be explained by the fact

that, the total misfit stresses generated by the two precipitates on each interface250

compensate when the matrix channel between the precipitates reduces.

4. Conclusion

The formation of edge dislocations in the two interfaces between two con-

secutive precipitates and a semi-infinite matrix has been investigated from an

energy variation calculation, when the structure is submitted to a misfit strain.255

It has been found that the precipitate spacing, the distance of the precipitates

from the matrix free-surface and the misfit strain subsequently modify the equi-

librium positions of the dislocations lying in the interface. The critical strain

required for their formation from the matrix surface has also been found to be

dependent on the precipitate size.260

Atomistic-based simulations should now be performed to get a more com-

plete description of the nucleation process of the dislocations from the matrix
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free-surface and to explore the possibility of their propagation along the inter-

faces, but also in the precipitates and/or in the matrix channel. The problem

of the development at the mesoscopic scale of a dislocation network in the ma-265

trix channels should be also addressed, using DDD simulation techniques for

example.

5. Appendix

The biharmonic Airy function φp1
of the precipitate 1 of size d, whose center

is located at (xp, yp), is derived from Eqs. (7), (8) and (9) as:270

φp1
(x, y, xp, yp) =

µε∗
2π(1− ν)

[
1

8

(
−2(d+ 2y − 2yp)2 tan−1

[
d+ 2x− 2xp
d+ 2y − 2yp

]
− 2(d+ 2y − 2yp)2 tan−1

[
d− 2x+ 2xp
d+ 2y − 2yp

]
− (d+ 2x− 2xp)(d+ 2y − 2yp)

×
(

ln

[(
d

2
+ x− xp

)2

+

(
d

2
+ y − yp

)2]
− ln

[(
d

2
+ x− xp

)2

+

(
−d

2
+ y + yp

)2])
− (d− 2x+ 2xp)(d+ 2y − 2yp)

×
(

ln

[(
d

2
− x+ xp

)2

+

(
d

2
+ y − yp

)2]
− ln

[(
d

2
− x+ xp

)2

+

(
−d

2
+ y + yp

)2])
− 2(d− 2y + 2yp)2 tan−1

[
d+ 2x− 2xp
d− 2y + 2yp

]
− 2(d− 2y + 2yp)2 tan−1

[
d− 2x+ 2xp
d− 2y + 2yp

]
+ 2

(
d2 + 4yd− 4y2 + 4y2p − 4(d+ 2y)yp

)
tan−1

[
d+ 2x− 2xp
d− 2(y + yp)

]
+ 2

(
d2 + 4yd− 4y2 + 4y2p − 4(d+ 2y)yp

)
tan−1

[
d− 2x+ 2xp
d− 2(y + yp)

]
+ 2

(
d2 − 4yd+ 4ypd− 4y2 + 4y2p − 8yyp

)
tan−1

[
d+ 2x− 2xp
d+ 2(y + yp)

]
+ 2

(
d2 − 4yd+ 4ypd− 4y2 + 4y2p − 8yyp

)
tan−1

[
d− 2x+ 2xp
d+ 2(y + yp)

]
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− (d+ 2x− 2xp)(d− 2y + 2yp)

(
ln

[(
d

2
+ x− xp

)2

+

(
d

2
− y + yp

)2]
− ln

[(
d

2
+ x− xp

)2

+

(
d

2
+ y + yp

)2])
− (d− 2x+ 2xp)(d− 2y + 2yp)

(
ln

[(
d

2
− x+ xp

)2

+

(
d

2
− y + yp

)2]
− ln

[(
d

2
− x+ xp

)2

+

(
d

2
+ y + yp

)2])
+ 4

((
−d

2
− x+ xp

)(
−2y ln

[
(d+ 2x− 2xp)2 + (d− 2(y + yp))2

]
− 4y + (d+ 2x− 2xp) tan−1

[
d+ 2y − 2yp
d+ 2x− 2xp

]
+

(d+ 2x− 2xp)2 + 8y2

d+ 2x− 2xp
tan−1

[
−d+ 2y + 2yp
d+ 2x− 2xp

]
+

(
d

2
+ y − yp

)
ln

[(
d

2
+ x− xp

)2

+

(
d

2
+ y − yp

)2]
+

(
−d

2
+ y + yp

)
ln

[(
d

2
+ x− xp

)2

+

(
−d

2
+ y + yp

)2])
+

(
−d

2
+ x− xp

)(
−2y ln

[
(d− 2x+ 2xp)2 + (d− 2(y + yp))2

]
− 4y + (d− 2x+ 2xp) tan−1

[
d+ 2y − 2yp
d− 2x+ 2xp

]
+

(d− 2x+ 2xp)2 + 8y2

d− 2x+ 2xp
tan−1

[
−d+ 2y + 2yp
d− 2x+ 2xp

]
+

(
d

2
+ y − yp

)
ln

[(
d

2
− x+ xp

)2

+

(
d

2
+ y − yp

)2]
+

(
−d

2
+ y + yp

)
ln

[(
d

2
− x+ xp

)2

+

(
−d

2
+ y + yp

)2])
+

(
d

2
+ x− xp

)(
−2y ln

[
(d+ 2x− 2xp)2 + (d+ 2(y + yp))2

]
− 4y − (d+ 2x− 2xp) tan−1

[
d− 2y + 2yp
d+ 2x− 2xp

]
+

(d+ 2x− 2xp)2 + 8y2

d+ 2x− 2xp
tan−1

[
d+ 2(y + yp)

d+ 2x− 2xp

]
+

(
−d

2
+ y − yp

)
ln

[(
d

2
+ x− xp

)2

+

(
d

2
− y + yp

)2]
+

(
d

2
+ y + yp

)
ln

[(
d

2
+ x− xp

)2

+

(
d

2
+ y + yp

)2])
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−
(
−d

2
+ x− xp

)(
−2y ln

[
(d− 2x+ 2xp)2 + (d+ 2(y + yp))2

]
− 4y − (d− 2x+ 2xp) tan−1

[
d− 2y + 2yp
d− 2x+ 2xp

]
+

(d− 2x+ 2xp)2 + 8y2

d− 2x+ 2xp
tan−1

[
d+ 2(y + yp)

d− 2x+ 2xp

]
+

(
−d

2
+ y − yp

)
ln

[(
d

2
− x+ xp

)2

+

(
d

2
− y + yp

)2]
+

(
d

2
+ y + yp

)
ln

[(
d

2
− x+ xp

)2

+

(
d

2
+ y + yp

)2])))]
. (22)

The equivalent biharmonic Airy function for the precipitate 2 located at (−xp, yp)

is defined as:

φp2
(x, y, xp, yp) = φp1

(x, y,−xp, yp). (23)

The biharmonic Airy function φpi
,

∆2φpi
(x, y, xp, yp) = 0, (24)

allows for determining the corresponding stress field of the precipitate i through

the formulae [25]:275

σpi
xx(x, y, xp, yp) =

∂2φpi

∂y2
(x, y, xp, yp), (25)

σpi
xy(x, y, xp, yp) = −∂

2φpi

∂x∂y
(x, y, xp, yp), (26)

σpi
yy(x, y, xp, yp) =

∂2φpi

∂x2
(x, y, xp, yp), (27)

with i = 1, 2. The total misfit stress ¯̄σmis is fully determined with the help of

the Airy function:

φmis(x, y, xp, yp) = φp1(x, y, xp, yp) + φp2(x, y, xp, yp), (28)

through the formulae [25]:

σmis
xx (x, y, xp, yp) =

∂2φmis

∂y2
(x, y, xp, yp), (29)

σmis
xy (x, y, xp, yp) = −∂

2φmis

∂x∂y
(x, y, xp, yp), (30)

σmis
yy (x, y, xp, yp) =

∂2φmis

∂x2
(x, y, xp, yp). (31)
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Figure 1: Schematic of two strained precipitates embedded in a semi-infinite matrix. From the

matrix free-surface, an edge dislocation of Burgers vector −buy is introduced in the interface

located at xp + d
2

+ b of the precipitate 1 and an edge dislocation of Burgers vector buy in the

interface of the precipitate 2 located at −xp − d
2
− b.
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Figure 2: Dimensionless total energy variation ∆Ẽt versus d̃1 and d̃2, when the precipitates

are far from the free-surface (|ỹp| >> d̃), with x̃p = −280, d̃ = 500 and ε∗ = 0.02.
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Figure 3: Equilibrium positions d̃eq1 and d̃eq2 for the dislocations 1 and 2, respectively, versus

ε∗, when the precipitates are far from the free-surface (|ỹp| >> d̃), with x̃p = −280 and

d̃ = 500.
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Figure 4: Equilibrium positions d̃eq1 and d̃eq2 for the dislocations 1 and 2, respectively, versus

|x̃p|, when the precipitates are far from the free-surface (|ỹp| >> d̃), with d̃ = 500 and

ε∗ = 0.02.
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Figure 5: Dimensionless total energy variation ∆Ẽt versus |ỹ1| and |ỹ2|, with x̃p = −280, ỹp =

−280, d̃ = 500 and ε∗ = 0.02.
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Figure 6: Equilibrium positions d̃1eq and d̃2eq versus |ỹp|, with x̃p = −280, d̃ = 500 and

ε∗ = 0.02.

270 280 290 300 310 320

-100

-80

-60

-40

-20

0

x
˜
p

d˜
e
q

d
˜

eq

2

d
˜

eq

1

Figure 7: Equilibrium positions d̃1eq and d̃2eq versus |x̃p|, with ỹp = −280, d̃ = 500 and

ε∗ = 0.02.
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Figure 8: Critical eigenstrain εc∗ versus the precipitate size d̃, with x̃p = −280 and ỹp = −280.
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