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Abstract: Optimal placement of Non-destructive Testing
sensors is essential for structure diagnosis as it allows to get
maximum information about degradation at minimum cost.
Latest optimization methods consider spatial variability of
quantities of interest and thus strongly rely on correlation
lengths assessment. However, this estimation is usually done
with straightforward techniques on raw data, which may not
satisfy the required hypotheses of stationarity and ergodicity
and induce important mis-estimations.

In this paper, we propose a Spatial Correlation Assess-
ment Procedure (SCAP-1D) which allows to rigorously as-
sess correlation length of a quantity of interest modeled as a
piecewise-trend-stationary Gaussian-Random-Field (GRF).
The procedure is applicable to unidimensional limited data
and comprises two steps. First, the correlation length
is assessed through an iterative algorithm including mean
changepoints detection. Then, stationarity, ergodicity and
normality are tested to validate both the model and estima-
tions.

In numerical studies, we demonstrate the ability of our
procedure to accurately estimate correlation length of a GRF
in the cases of constant, stepped and bilinear mean, with per-
formance ranges assessment. Applications to experimen-
tal Half-Cell Potential measurements with effective mean and
slope steps validate the capacity of our method to precisely
determine mean changepoints and correlation length on real
data.

Keywords: Stochastic Fields; Spatial Variability;
Piecewise-trend-stationarity; Mean Changepoints Detection
Identification; Non-Destructive Techniques; Maximum
Likelihood Estimation

1 INTRODUCTION

Since the end of the 20th and the beginning of the 21st cen-
tury, concrete structures maintenance has become a major
economic and security issue [1]. Initially designed with weak
aging models and poor control processes for 50 to 70-year
service lives, they require numerous inspections and even
reparations to limit their degradation and ensure their ser-
viceability state.

Employed for decades, the usual maintenance strategy fol-
lows three steps. Visual inspection is performed by an expert
engineer who defines the critical zones of the structure. Core
samples or Non-Destructive Testing (NDT) controls are then
carried out there in order to precisely assess the condition
state. Following the results, a diagnosis is deduced and repa-
ration procedure is potentially suggested [2]. In some cases,
an additional step is carried out by use of models to plan the
next inspection or repair.

While seemingly simple and effective, this method is lim-
ited by the faculty to visually detect pathologies, which is
quite impossible in some cases like early reinforcing steel
corrosion. It is moreover risky and out of budget to evaluate
degradation all over the structure.

Increasing the use of Non-Destructive Techniques, widely
developed during the last decade, allows to avoid these prob-
lems by measuring physical properties related to degradation
mechanisms at high speed and low cost, without damaging
the structure. Thus, it can easily replace or be complemen-
tary to the visual inspection step and lead to a more reliable
inspection strategy, providing an optimal measurement grid.
Indeed, while a coarse grid may be blind to degradation, a
tight one can lead to unnecessary extra charge.

This last point is therefore a major research concern and
has been recently investigated [2, 3, 4]. It is deeply related
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Figure 1: Experimental covariograms for different assessments of the mean : case of a non-stationary trajectory

to the spatial variability of the material properties, character-
ized, in case of stationarity, by a fluctuation parameter, also
called correlation length (lc), which can be computed through
geostatistical analysis.

Nowadays, due to the lack of rich spatial studies on
pathologies of concrete structures, there is no reliable cor-
relation length database which can be used to determine op-
timal NDT-measurement grids. Hence there is a need to per-
form prior rapid NDT-measurements on a fine grid to assess
correlation length [2].

Thanks to geostatistic tools, such as covariograms and
semi-variograms [5, p. 58 – 68], and regression techniques,
like Least-Square Estimation (LSE), evaluating correlation
length seems trivial and authors usually assess it on raw mea-
surements [3, 6, 7]

However, for a covariogram (or a semi-variogram) of a set
of measurements ZZZ to be meaningful, two major hypothe-
ses on Z have to be checked : it has to be a realization of
a (i) stationary and (ii) ergodic random field. If one of the
hypotheses is not valid, interpretation based on variograms
may not be relevant which is illustrated on Figure 1, with a
non-stationary trajectory. We point out that straightforward
interpretation may even be hazardous for risk analysis appli-
cations as they can lead to significantly underestimate prob-
abilities of failure [8]

On Figure 1, Z is a realization of a Gaussian Random Field
with piecewise-constant mean µ̂2 = µ and exponential auto-
correlation with correlation length of 10 cm. We note µ̂1

the classic mean estimator. Thus, Z− µ̂1 is non-stationary
and non-ergodic whereas Z− µ̂2 is both stationary and er-
godic. Then, even if the (dashed) experimental covariogram
of Z− µ̂1 seems visually correct and suggests stationarity,
geostatistical parameters assessments based on it are false :
here, the variance and correlation length LSE are respectively
three times and two times lower than the real values (5 cm in-
stead of 10 cm, and 24 instead of 66)!

These conditions raise then a major issue, as most con-
crete structures are exposed to non-uniform environmental
conditions, which can lead to non-stationarity of their phys-
ical properties. For example, concrete resistivity on marine

bridges is more likely to be lower at sea level than on the
desk, independently of reinforcing steel corrosion. Thus, it is
needed to determine which parts of measurements are due to
deterministic (and potentially non-uniform) trend and which
parts come from stationary processes.

This requires then to assess piecewise-polynomial geosta-
tistical mean and to test stationarity and ergodicity hypothe-
ses.

This paper proposes a spatial variability assessment proce-
dure, called SCAP-1D, which aims to be reliable and adapted
to unidimensional piecewise-trend-stationary realizations of
gaussian random fields, with limited numbers of measure-
ments. It is also adapted to non-gaussian random fields com-
ing from Box-Cox transformation, such as log-normal ran-
dom fields.

After a definition of the studied model and the presenta-
tion of the procedure steps (part 2), we develop its theoreti-
cal aspects (part 3) and validate it with three different types
of synthetic data (part 4), covering the range of its capabili-
ties. An application to Half-Cell Potential (HCP) measure-
ments made on a pier from the Île de Ré bridge illustrates its
capacities on a practical study case (part 5).

2 PRESENTATION OF SCAP-1D

2.1 RANDOM FIELD MODELING

The aim of the procedure is to rigorously assess the geo-
statistical properties (correlation length and variance) of
piecewise-trend-stationary random fields Z , from which re-
alizations, also called trajectories, are noted Z and piecewise-
linear means are noted µ(·). In practical, each realization is
georeferenced and we focus on unidimensional piecewise-
trend-stationary realizations of gaussian random fields. In-
deed, gaussian model keeps methodology description sim-
ple while piecewise-trend-stationary assumption is versatile
and sufficient for a lot of applications with few measurement
points and non-monotonic variations.

Thus, any Z is georeferenced by the unidimentional vector
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xxx = (x1, . . . ,xn) and can be written as

Z(xxx) = µ(xxx)+σG( RRR( fcov(xxx, lc)) ) ⇔ ZZZ = µµµ +σGGG (1)

where (i) σGGG is the random part of ZZZ, i.e a georeferenced
realization of a gaussian random field (ii) RRR is the auto-corre-
lation matrix of GGG, (iii) fcorr is the auto-correlation function
of GGG, (iv) lc is the correlation length which parametrizes fcorr

, (v) and σ is the standard deviation of the random part, con-
sidered constant. For the sake of simplicity, we develop here
the procedure considering isotropic geostatistical parameters
σ2 and lc. However, this assumption can be strong as it sup-
poses the parameters independent of both the random field
mean and the environmental effects. We must therefore re-
main vigilant as it is not straightforward depending on the
type of studied data, such as resistivity measurements in ma-
rine environment [9].

The three main hypotheses to test in the following pro-
cedure, in order to validate this model and, thus, the use of
geostatistical assessment tools, are then : (i) the stationarity
of GGG, (ii) its ergodicity and (iii) its gaussianity. This last point
means the normality of JJJ, defined as GGG uncorrelated.

We point out the procedure is applicable to other types of
trajectories, provided that they come from a Box-Cox trans-
formation of gaussian ones. However, this type of trans-
formation supposes that data are strictly positive and may
modify the noise nature (from multiplicative to additive for
instance, in the case of log-Normal data with multiplicative
noise) . Moreover, we recall that in this case, SCAP-1D as-
sesses the geostatistical parameters of the transformation. It
is then needed to use inverse transformation to get the param-
eters of the original trajectory.

2.2 SCAP-1D FLOWCHART

The main steps of SCAP-1D procedure are presented in the
flowchart on Figure 2. Each one is detailed in the following
theoretical parts

3 THEORETICAL ASPECTS

In the following, RRR and CCC respectively refer to autocorrela-
tion and auto-covariance matrix. The notation θ̂ refers to the
estimation of the parameter θ .

3.1 PIECEWISE-POLYNOMIAL MEAN AND GEO-
STATISTICAL PROPERTIES ASSESSMENT

The first step of the procedure aims to determine the deter-
ministic trend of the studied trajectory, which is considered
to be piecewise-linear with degree from zero to one. This
model can indeed simply fit numerous physical and environ-
mental phenomena, such as discontinuities of realization, or

Start

realization ZZZ; grid xxx

Choice of procedure parameters

Piecewise-linear mean and geo-
statistical properties assessment

Hypotheses Tests

Analysis

3 hypotheses validated?

Modify proce-
dure parameters
or transform ZZZ via
Box-Cox

Stop

no

yes

Figure 2: General flowchart of the procedure

exposition parameter evolution. For example, Figure 3 il-
lustrates the cases of piecewise-constant and piecewise-lin-
ear means observable on resistivity and corrosion potential
measurements. These have been performed along the exte-
rior face of a 0.4 x 0.86 x 9.84m3 RC beam of the Montoir-
de-Bretagne (France) coal terminal during the SVC2 (Spatial
Variability of Chloride in Concrete) project [10].
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Figure 3: Choice of piecewise-linear mean model

It is therefore needed to detect changes of the mean, which
can be mean and/or slope changes. This detection of geosta-
tistical discontinuities, called edges hereafter, can be done
visually or via statistical detection algorithms described af-
terwards in section 3.1.2. Then, it is possible to estimate the
different continuous parts of the geostatistical mean with an
iterative algorithm based on Maximum Likelihood Estima-
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tion (MLE) and ruled by the error committed on geostatisti-
cal properties assessment. We outline the mechanics of this
algorithm in the following and detail it in Appendix A.

3.1.1 Changepoints detection principle

Edge detection performed in the edges detection process of
the procedure is done via hypothesis tests. In the general
case of piecewise-linear mean, the null-hypothesis, noted
H0, suppose µ(·) to be linear on the interval [x1;xn] so that
µ(x) = l0.x+ c0. In the case of H0 being rejected, we note
xr ∈ [x;xn] the location of the changepoint detection. The
hypothesis test can then be written as

H0 : µ(x) = l0.x+ c0

→ the mean is probably constant on [x1;xn]

H1 = H0 : ∃r ∈ [1;n] |
µ(x)x∈[x1,xr ] = l0.x+ c0 and

µ(x)x∈[xr ,xn] = l1.x+ l0.xr + c1 + c0 |
c0 6= c1 and/or l0 6= l1

→ the mean is probably non constant on [x1;xn]

(2)

3.1.2 Changepoints detection algorithm

Derived from time-series analysis, edges detection algo-
rithms are not necessarily adapted to the study of NDT mea-
surements trajectories, especially because of their limited
number of measurements. That is why we reject Fourier
and wavelet-analysis based methods [11, 12, 13]. There are,
however, adaptable and performative ones, such as the Page-
Hinkey algorithm (1954) [14, 15]. Presented by [16], this
algorithm is used by [17] to detect transient states of random
seas. It performs the hypothesis test described by eq.2 via a
likelihood-ratio test which statistic D is written as

D =−2log
(

L(r̂0)

L(r̂1)

)
(3)

where r̂0 is the MLE of r under the null hypothesis whereas
r̂1 is its MLE of r under the null hypothesis rejection. L(r̂0)

and L(r̂1) are respectively r̂0 and r̂1 likelihoods.
We point out that, practically, r̂0 = n. Under the null hy-

pothesis, D asymptotically follows a χ2(3) probability den-
sity function. This means the limit value of the test statis-
tic required to accept the null hypothesis under a fixed first
species risk α is then the (1−α)-quantile of χ2(3).

In his paper, [16] presents a developed form of D adapted
to step detection of the mean of uncorrelated gaussian trajec-
tories. We modify it in eq.4 to take spatial correlation into
account :

D =

[
log
(
|ĈCCH0 |

)
+
(

ZZZ− µ̂µµH0

)′
·ĈCC−1

H0
·
(

ZZZ− µ̂µµH0

)]
−
[
log
(
|ĈCCH1 |

)
+
(
ZZZ− µ̂µµH1

)′ ·ĈCC−1
H1
·
(
ZZZ− µ̂µµH1

)]
(4)

where µµµH0
and CCCH0 are the MLE of the mean and the es-

timation of the auto-covariance matrix of ZZZ under the null
hypothesis, whereas µµµH1

and CCCH1 are the MLE of the mean
and the estimation of the auto-covariance matrix of ZZZ under
the null hypothesis rejection. The MLE of r under the null
hypothesis rejection, needed to assess these last values, is
computed through

r̂1 = argmin
1≤r≤n

[

log
(
|ĈCCH1(r)|

)
+
(
ZZZ− µ̂µµH1

(r)
)′ ·ĈCCH1(r)−1 ·

(
ZZZ− µ̂µµH1

(r)
)

] (5)

The Page-Hinkley Algorithm is “online”, which means it per-
forms the hypothesis test (2) on growing samples of the tra-
jectory, i.e piece-by-piece in a serial fashion, until it finds a
changepoint. This way of computing geostatistical discon-
tinuities is adapted to the study of spatial trajectories but
requires numerous estimations of the mean and the auto-
covariance matrix, which have to be as accurate as possible
to determine “real” edges.

Consequently, a robust edges detection involving this al-
gorithm cannot be done separately from the iterative process
of mean, variance and correlation length assessment. The
stationarity, ergodicity and gaussianity of GGG have to be vali-
dated as well for each iteration. It could be then a practicable
solution to perform the whole spatial variability assessment
procedure through this sole algorithm.

However, the precedent point currently implies one major
issue : the current iterative process is already strongly time-
consuming for medium-sized trajectories, as it is noticed in
the numerical part. Another issue is the lack of numerical
criterion to admit or reject ergodicity. This step is indeed
currently done visually by looking at the experimental covar-
iograms (see 4.1.2).

We propose then to not take into account spatial corre-
lation during the automatic edges detection process, which
however implies to firstly not consider the spatial variability
of the trajectory. Nevertheless, its mean, variance and cor-
relation length estimations which follow are performed in a
strict geostatistical context. We show in the following that
this does not significantly affects the robustness of the whole
procedure as we here only aim to keep the locations of the
discontinuities.

Thus, we use the Pruned Exact Linear Time (PELT) algo-
rithm (2012) [18], which allows to determine exact statistical
mean regression coefficients discontinuities, considering the
whole trajectory. This “offline” algorithm is an improvement
of the Optimal Partitioning one [19], which maximizes the
likelihood of the edges locations, penalized by the number
of discontinuities. Whereas the Optimal Partitioning algo-
rithm is o(n2), the ability of the PELT one to delete impos-
sible edges location while dividing the trajectory makes it
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o(n log(n)).
Once the edges are determined, µµµ can be assessed by

piecewise-spatial-regression. The whole methodology is de-
scribed on Figure 4 and is detailed in the following sections.

3.1.3 Maximum-Likelihood Estimation of the mean

Since the unbiased estimator of the statistical mean which
minimizes its variance is its MLE, we choose to use the MLE
of the geostatistical mean to perform the piecewise regres-
sion.

Considering a gaussian trajectory GGG with a constant mean
µ , it can be written as

µ̂ =
GGG′RRR−1111n

111′nRRR−1111n
[4] (6)

However, considering a piecewise-trend-stationary one, its
georeferenced mean vector is µµµ = AAAααα , where AAA is the nodal
piecewise-linear function matrix on the vector xxx of discrete
positions and ααα is the regression coefficients vector.

Example 1
Let xxx = (x1,x2,x3,x4,x5). Let suppose µ(·) is piecewise-
linear so that{

∀x ∈ [x1,x3],µ(x) = l0.x+ c0

∀x ∈ [x3,x5],µ(x) = l1(x− x3)+ c1
(7)

Then,

AAA =



1 x1 0 0
1 x2 0 0
1 x3 0 0
0 0 1 x3− x3

0 0 1 x4− x3

0 0 1 x5− x3


and ααα =


c0

l0
c1

l1



The MLE of the mean is then

µ̂µµ = AAAααα | ααα ′ = ZZZ′RRR−1AAA
AAA′RRR−1AAA

(8)

This means assessing µµµ requires to assess both AAA, which is
done following the edges detection process, and ααα , which is
to be done and implies the joint estimation of the correlation
length of GGG.

Thus, we develop an iterative assessment algorithm (Ap-
pendix A). Knowing the type of the auto-covariance function
(i.e exponential, gaussian, Matérn, . . . ; see 4.6) and the nodal
piecewise-linear function matrix, it provides estimations of
µµµ , GGG, σ2 and lc. The stop criterion is reached whenever the
difference between two successive estimations of one geosta-
tistical parameter is below an initially fixed tolerance. There-
fore, this algorithm is adapted to nodal piecewise-polynomial
function matrix.

Estimations are done via MLE, preferred to LSE. Indeed,
although LSE is consistent (convergent) and allows to simply

approach, in a visually effective way, the GGG covariogram, its
estimators are not effective (with minimum variance), they
are biased and it is difficult to assess their asymptotic laws,
which are needed to compute their Confidence Regions (CR).
It is still interesting to compute initial values through LSE,
which is computationally-inexpensive (see Table 4), in order
to fasten algorithm convergence, though.

On the contrary, MLE is consistent, asymptotically nor-
mal, and its effectiveness has been proven by [22] for gaus-
sian vectors and by [23] for linear-trend-stationary gaussian
vectors. Moreover, CR of MLE estimators θ̂ are easily de-
termined by computing the Fischer Information Matrix I1, as

CR
θ̂
=
[
CRmin(θ̂);CRmax(θ̂)

]
=

θ̂ −qα

1√
I1(θ̂)

; θ̂ +qα

1√
I1(θ̂)

 (9)

with qα the α-quantile of the standard normal distribution.
Following [4], we compute asymptotic CR so that only diag-
onal components of I1 have then to be determined. Then, we
have

I1(σ̂
2) =

n
2σ̂4 (10)

I1(l̂c) =
1
2

Tr

[(
RRR−1 ∂RRR

∂ l̂c

)2
]

(11)

I1(α̂ j) =
1

σ̂2

(
[Ai j]

n
i=1

)′RRR−1 ([Ai j]
n
i=1

)
(12)

We henceforth get a robust estimation of GGG, the gaussian
random part of the studied trajectory (eq.1). We still need
to test the normality, stationarity and ergodicity hypotheses,
which validations are needed to confirm the choice of the
auto-covariance function type, the mean and variance assess-
ments, as well as the correlation length estimation.

3.2 HYPOTHESES TESTS

The second step of the procedure aims to test the three ran-
dom field model hypotheses, the validity of which allows to
consider assessments above as mathematically rigorous. On
the one hand, stationarity and normality hypotheses tests are
performed on ĴJJ, below defined as ĜGG uncorrelated. On the
other hand, ergodicity is visually determined from the draw-
ing of the experimental covariogram.

3.2.1 Normality tests

Let ĴJJ be defined as
ĴJJ = QQQĜGG (13)

where QQQ is the lower triangular matrix obtained via Cholesky
decomposition of the autocorrelation matrix RRR of ĜGG. Pro-
vided that ĜGG is gaussian, ĴJJ is a vector of independent and
identically distributed random variables. Then, testing the
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regression; covariance function model

Choice of procedure parameters
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- correlation matrix RRR and covariance matrix CCC of GGG

R̂RR, µ̂µµ, σ̂2, ĜGG, l̂c

first species risk α

Hypotheses Tests

Normality Tests on ĴJJ = chol(R̂RR).ĜGG :
- χ2 test
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- Kwiatkowski-Phillips-Schmidt-Shin test
[20]
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Box-Cox
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no

yes

Figure 4: Detailed flowchart of the procedure
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normality of ĴJJ equates to test ĜGG gaussianity, on condition that
estimations of geostatistical properties of ĜGG are accurate.

The most popular normality tests are the Chi-squared (χ2)
goodness-of-fit test and the Kolmogorov-Smirnov (KS) test,
where the null hypothesis is that the tested data comes from
a normal distribution – for χ2-test – or a standard normal
distribution – for KS-test – . They are both applied to ĴJJ to
improve the reliability of the procedure.

In the case where the choice of the initial Box-Cox trans-
formation, i.e the type of probability distribution supposed
for ZZZ, is not trivial after performing tests for different ones,
the analysis can be completed with two additional steps. On
the one hand, the likelihood of the distributions estimated
parameters L f (µ̂, σ̂

2) can be evaluated and compared [24,
p. 141]. The distribution which gives the maximum likeli-
hood value shall then be retained. On the other hand, the
skewness (third standardized moment, noted s) and kurtosis
(fourth standardized moment, noted k) of ĴJJ can be assessed
for these different cases. Indeed, if ĴJJ is normally distributed
and noting µ̂J its mean estimation, we get

ŝ =
n≥3

n2

(n−1)(n−2)

1
n ∑

n
i=1(Ĵi− µ̂J)

3

σ̂3 −→
n→+∞

0 (14)

and

k̂ =
n≥4

n2(n+1)
(n−1)(n−2)(n−3)

1
n ∑

n
i=1(Ĵi− µ̂J)

4

σ̂4 −3
(n−1)2

(n−2)(n−3)
+3

−→
n→+∞

3 (15)

The distribution which gives ŝ closest to zero and k̂ closest to
three shall then be retained.

We advise to conclude from the first step results, more
quantitative, and to use the second step ones to assess the
need for new distributions tests.

3.2.2 Stationarity tests

Definition 1 We recall that a random field Z is weakly sta-
tionary (or second order stationary, noted SOS) on a domain
D if and only if (iff) its expected value is constant on D and
its covariance exists and is an invariant translation function,
i.e

∀x ∈ D, E[Z(x)] = µ (constant)

Cov(Z(xi),Z(x j)) =C(xi− x j) (16)

C(·) is the covariogram of Z . We suppose here the second
point is valid.

As the stationarity of a random field cannot be reliably
evaluated through visual analysis of the experimental covar-
iogram of a single realization (see Figure 1), we rely on sta-
tistical tests.

Two different approaches can be used to conclude about
the stationarity of a stochastic process. The first is to test the
null hypothesis of non-stationarity, whereas the second is to
test the null hypothesis of stationarity. Although the differ-
ence may seem thin, as hypotheses tests only try to reject the
null hypothesis with an α confidence level, it is of interest to
perform tests with opposite null hypothesis, in order to con-
firm their result. This point has been discussed in [20]. Thus,
we use both a stationarity and a non-stationarity test in the
procedure.

These tests are both based on derived form of ARMA (Au-
toRegressive Moving Average) processes, which are general
representations of stochastic series :

G(x) =
p

∑
i=1

βiG(x− i)︸ ︷︷ ︸
AR(p) part

+ε(x)+
q

∑
i=1

θiε(x− i)︸ ︷︷ ︸
MA(q) part

(17)

with ε(x) independent and identically distributed (iid) error
terms and βi and θi parameters of the model.

KPSS-test the stationarity test developed by Kwiatkowsky,
Phillips, Schmidt and Shin [20], noted KPSS in the follow-
ing, is based on an ARMA process of order (1,1), meaning
p = 1 and q = 1, with nuisance parameter β1 = 1. This pro-
cess is an alternative form of series composed by the sum
of a constant ξ (which should be null in case of a centered
trajectory), a random walk r(x) and a stationary error Gε(x):

G(x) = βG(x−1)+ ε(x)+θε(x−1)

= ξ + r(x)+Gε(x) (18)

with r(x)= r(x−1)+u(x), so that u(x) is iid. The hypothesis
test is performed on θ and can be written as



H0 : θ =−1;λ = σ2
u

σ2
Gε

= 0;Var(r(x)) = 0

→ SOS cannot be rejected

H1 = H0 : θ 6=−1;λ = σ2
u

σ2
Gε

6= 0;Var(r(x)) 6= 0

→ SOS is rejected at 1-α %

(19)

Let Sx = ∑
x
i=1 ei be the partial sum process of the residu-

als, with ex = G(x)− µ̂G the residual from the regression of
G. The statistic used to formulate the decision rule of the test
(also called test statistic) is then either LM = ∑

N
x=1 S2

x/σ̂2
e , or

LMc = N−2
∑

N
x=1 S2

x/s2(l), depending on the residuals auto-
correlation.

Indeed, while LM is based on iid residuals, LMc takes their
dependence over space into account with an estimation of the
long-run variance. This term is defined by KPSS as
σ2 = lim

N→∞
N−1E[S2

N ] and its consistent estimator writes

s2(l) = T−1
N

∑
x=1

e2
x +2T−1

l

∑
s=1

w(s, l)
N

∑
x=s+l

exex−s (20)
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with l the number of lags, which represent the autocorrelation
range in terms of measuring points, and w(s, l) =

(
1− s

l+1

)
a weighting function.

At first sight, as ĜGG is meant to have an autocorrelation
structure. KPSS-test should then be performed with LMc

statistic. However, the weighting function is arbitrary fixed
to ensure estimator consistency. Thus, s2 does not take into
account the evaluation of autocorrelation coefficients per-
formed during the previous step of the procedure. Moreover,
[25] and [26] point out that, for highly autocorrelated series,
the probability of false rejection of the null hypothesis for
stationarity tests is dramatically high whereas the probability
of correct rejection it is radically low.

We also point out that, on the contrary, KPSS-test shows
good results with non-correlated series.

These remarks push ourselves into using KPSS-test with
LM statistic on ĴJJ. By doing so, the inability to reject the null
hypothesis would suppose both the stationarity of G and the
accuracy of the mean, variance and correlation length assess-
ment.

DF-test the non-stationarity test developed by Dickey and
Füller [21], noted DF in the following, is based on an ARMA
process of order (1,0).

The hypothesis test is performed on β and can be written
as 

H0 : β = 1

→ presence of a unit root

→ non-SOS cannot be rejected

H1 = H0 : |β |< 1

→ absence of a unit root

→ non-SOS is rejected at 1-α %

(21)

The test statistic is t = β̂−1
σ

, with β̂ the LSE of β and σ its
standard error.

There is an “augmented” version of this test, called Aug-
mented Dickey-Füller test, which takes into account AR(p)
processes and so consider autocorrelation. However, follow-
ing previous remarks, we opt for the use of DF-test on ĴJJ.

3.2.3 Ergodicity

Definition 2 We recall that a random field Z is ergodic iff
its standardized moments can be computed by spatial aver-
age, from only one trajectory. In the case where Z is SOS,
Z is ergodic in L2 iff

lim
D→Rn

1
|D|

∫
D

Z(x)dx= µ ⇔ lim
h=|xi−x j |→|D|

C(h)= 0 (22)

As soon as the stationarity hypothesis is validated, check-
ing ergodicity is trivial. Indeed, it only requires to draw the
empirical covariogram of ĜGG and to check it tends to zero as
the distance between two measurement points approaches the

size of the studied area. For some trajectories, a doubt can re-
main about ergodicity. In this case, typically when the covar-
iogram tends to zero at the boundaries of the domain with no
oscillation around the abscissa axis, we recommend precau-
tion and to consider them non-ergodic. However, this does
not systematically mean the procedure fails as other random
fields and/or auto-covariance models can be considered.

We also point out that, if we study several trajectories sup-
posed to be realizations of the same random field, ergodicity
can be more reliably checked by comparison, under certain
criteria, of both the trajectories mean estimations and the ex-
perimental covariograms [27, p. 7]. However, in the case of
limited data, such an approach is unlikely.

3.3 STEP BY STEP ANALYSIS

Once normality and stationarity tests are performed, their re-
sults are analyzed together in order to conclude about the
validity of the three main hypotheses on G, the random part
of the trajectory.

Stationarity hypothesis is considered as valid only if the
null hypothesis of KPSS-test cannot be rejected and the null
of DF-test is rejected. In the opposite case, G is considered
non-stationary, while in the other cases, there is a doubt and
we cannot conclude with certainty from the tests results.

Similarly, gaussianity hypothesis is considered as valid if
the null hypothesis of χ2-test and KS-test cannot be rejected,
and false in the opposite case. However, in the other case,
G may be nonetheless considered as gaussian if the null of
KS-test cannot be rejected and both the skewness and kurto-
sis are respectively close to zero and three. Indeed, KS-test
is more robust than the χ2-test as it considers a continuous
distribution. Table 1 sums up this two first analysis steps.

Once stationarity and gaussianity are validated, there is
still to check the ergodicity (3.2.3).

Once all of these three hypotheses are validated, we can
conclude that the model choice and the geostatistical prop-
erties assessments made during both the first and the second
step of the procedure are correct, including the correlation
length estimation.

If at least one of the hypotheses cannot be validated, we
cannot affirm that the whole trajectory follows the model pre-
viously chosen with assessed geostatistical parameters. The
main reasons to this failure can be, in no particular order, the
presence of aberrant data, the possibility that either the cor-
relation length or the variance is not constant over the stud-
ied area, the wrong detection of mean edges and the con-
struction of the model. In the latter case, several parameters
can be wrong : (i) the regression degree, (ii) the distribution
model, i.e the choice of the initial Box-Cox transformation
(see 3.2.1), (iii) the number of mean edges, or (iv) the choice
of the auto-covariance function. Each of these issues should
be checked.
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Table 1: Hypothesis-tests results analysis

Normality test results on J Gaussianity of G Stationarity test results on J Stationarity of G
χ2 KS-test KPSS-test ADF-test

FALSE FALSE YES FALSE FALSE NO
FALSE TRUE NO FALSE TRUE YES
TRUE FALSE YES TRUE FALSE NO
TRUE TRUE NO TRUE TRUE NO

This last remark points out that, due to the numerous pa-
rameters influencing the procedure, knowledge of the phe-
nomenon described by studied trajectory and its global phys-
ical characteristics is necessary to efficiently use it.

In the following, we apply the procedure to synthetic data
with total control over the model parameters. Tests will be
performed with type I error of 5%, i.e with 5% probability of
incorrect rejection of a true null hypothesis.

4 NUMERICAL VALIDATION

In order to demonstrate abilities of the procedure, we test it
on unidimensional synthetic data, so that we utterly control
the model parameters. Results are given in explicit tables
and illustrated by four-parts figures (such as Figure 6) which
show (i) the studied trajectory ZZZ, its mean MLE µ̂µµMLE and its
real mean µµµ (ii) the experimental covariogram deduced from
mean estimation, the real experimental covariogram and the
modelled covariogram derived from the correlation length lc
assessment (iii) the -2.log-likelihood of lc plotted from the
two mean estimations (iv) the cumulative density functions
of the uncorrelated standardized trajectories deduced from
the two mean estimations, compared to the standard normal
one.

For the sake of clarity, the procedure execution time and
the methods allowing its improvement are discussed after-
wards in section 4.4.

4.1 CASE OF A CONSTANT MEAN

4.1.1 Trajectories simulation

As a first step, the procedure is tested on stationary trajecto-
ries. Realizations of a unique gaussian random field GRF ,
which main parameter are presented in Table 2, are gener-
ated using the embedding circulant matrix (ECM) method.
This technique allows to exactly simulate stationary gaussian
processes [28]. Procedure is then applied to the trajectories
in order to check good assessment of the model parameters.
The length of the support of the trajectories and the number
of “measurements” in each one of them is given in Table 2.

The constant mean is chosen to be sufficiently far from
zero to assess estimation error without getting extremely high
values. The variance is set so that σ ' µ . This is an unfavor-
able numerical case for the following cases of mean step and

bilinear mean. The correlation length is chosen both in order
to avoid numerical problems and to get a realistic ratio lc/L
[3, 6].

We point out that ergodicity is not granted by ECM. Thus,
we choose to simulate twenty trajectories, noted [t1, . . . , t20]

in order to get a sufficient number of stationary, gaussian and
ergodic ones.

4.1.2 Ergodicity hypothesis validation

Experimental auto-covariances are drawn considering the
real value of the mean, in order to discriminate the non-
ergodic trajectories, as illustrated by Figure 5.
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Figure 5: Experimental covariograms of t6 and t14

Here, t6 is considered ergodic as its covariogram oscillates
around zero from 75% of the length of the support. On the
contrary, the covariogram of t14 only reach zero for x = 100,
which is not sufficient to admit ergodicity. t14 is then rejected
and will not be submitted to the procedure.

Following this discrimination process, only 11 out of the
20 stationary and gaussian simulated trajectories are consid-
ered ergodic. Procedure is then applied to them.

4.1.3 Procedure validation

Table 3 presents the results of the procedure applied to the
11 stationary-gaussian-ergodic trajectories, with the auto-



10 Clerc et al.

Table 2: GRF and trajectory parameters

Parameter Property Value
mean constant µ = 5

variance constant σ2 = 25

auto-covariance function Matérn model fcov(h) = σ2 21−ν

Γ(ν)

(√
2ν

h
lc

)ν

Kν

(√
2ν

h
lc

)
(?)

auto-covariance regularity parameter - ν = 0.5
correlation length constant lc = 10

support size - L = 100
number of “measurement points” uniform grid n = 200

(?) Γ : gamma function, Kν : modified Bessel function of the second kind

covariance parameter ν assumed to be known.

Following test results interpretations given by Table 1,
all the 11 ergodic trajectories are found to be station-
ary and gaussian, so that assessments of both their geo-
statistical parameters and their confidence region (CR) are
mathematically valid. Estimation errors and coefficients of
variation (CoV) are then computed for each trajectory, as
well as their mean.
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Figure 6: Illustration of the procedure calculations for t6

At first sight, the procedure seems accurate : (i) the estima-
tion error on correlation length varies from 1,02% (t6, with
procedure calculations illustrated on Figure 6) to 57,19% (t7)
with only three trajectories above 30% (t2, t7, t13) and an av-
erage of 24,33%, (ii) the mean one lies between 1,96% (t9)
and 31,23% (t17) with an average of 14,97%, and (iii) the
variance is assessed with an error from 1,81% (t9) to 55,71%
(t7) with two trajectories above 30% (t7, t13) and an average
of 22,57%. We also point out that the CoV of the mean and
the variance are quite low (around 10%) thanks to the high
sample size. The correlation length CoV is higher with an
average of 35,97%, which is mostly due to a relatively high
value. Thus, estimation error rarely exceeds 30% and coeffi-
cients of variation are quite low, especially for the variance
and the correlation length.

In order to confirm this analysis and to demonstrate the in-
terest of the recursive procedure, we perform the classic pa-
rameters estimation scheme on the studied trajectories. The
mean and the variance are computed neglecting spatial varia-
tion and the correlation length is obtained via LSE on exper-
imental covariogram. Results are given in Table 4.

The error bounds on the mean estimation are quite simi-
lar to the procedure results with a minimum of 0,15% (t1), a
maximum of 32,83% (t17) and an average of 14,58%. Like-
wise, the variance is assessed with an error from 2,98% (t11)
to 54,60% (t7) with an average of 21,55%, and 2 trajectories
above 30% (t7 and t13). However, the estimation error on the
correlation length is significantly higher, from 6.41% (t18) to
65,20% (t7) with an average of 36,25%, which is 12 points
over the procedure average, and seven trajectories above 30%
(t6, t7, t10, t11, t13, t17, t20).

The CoV of the variance is still 10% as the sample size did
not change. On the contrary, the CoV of the mean is frankly
mitigated (minus 29 points). However, this is due to the non-
inclusion of the spatial variability hypothesis in estimators,
which has just been shown to result in significant errors on
the estimation of the correlation length.

Thus, the mathematically rigorous procedure developed in
this paper is more accurate than the classical parameters es-
timation scheme, especially for the correlation length assess-
ment.

4.2 CASE OF A MEAN STEP

As a second step, procedure is tested on piecewise con-
stant mean, i.e piecewise stationary, trajectories. This case
represents for instance corrosion on vertical profile of steel
wharves [29]. Analyzing results of the first validation step,
we note error estimation on parameters is minimal for the
t6 trajectory, which is therefore chosen to be our “base” tra-
jectory. Mean steps of 10 different intensities s = k.σ are
then applied to t6 at the middle of the support length on
x = 50,5 (n=101), in order to establish performance range of
the procedure in this general case. Such phenomenon can be
faced when structures presents discontinuities (cracks, isola-
tion joints). The generated trajectories are then noted t6.sk.

Table 5 presents results and Figure 7 illustrates application
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Table 3: Procedure results : case of a constant mean

Procedure Results
t 1 2 6 7 9 10 11 13 17 18 20
µ̂ 5,65 4,57 4,53 4,28 5,10 5,83 3,66 5,90 6,56 4,53 4,10

CRmin(µ̂) 2,20 -0,72 0,44 2,44 0,96 2,52 0,09 3,46 3,61 1,22 -0,47
CRmax(µ̂) 9,11 9,86 8,62 6,12 9,24 9,15 7,22 8,35 9,51 7,83 8,66

σ̂ 4,62 5,67 5,07 3,33 4,95 4,42 4,89 3,70 4,32 4,31 5,35
σ̂2 21,31 32,18 25,68 11,07 24,55 19,54 23,94 13,72 18,70 18,62 28,66

CRmin(σ̂
2) 17,13 25,87 20,64 8,90 19,74 15,71 19,25 11,03 15,04 14,97 23,05

CRmax(σ̂
2) 25,48 38,48 30,71 13,24 29,36 23,37 28,63 16,41 22,37 22,27 34,28

l̂c 8,46 14,48 10,10 4,28 10,98 8,49 7,94 6,32 6,81 8,94 11,54
CRmin(l̂c) 6,75 11,59 8,07 3,39 8,77 6,77 6,33 5,03 5,43 7,13 9,22
CRmax(l̂c) 10,17 17,38 12,14 5,17 13,19 10,20 9,55 7,61 8,20 10,74 13,85
h(χ2−test) FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
h(KS− test) FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

k 2,74 3,37 4,49 3,31 3,21 2,79 3,53 2,93 3,26 2,89 3,19
s 0,08 0,30 0,33 -0,02 -0,05 0,10 -0,01 0,02 0,04 -0,09 -0,15

h(KPSS− test) FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
h(ADF− test) TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

Ergodicity TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
Results Analysis Average

error µ 13,09% 8,63% 9,33% 14,38% 1,96% 16,62% 26,90% 18,10% 31,23% 9,47% 18,08% 14,97%
error σ2 14,77% 28,71% 2,71% 55,71% 1,81% 21,85% 4,25% 45,13% 25,19% 25,53% 14,66% 22,57%
error lc 15,40% 44,84% 1,02% 57,19% 9,79% 15,15% 20,58% 36,80% 31,87% 10,64% 15,36% 24,33%
CoV µ̂ 31,19% 59,08% 46,02% 21,94% 41,41% 29,00% 49,78% 21,11% 22,93% 37,28% 56,83% 35,97%
CoV σ̂2 10,00% 10,00% 10,00% 10,00% 10,00% 10,00% 10,00% 10,00% 10,00% 10,00% 10,00% 10,00%
CoV l̂c 10,32% 10,20% 10,27% 10,61% 10,25% 10,32% 10,34% 10,42% 10,39% 10,31% 10,24% 10,34%
tcalc (s) 793,65 1042,53 951,69 531,22 944,64 831,11 726,60 707,22 658,93 803,53 924,31 799,11

Table 4: classical parameters estimation scheme results

Procedure Resuts
t 1 2 6 7 9 10 11 13 17 18 20
µ̂ 4,99 4,52 5,53 4,12 5,31 6,08 3,71 5,42 6,64 3,94 4,68

CRmin(µ̂) 4,35 3,73 4,85 3,65 4,60 5,45 3,01 4,94 6,02 3,34 3,94
CRmax(µ̂) 5,63 5,30 6,22 4,58 6,01 6,71 4,41 5,90 7,26 4,54 5,43

σ̂ 4,63 5,66 4,94 3,37 5,10 4,54 5,07 3,46 4,47 4,34 5,38
σ̂2 21,39 32,05 24,39 11,35 26,03 20,57 25,74 11,98 19,96 18,82 28,90

CRmin(σ̂
2) 17,20 25,77 19,61 9,13 20,93 16,54 20,70 9,63 16,05 15,13 23,24

CRmax(σ̂
2) 25,59 38,34 29,17 13,58 31,13 24,60 30,79 14,32 23,87 22,50 34,57

l̂c 11,12 8,62 4,45 3,48 11,09 4,94 6,45 5,36 3,94 10,64 5,74
Results Analysis Average

error µ 0,15% 9,64% 10,61% 17,64% 6,13% 21,65% 25,83% 8,41% 32,83% 21,17% 6,35% 14,58%
error σ2 14,43% 28,22% 2,43% 54,60% 4,11% 17,72% 2,98% 52,10% 20,17% 24,73% 15,62% 21,55%
error lc 11,24% 13,84% 55,54% 65,20% 10,89% 50,58% 35,46% 46,39% 60,59% 6,41% 42,59% 36,25%
CoV µ̂ 6,55% 8,86% 6,31% 5,79% 6,80% 5,27% 9,67% 4,51% 4,76% 7,78% 8,12% 6,77%
CoV σ̂2 10,00% 10,00% 10,00% 10,00% 10,00% 10,00% 10,00% 10,00% 10,00% 10,00% 10,00% 10,00%
tcalc (s) 0,23 0,09 0,08 0,06 0,08 0,06 0,06 0,06 0,06 0,06 0,06 0,08

Note : CRmin(l̂c), CRmax(l̂c) and CoV l̂c cannot be simply evaluated as the Least-Square Estimator of l̂c is not its Maximum-Likelihood Estimator (see eq.9).



12 Clerc et al.

of the procedure with s= 10 (k = 2). Mean steps are sorted in
three ranges in order to ease analysis : (i) range 1 (k from 0,1
to 1,5), (ii) range 2 (k from 1,5 to 3), (iii) range 3 (k from 3 to
10). Highlighted cells indicate issues during the SCAP-1D
procedure.
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Figure 7: Illustration of the procedure calculations for t6.s2

Indeed, trajectories with mean steps from range 1 (t6.s01

to t6.s1,5), once centered, are considered either non-stationary
(t6.s01,t6.s025) or non-gaussian (t6.s05 to t6.s1,5). These rejec-
tions are either due to wrong step detection, with an error
from 43,56% (t6.s01,t6.s025) to 98,02% (t6.s05, t6.s1), and/or
to wrong mean assessment, as each trajectory gets an error
above 30% on the first mean level (α1) and/or the second
mean level (α2) estimation (except t6.s05). Thus, the SCAP-
1D procedure is not adapted to the assessment of mean steps
in the first range. However, we highlight that in this step
range, it does not give false results as hypotheses rejections
indicate that geostatistical estimations cannot be considered
as mathematically valid.

On the contrary, range 2 steps (t6.s5) may induce wrong
estimations : whereas estimation errors are non-negligible
and even quite high for trajectory t6.s2, with 63,36% for
the first mean level, 29,75% for the second mean level and
39,13% for the variance, the centered trajectory is consid-
ered stationary, gaussian and ergodic, which implies the user
to (wrongly) consider estimations are accurate. Thus, the
SCAP-1D procedure can be treacherous in the second step
range.

Unlike range 1 and range 2 ones, range 3 steps are very
well detected with accurate estimations of both mean steps
locations and geostatistical parameters : the error on the step
detection, the first mean level, the variance and the correla-
tion length are constant (from t6.s3 to t6.s10) and respectively
are 0%, 6,86%, 2,05% and 0,35%. The error on the second
mean level varies from 2,89% (t6.s3) to 1,05% (t6.s10). This
variability comes from the increasing value of α2, whereas
variance stays constant, which induces a decreasing of its es-

timator CoV, from 7,20% to 2,57%.
Following this analysis, the procedure appears adapted to

trajectories with mean steps above two times the standard
deviation of the stationary field, defining its operating range
as s ≥ 2.σ . Even if this step size is significant in classic
statistical analysis, it is here an interesting result . Indeed, as
illustrated by Figure 7, such a gap may not be obvious at first
sight while working with autocorrelated fields. We however
point out that, at this range, estimation error on parameters
may be significant. It is therefore required to analyze results
with physical background.

4.3 CASE OF A BILINEAR MEAN

As a final step, procedure is tested on piecewise trend-
stationary trajectories. The base trajectory is still t6. Six new
trajectories are generated by adding a bilinear mean with a
first null slope (α2), a changepoint at the middle of the sup-
port on x = 50,5 (n = 101) and a second slope of 6 different
intensities α3 = k.σ/L, with k from 2 (trajectory t6.b2) to 40
(trajectory t6.b40). This allows to establish performance range
of the procedure in this general case. Such phenomenon can
be faced with edge effects or environmental conditions vari-
ation [30]. Generated trajectories are noted t6,bk, k being the
slope index.

Table 6 presents results and Figures 8 and 9 illustrate ap-
plication of the procedure respectively on t6,b30 and t6,b10.
Slope steps are sorted in three ranges in order to ease anal-
ysis : (i) range 1 (k from 2 to 5), (ii) range 2 (k from 10 to
20), (iii) range 3 (k from 30 to 40). Highlighted cells indicate
issues during the SCAP-1D procedure.

General remarks

Before refining the analysis, it is of interest to point out
that the mean intercept (α1) estimation error is significant
for each trajectory, from 39,12% (ts6;b2) to 118,92% (ts6;b20).
This can be explained by the fact that the variance is equal
to the first mean level. However, it is not a real issue as
this parameter only estimate one point (the first one) of the
mean and because the first mean slope (α2) is generally well-
assessed, with an error between 9,74% (ts6;b2) to 33,84%
(ts6;b10).

Refined analysis

Giving the results, it appears that range 1 slope steps (t6.b2,
t6.b5) may induce wrong assessment of slope change location
: while SCAP-1D procedure does not reject neither stationar-
ity nor gaussianity, nor ergodicity hypotheses, the estimation
errors on slope change location are significant, from 43,56%
t6.b2 to 98,02% t6.b5. However, geostatistical parameters are
well estimated : the variance estimation error is about 30%
in both cases, as well as the correlation length one. This nu-
merical phenomenon is due to the low values of the slope
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Table 5: Procedure results : case of a mean step

Procedure Results
t 6.s10 6.s5 6.s4 6.s3 6.s2 6.s1,5 6.s1 6.s05 6.s025 6.s01
k 10 5 4 3 2 1,5 1 0,5 0,25 0,1

x step detect 50,50 50,50 50,50 50,50 47,00 46,50 100,00 100,00 72,50 72,50
α̂1 4,66 4,66 4,66 4,66 8,17 6,64 6,98 5,80 6,59 6,28

CRmin(α̂1) 1,92 1,92 1,92 1,92 5,08 3,78 2,58 1,78 4,19 3,91
CRmax(α̂1) 7,40 7,40 7,40 7,40 11,25 9,49 11,39 9,83 9,00 8,65

α̂2 54,42 29,42 24,42 19,42 10,54 9,84 6,98 5,80 2,60 2,18
CRmin(α̂2) 51,68 26,68 21,68 16,68 7,48 7,03 NaN NaN -0,12 -0,52
CRmax(α̂2) 57,16 32,16 27,16 22,16 13,59 12,65 NaN NaN 5,32 4,87

σ̂ 5,05 5,05 5,05 5,05 5,90 5,12 5,34 5,04 4,41 4,32
σ̂2 25,51 25,51 25,51 25,51 34,78 26,21 28,48 25,40 19,48 18,70

CRmin(σ̂
2) 20,51 20,51 20,51 20,51 27,97 21,07 22,90 20,42 15,67 15,04

CRmax(σ̂
2) 30,51 30,51 30,51 30,51 41,60 31,35 34,07 30,38 23,30 22,37

l̂c 10,04 10,04 10,04 10,04 11,47 9,36 10,69 9,87 7,81 7,50
CRmin(l̂c) 8,01 8,01 8,01 8,01 9,17 7,47 8,54 7,88 6,22 5,98
CRmax(l̂c) 12,06 12,06 12,06 12,06 13,77 11,25 12,84 11,86 9,39 9,03
h(χ2−test) FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
h(KS− test) FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE

k 4,47 4,47 4,47 4,47 8,34 5,62 4,36 4,29 4,54 4,62
s 0,33 0,33 0,33 0,33 1,06 0,65 0,35 0,29 0,26 0,28

h(KPSS− test) FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE
h(ADF− test) TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

ergodicity TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
Results Analysis

error x step detect 0,00% 0,00% 0,00% 0,00% 6,93% 7,92% 98,02% 98,02% 43,56% 43,56%
error α1 6,86% 6,86% 6,86% 6,86% 63,36% 32,75% 39,68% 16,07% 31,85% 25,51%
error α2 1,05% 1,93% 2,31% 2,89% 29,75% 21,28% 30,16% 22,62% 58,35% 60,45%
error σ2 2,05% 2,05% 2,05% 2,05% 39,13% 4,84% 13,94% 1,61% 22,06% 25,18%
error lc 0,35% 0,35% 0,35% 0,35% 14,69% 6,40% 6,92% 1,32% 21,92% 24,95%
cov α̂1 30,03% 30,03% 30,03% 30,03% 19,28% 21,96% 32,21% 35,41% 18,63% 19,27%
cov α̂2 2,57% 4,75% 5,73% 7,20% 14,78% 14,57% NaN NaN 53,33% 63,26%
cov σ̂2 10,00% 10,00% 10,00% 10,00% 10,00% 10,00% 10,00% 10,00% 10,00% 10,00%
cov l̂c 10,27% 10,27% 10,27% 10,27% 10,24% 10,29% 10,26% 10,28% 10,35% 10,36%

tcalc (s) 949,70 952,25 1 006,24 1 009,89 1 168,63 985,60 1 030,77 977,68 771,65 751,86
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steps, which imply modified and original trajectories to be
then quite similar. Thus, the procedure is not adapted to the
assessment of slope steps in the first range.

We also note that trajectories with slope steps from range
2 (t6.b10, t6.b20), once centered, are considered non-gaussian
(t6.b20) and/or non-ergodic (both). These rejections are ei-
ther due to wrong step detection, with an error around 60%,
and/or to wrong mean assessment : both of them get an er-
ror above 40% on the second slope (α3) assessment. Thus,
the SCAP-1D procedure is not adapted to the assessment of
slope steps in the second range. However, we highlight that,
in this range, it does not give false results as hypotheses rejec-
tions indicate that geostatistical estimations cannot be con-
sidered as mathematically valid.

However, unlike range 1 and range 2 ones, range 3 steps
(t6.b30, t6.b40) are very well detected by the algorithm, with
estimation errors of 1,98% (t6.b30) and 0,99% (t6.b40). More-
over, variance and correlation length estimations on the two
centered trajectories are also accurate, with errors between
28,14% and 29,88%, while the second slope is assessed with
less than 15% error for both.

Following this analysis, the procedure appears adapted to
trajectories with slope steps above 1.5, i.e 30σ/L. However,
the error on mean and parameters estimations is limited but
higher than in case of a piecewise constant mean. Thus, for
potential multilinear cases, the different slopes have to be
quite pronounced in order to use this procedure and have con-
fidence in estimations.

10 20 30 40 50 60 70 80 90 100

-10

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80 90

-10

-5

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40 45 50

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 8: Illustration of the procedure calculations for t6.b30

4.4 COMPUTATIONAL TIME REDUCTION

The main drawback of the procedure is its computational
time (Tables 3,5, 6) which is about 10.000 times longer than
the LSE method one (Table 4). We expose here two simple
ways to reduce this factor to 2500 while conserving the same
estimators precision. These are applied on the t6 trajectory
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Figure 9: Illustration of the procedure calculations for t6.b10

(Table 3, Figure 6) and results are given on Table 7.
The first one is to determine the initial correlation length

lc0 (algorithm in Appendix A) with LSE on experimental co-
variogram. Indeed, if no a priori values of the correlation
length are known, this allows to shrink the distance between
this initial value, normally arbitrary fixed, and the MLE of
lc. Applied to t6 (noted t6.ctr1 for computational time reduc-
tion), this leads to a reduction factor of 1,5.

A second one is to increase the tolerance on geostatistical
parameters evaluation (algorithm in Appendix A). Indeed,
the opposite log-likelihood function ` of GRF is regular and
presents a unique minimum in the studied interval [0,L] and
the expected accuracy on lc is of the order of 1cm. Attention
should however be paid to the slope of ` in the neighborhood
of its minimum : a wide minimum zone requests short toler-
ance to get accurate minimization whereas large tolerance is
sufficient for a sharp one.

This method is applied to t6 (noted t6.ctr2 below). Initial
tolerance of 1e−5cm is reduced to 1e−2cm, which leads to a
reduction factor of 2 with comparable estimation errors.

Combining these two methods (noted t6.ctr3), the total
computational time of the procedure applied to t6 is divided
by 4 without any loss of precision and accuracy.

4.5 EFFECTS OF THE DOMAIN CHOICE AND SIZE

Another important parameter affecting the procedure’s effec-
tiveness is the choice of both the location and the size L of
the studied domain D.

Indeed, if mean edges are next to the boundaries of D,
there are risks that they cannot be precisely detected by the
PELT algorithm. This implies wrong parameters assessments
and reject of the main hypotheses. This phenomenon is high-
lighted on Table 8 and Figures 11 and 12 : both trajectories
t6.b40 and t6.s3 are truncated, first on xq = 7/8L, then on
xq = 5/8L, so that mean edge, located on x100 approaches the
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Table 6: Procedure results : case of a bilinear mean

Procedure Results
t 6.b40 6.b30 6.b20 6.b10 6.b5 6.b2
k 40 30 20 10 5 2

α3 (2nd slope) 2 1,5 1 0,5 0,25 0,1
x edge detect 50 49,5 22 20,5 100 72,5
α̂1 (µ̂(x = 0)) 1,25 1,38 -0,95 -0,55 2,83 3,04

CRmin(α̂1) -1,25 -1,13 -3,86 -3,30 -0,15 0,85
CRmax(α̂1) 3,75 3,88 1,96 2,20 5,81 5,24

α̂2 (1st slope) 0,18 0,17 0,17 0,34 0,11 0,10
CRmin(α̂2) 0,12 0,11 0,03 0,19 0,06 0,06
CRmax(α̂2) 0,24 0,23 0,31 0,48 0,16 0,13

α̂3 (2nd slope) 1,79 1,28 0,59 0,23 NaN 0,02
CRmin(α̂3) 1,75 1,24 0,52 0,19 NaN -0,01
CRmax(α̂3) 1,83 1,32 0,65 0,28 NaN 0,05

σ̂ 4,23 4,24 5,26 4,15 4,28 3,95
σ̂2 17,91 17,97 27,66 17,20 18,29 15,62

CRmin(σ̂
2) 14,40 14,44 22,24 13,83 14,70 12,56

CRmax(σ̂
2) 21,42 21,49 33,08 20,58 21,87 18,68

l̂c 7,02 7,01 11,03 6,76 7,16 6,26
CRmin(l̂c) 5,59 5,58 8,81 5,38 5,70 4,98
CRmax(l̂c) 8,45 8,44 13,25 8,13 8,62 7,53
h(χ2−test) FALSE FALSE TRUE FALSE FALSE FALSE
h(KS− test) FALSE FALSE FALSE FALSE FALSE FALSE

k 5,73 5,74 5,27 5,54 5,24 5,49
s 0,65 0,66 0,55 0,62 0,58 0,61

h(KPSS− test) FALSE FALSE FALSE FALSE FALSE FALSE
h(ADF− test) TRUE TRUE TRUE TRUE TRUE TRUE

ergodicity TRUE TRUE FALSE FALSE TRUE TRUE
Results Analysis

error x edge detect 0,99% 1,98% 56,44% 59,41% 98,02% 43,56%
error α1 74,98% 72,43% 118,92% 111,02% 43,38% 39,12%
error α2 17,97% 16,82% 17,15% 33,84% 10,73% 9,74%
error α3 10,38% 14,96% 41,48% 53,02% NaN 78,64%
error σ2 28,37% 28,14% 10,62% 31,19% 26,85% 37,51%
error lc 29,77% 29,88% 10,30% 32,44% 28,41% 37,44%
cov α̂1 101,79% 92,71% 156,96% 254,66% 53,71% 36,75%
cov α̂2 16,41% 17,76% 41,02% 21,99% 23,56% 19,56%
cov α̂3 1,13% 1,59% 5,58% 9,77% NaN 79,09%
cov σ̂2 10,00% 10,00% 10,00% 10,00% 10,00% 10,00%
cov l̂c 10,38% 10,38% 10,25% 10,40% 10,38% 10,43%

tcalc (s) 718,41 721,54 1 131,44 717,66 668,36 689,01
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Figure 10: correlograms and eigenvalues of popular auto-covariance models

right boundary of the domain. This results in sub-trajectories
t6.b40.q150, t6.b40.q125, t6.s3.q125 and t6.s3.q125, which
are prior checked for ergodicity, considering their real mean
values.

Whereas t6.b40 parameters are well assessed by the pro-
cedure (best results of Table 6), both t6.b40.q150 and
t6.b40.q125 give inoperable results as either normality or er-
godicity hypothesis is not valid, due to error on edge detec-
tion. On the contrary, t6.s3.q150 and t6.s3.q125 continue to
give accurate estimations of the geostatistical parameters.

This leads to the interpretation that piecewise-trend-
stationary trajectories are much more sensitive to the dis-
tance between potential edges and the domain boundaries
than piecewise-stationary ones. Then, a priori knowledge
about the potential mean edges is an asset to fix the studied
domain boundaries. Practically, this issue can also be faced
by truncating boundary measurements. Indeed, when on-site
inspections are performed on whole structure elements, mea-
surements next to boundaries are often affected by side ef-
fects and material heterogeneity. The procedure hypothesis
of stationarity of geostatistical parameters is then not satis-
fied in these areas.

Moreover, if lc ' L or lc > L, there is a great risk that
measured trajectory will not be ergodic, by definition of the
covariogram and lc. Thus, provided lc and σ are constant
along L, the greater the domain, the likelier the ergodicity
hypothesis [24, p. 92]. Then, a priori knowledge about the
researched correlation length is a strong asset to fix the size
of the domain. As an example, [31] shows that correlation
length of surface chloride content on wharves RC beams can

vary by up to four times depending on their wind exposition
(sheltered or exposed). Thus, the domain needed to assess it
on similar wind-exposed elements should a priori be signifi-
cantly larger than for wind-sheltered ones .

4.6 EFFECTS AND CHOICE OF AUTO-
COVARIANCE MODEL

The last choice which could influence the accuracy and the
efficiency of the procedure is the auto-covariance model,
which influences the mean and geostatistical parameters like-
lihood expression, i.e their MLE. However, [23] proves
that under certain conditions of regularity (namely the ab-
solute summability of the auto-covariance eigenvalues), the
Maximum Likelihood Estimation is asymptotically normal,
which means its accuracy is independent from the auto-co-
variance model. Practically, these conditions are fulfilled by
Matérn models with ν ≥ 0.5, and cover most of the other
popular models. This is illustrated on Figure 10), where it is
clear that cubic, spherical, gaussian, exponential and cardinal
sine auto-covariance eigenvalues are absolutely summable,
whereas those of Matérn model with ν = 1/8 are above the
first bisector.

Thus, there is only few restrictions on the choice of auto-
covariance function. Practically, its selection is based on the
shape of the experimental covariogram or semivariogram of
studied data. If a doubt remains, model comparison crite-
ria such as Bayesian Information Criterion (BIC) or Akaike
Inkormation Criterion (AIC) can be computed after the pro-
cedure to select the best model [32].
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Table 7: Computational Time Reduction : effects on t6

Procedures Results
t 6 6.ctr1 6.ctr2 6.ctr3

tolerance 1,00E-05 1,00E-05 1,00E-02 1,00E-02
lc0 type arbitrary LSE arbitrary LSE
lc0 value 25,00 4,70 25,00 4,70

α̂ 4,53 4,53 4,52 4,55
CRmin(α̂) 0,44 0,44 0,36 0,52
CRmax(α̂) 8,62 8,62 8,67 8,57

σ̂ 5,07 5,07 5,11 5,02
σ̂2 25,68 25,67 26,14 25,24

CRmin(σ̂
2) 20,64 20,64 21,02 20,29

CRmax(σ̂
2) 30,71 30,71 31,26 30,18

l̂c 10,10 10,10 10,28 9,93
CRmin(l̂c) 8,07 8,07 8,21 7,93
CRmax(l̂c) 12,14 12,13 12,35 11,93
h(χ2−test) FALSE FALSE FALSE FALSE
h(KS− test) FALSE FALSE FALSE FALSE

k 4,49 4,49 4,49 4,49
s 0,33 0,33 0,33 0,33

h(KPSS− test) FALSE FALSE FALSE FALSE
h(ADF− test) TRUE TRUE TRUE TRUE

ergodicity TRUE TRUE TRUE TRUE
Results Analysis

error α 9,33% 9,33% 9,65% 9,02%
error σ2 2,71% 2,70% 4,55% 0,95%
error lc 1,02% 1,01% 2,84% 0,72%
cov α 46,02% 46,01% 46,94% 45,14%
cov σ2 10,00% 10,00% 10,00% 10,00%
cov lc 10,27% 10,27% 10,27% 10,28%

tcalc (s) 951,69 648,95 449,10 219,51
tcalc reduction factor 1,47 2,12 4,34
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Table 8: Effect of the mean edge location : application on t6.b40 and t6.s3

Procedure Results
t 6.b40 6.b40.q150 6.b40.q125 t 6.s3 6.s3.q150 6.s3.q125

q (trunc t) - 150 125 q (trunc t) - 150 125
α3 (2nd slope) 2 2 2 k 3 3 3
x edge detect 100 97 44 x edge detect 101 101 101
α̂1 (µ̂(x = 0)) 1,25 0,98 -1,57 α̂1 4,66 5,40 6,31

CRmin(α̂1) -1,25 -1,63 -4,56 CRmin(α̂1) 1,92 2,59 3,62
CRmax(α̂1) 3,75 3,58 1,42 CRmax(α̂1) 7,40 8,21 8,99

α̂2 (1st slope) 0,18 0,20 0,25 α̂2 19,42 20,37 21,59
CRmin(α̂2) 0,12 0,14 0,11 CRmin(α̂2) 16,68 17,39 18,65
CRmax(α̂2) 0,24 0,26 0,39 CRmax(α̂2) 22,16 23,35 24,54

α̂3 (2nd slope) 1,79 1,51 0,68
CRmin(α̂3) 1,75 1,46 0,57
CRmax(α̂3) 1,83 1,57 0,78

σ̂ 4,23 4,37 5,97 σ̂ 5,05 5,07 4,80
σ̂2 17,91 19,14 35,59 σ̂2 25,51 25,66 23,09

CRmin(σ̂
2) 14,40 14,81 26,77 CRmin(σ̂

2) 20,51 19,86 17,36
CRmax(σ̂

2) 21,42 23,47 44,41 CRmax(σ̂
2) 30,51 31,47 28,81

l̂c 7,02 6,88 13,94 l̂c 10,04 9,25 9,02
CRmin(l̂c) 5,59 5,26 10,41 CRmin(l̂c) 8,01 7,09 6,72
CRmax(l̂c) 8,45 8,50 17,48 CRmax(l̂c) 12,06 11,40 11,33
h(χ2−test) FALSE FALSE FALSE h(χ2−test) FALSE FALSE FALSE
h(KS− test) FALSE FALSE FALSE h(KS− test) FALSE FALSE FALSE

k 5,73 4,81 5,42 k 4,47 4,54 5,35
s 0,65 0,61 0,69 s 0,33 0,34 0,47

h(KPSS− test) FALSE TRUE TRUE h(KPSS− test) FALSE FALSE FALSE
h(ADF− test) TRUE TRUE TRUE h(ADF− test) TRUE TRUE TRUE

ergodicity TRUE TRUE FALSE ergodicity TRUE TRUE TRUE
Results Analysis

error x edge detect 0,99% 3,96% 56,44% error x step detect 0,00% 0,00% 0,00%
error α1 74,98% 80,49% 131,36% error α1 6,86% 8,03% 26,16%
error α2 17,97% 20,15% 25,17% error α2 2,89% 1,84% 7,96%
error α3 10,38% 24,28% 66,18%
error σ2 28,37% 23,44% 42,36% error σ2 2,05% 2,66% 7,65%
error lc 29,77% 31,20% 39,44% error lc 0,35% 7,54% 9,76%
cov α̂1 101,79% 136,07% 97,35% cov α̂1 30,03% 30,81% 29,41%
cov α̂2 16,41% 15,74% 28,35% cov α̂2 7,20% 7,46% 6,95%
cov α̂3 1,13% 1,76% 8,02%
cov σ̂2 10,00% 11,55% 12,65% cov σ̂2 10,00% 11,55% 12,65%
cov l̂c 10,38% 12,01% 12,93% cov l̂c 10,27% 11,90% 13,05%
tcalc(s) 425,47 214,72 347,91 tcalc(s) 659,53 369,55 246,69
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Figure 11: Reduction of the distance edge - D boundaries : application to t6.b40

0 10 20 30 40 50 60

-5

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70

-5

0

5

10

15

20

25

30

0 10 20 30 40 50 60

-10

-5

0

5

10

15

20

25

0 10 20 30 40 50 60 70

-10

-5

0

5

10

15

20

25

0 20 40 60 80 100

-10

-5

0

5

10

15

20

25

0 20 40 60 80 100

-5

0

5

10

15

20

25

30

Figure 12: Reduction of the distance edge - D boundaries : application to t6.s3
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5 EXPERIMENTAL VALIDATION ON A CASE
STUDY

In this section, we test the SCAP-1D procedure with real data
in the two cases of piecewise-constant and piecewise-linear
mean.

5.1 THEORETICAL PREAMBLE

In preamble to this study, we shall recall that, contrary to the
simple model used to present the SCAP-1D procedure, most
experimental data are noisy. This noise and its prevalence
in the signal can be simply visualized in case of stationarity
by drawing the experimental semi-variogram of the data and
checking for nugget effect [5, 33].

Usually, authors get rid of it by operating moving average
on data [34]. However, we show in the following that this
operation can affect the spatial variability properties of the
signal (see Figure 13c).

Thus, in order to make SCAP-1D applicable on most
real data sets, we shall transform the “development” model
(Equation 1) to take additive white noise into account, so that
we write

Z(xxx) = AAA(xxx)ααα +σ .G(RRR( fcov(xxx, lc)))+ τ.B(111n) (23)

with B ∼ N (0,1). Then, the auto-covariance matrix CCC of
ZZZ−AAA.ααα equates σ .RRR+ τ.111n.

This model evolution has no impact on the general pro-
cedure algorithm and only induces modifications on estima-
tors, presented in the updated iterative MLE algorithm in ap-
pendix B. The Fisher matrix is also modified but can be easily
computed numerically. Eventually, the hypotheses test shall
be performed on the uncorrelated trajectory JJJ, redefined as

JJJ = QQQ(ZZZ−AAA.α̂αα) (24)

where Q is the lower triangular matrix obtained via Cholesky
decomposition of C.

5.2 PRESENTATION OF THE STRUCTURE AND
MEASUREMENTS

The studied structure is the Île de Ré bridge (France), built in
1987, which connects the Island of Ré to the mainland (Fig-
ure 13a). This RC bridge has been recently inspected by L.
Bourreau during his PhD thesis [35] as part of the DéCoF-
Ré project (Decision Corrosion Reliability on the Île de Ré
Bridge), led by IFSTTAR. This study aimed to diagnose the
piers corrosion state and to give decision help about schedul-
ing and placement of future diagnostic operations. NDT in-
spections were carried out on 3-meters high and 1.85-meters
wide wind-sheltered and wind-exposed faces (respectively
FC and FG, Figure 13b) of 15 piers, during 4 seasons. They
resulted in a huge database of Half-Cell Potential (HCP)
and Electrical Resistivity (ER) measurements. This allowed,

Table 9: Boundaries between 2 zones for HCP data for the
four seasons [36]

Boundaries between zones : High and Median Median and Low
(origin at +3.95 m CD) (m) (m)

Winter 1.69 - 1.94 0.67 - 0.88
Spring 1.69 - 1.94 0.67 - 0.88

Summer 1.94 - 2.17 0.67 - 0.88
Autumn 1.94 - 2.17 0.88 - 1.07

combined with SDT measurements, to bring out two fully
healthy piers (noted PG and PN).

On one hand, the HCP measurement grid is very tight, with
respectively 5 cm and 2 cm spacings on horizontal and ver-
tical rebars. This results in 36-points horizontal trajectories
and and 151-points vertical ones. On the other hand, the ER
grid is much coarser with a mesh size about 20 cm. This re-
sults in 10-points horizontal trajectories and 15-points verti-
cal ones. Moreover, [9] showed that the ER variance depends
on the square of ER mean, which increases along the vertical.

Thus, in order to get meaningful assessments and to meet
the hypothesis of constant variance and correlation length
(made in the SCAP1D procedure), we focus on HCP data
on healthy piers G and N in the following study.

5.3 CASE OF A MEAN STEP

Firstly, we validate the procedure in the experimental case of
a mean step for three similar trajectories. In order to give the
most meaningful comparison between the parameters assess-
ments, we select two trajectories of the same pier face and
measured the same day. Moreover, we focus on horizontal
trajectories as vertical ones have piecewise-linear drift : this
corresponds to different corrosion zones (tidal, splash and
atmospheric zones), as RC corrosion behaves differently de-
pending on chloride concentration and oxygen amount. They
have been assessed by [36] and are defined on Table 9 .

Choice of test trajectories

Browsing horizontal HCP data measured in Automn, we find
evidence of local mean step on the top of the atmospheric
zone of Pier G Face C, at abscissa x=110 – 120 cm. This is
illustrated on Figures 14a and 14b, were we draw the data
cartography and the three related trajectories, noted H1, H2
and H3 (respectively measured at ordinates 2.98 m, 2.82 m
and 2.58 m).

This step is not due to coating variability as there is no cor-
relation structure between coating and HCP measurements
in this zone, as we show on Figure 14c. However, it may
be justified by the fluted shape of piers which implies differ-
ent sun exposition time along the horizontal and thus drying
variability (see Figure 13a). Indeed, while this phenomenon
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Figure 14: Experimental validation in the case of a mean step - data illustration

is not likely to impact HCP on tidal and splash zones, fre-
quently exposed to salt water, it is credible to identify it on
atmospheric zone. Thus, we consider the H1 H2 and H3 tra-
jectories non-stationary.

In the following, we test the applicability of SCAP-1D on
H1 and compare correlation length estimations made on the
three trajectories.

Application of SCAP-1D

First of all, we illustrate the necessity to take noise into ac-
count in the trajectory model. We apply the SCAP-1D pro-
cedure to both the raw and the 3-points-averaged H1 trajec-
tory, which is supposed to derive from a piecewise-stationary
GRF. Looking at experimental correlograms drawn on Figure
13c, it is clear that the moving average modifies the spatial
variability properties (reduces it here). Thus, in the follow-
ing, we only consider results coming from raw trajectories
analysis.

Results from H1 analysis are given in Table 10 and illus-
trated in Figure 15a. We point out that the Matérn auto-
covariance model parameter ν is set to 8 (numerically equiv-
alent to infinity and thus to gaussian model, see Table 2) in
order to better fit the experimental covariogram. The cen-
tered signal seems ergodic, the mean is well-assessed and
both the stationarity and the gaussiannity hypotheses cannot
be rejected. This means H1 can indeed be considered as a

stepped-gaussian trajectory. We however note high CoV for
l̂c and σ̂2, which are due to the limited number of measure-
ment points (36) and especially to the low Signal Noise Ratio
(SNR) of 0.52.

To confirm this, we compare previous assessments with
estimations made from trajectories H2 and H3. Indeed, as all
three studied trajectories have been measured in the same 40-
cm high zone during the same day, it is reasonable to suppose
they share same correlation length. Results are given in Table
10 and illustrated on Figure 15b and 15c.

Each studied trajectory is found to be ergodic, stationary
and gaussian. Moreover, correlation lengths assessments are
indeed quite similar, from 10.3 to 13.3 cm, with lower CoV
of respectively 26 and 18 %. These are due to higher SNR of
5.24 and 21.72.

Thus, provided a sufficiently high SNR (above 5 accord-
ing to this first experimental study) the SCAP-1D procedure
is fully applicable to limited stepped experimental data with
satisfying precisions on spatial variability assessment.
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Figure 15: Experimental validation in the case of a mean step - results illustration
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Figure 16: Experimental validation in the case of a piecewise-linear step - results illustration
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Table 10: Experimental valdation - results

SCAP-1D Results
t H1 H2 H3 V1 V4 V4c

Distribution law GN GN GN GN GN GN
Nb points 36 36 34 151 151 130

Nb changepoints 1 1 1 2 2 2
Regression degree 0 0 0 1 1 1

ν 8 8 8 8 8 8
Type 1 error 0.05 0.05 0.05 0.05 0.05 0.05

τ̂2 30.51 16.95 9.73 13.97 34.55 11.35
σ̂ 4 9.4 14.4 10.46 11.34 8.51
σ̂2 15.77 88.74 211.37 109.38 128.61 72.36

CRmin(σ̂
2) 0 23.83 49.92 68.67 77.63 46.34

CRmax(σ̂
2) 35.93 153.65 372.83 150.09 179.59 98.38

l̂c 10.3 10.4 13.3 4.52 4.71 3.46
CRmin(l̂c) 1.00E-15 5.96 9.32 3.71 3.63 2.74
CRmax(l̂c) 23.34 14.79 17.17 5.33 5.8 4.18
h(χ2-test) FALSE FALSE FALSE FALSE TRUE TRUE
h(KS-test) FALSE FALSE FALSE FALSE TRUE 0

k 2.17 2.68 2.79 6.82 15.23 6.03
s 0.1 -0.42 0.27 1.37 2.37 0.64

h(KPSS-test) FALSE FALSE FALSE FALSE FALSE FALSE
h(ADF-test) TRUE TRUE TRUE TRUE TRUE TRUE

Results Analysis
SNR 0.52 5.24 21.72 7.83 3.72 6.38

CoV σ̂2 0.78 0.44 0.46 0.23 0.24 0.22
CoV l̂c 0.77 0.26 0.18 0.11 0.14 0.13
tcalc(s) 0.47 1.78 0.87 3.53 3.36 2.16
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5.4 CASE OF A PIECEWISE-LINEAR MEAN

Secondly, we validate the procedure in the experimental case
of a piecewise-linear step for two similar trajectories.

Just as in the first experimental study, we limit environ-
mental bias by selecting two trajectories of the same pier face
and measured the same day. However, we focus here on ver-
tical trajectories as their mean follow a piecewise-linear drift
(Figure 17), with a slope depending on the corrosion zone
(tidal, splash and atmospheric, see Table 9).

Figure 17: Piecewise-linear vertical trend of HCP [36]

Choice of tests trajectories

Among the available trajectories, we select those with drift
which seems to correspond the most to the mean one. This
allows to use the corrosion zones definition established by
[36] .

The considerations above lead to test the applicability of
SCAP-1D on two HCP trajectories measured in Spring on
Pier G Face G, noted V1 and V4 (respectively measured at
abscissa 0.2 m and 0.7 m). These are represented on Figure
18.

Figure 18: HCP cartography on Pier G Face G – Spring

Application of SCAP-1D

Results from V1 analysis are given in Table 10 and illustrated
in Figure 16a. We keep ν = 8 as we study the same quantity

of interest. The centered signal seems ergodic, the mean is
well assessed and both the stationarity and the gaussiannity
hypotheses cannot be rejected. Moreover, the mean steps
locations (y=1 m and x=2.10 m) correspond to the zones
boundaries defined in Table 9. This means V1 can indeed
be considered as a piecewise-linear gaussian trajectory. The
correlation length and the standard deviation are precisely
assessed with low CoV (11% and 23%). This is due to siz-
able number of points and SNR (151 and 7.83). To con-
firm this, we compare previous assessments with estimations
made from trajectory V4, illustraded in Figures 16b and 16c.

In the first instance, V4 is found to be ergodic but non-
stationary, as both χ2-test and KS-test null hypotheses are
rejected. However, by looking at the trajectory, we note an
aberrant data at y=110 cm and two constant level of respec-
tively -430 mV from y=172 cm to y=198 cm, and -285 mV
from y=286 cm to y=300 cm. However, even if SCAP-1D
can handle such mean shapes by simple modification of the
nodal matrix A (Example 1), taking these additional steps
into account in the trajectory model would add two param-
eters and considerably affect the estimators accuracy. Thus,
we create a “cleaned” study trajectory (noted V4c) by remov-
ing both the aberrant data and these intermediate levels from
V4. The new trajectory gets 130 points and the information
of steps locations is saved to perform the following assess-
ments.

V4c is then found to be ergodic, stationary and gaussian,
even if the χ2-test is not valid (see Table 10). Moreover,
correlation length and standard deviation assessments are in-
deed quite similar to V1 estimations (respectively 4.71 cm
and 11.34 mV against 4.52 cm and 10.46 mV) with still low
CoV (14% and 24%), even if the SNR is lower (3.72).

Thus, providing suitably conditioned data (without aber-
rant values and precise correspondence between model and
measurements evolution), the SCAP-1D procedure is fully
applicable to piecewise-linear experimental data with satis-
fying precision on spatial variability assessment.

6 CONCLUSIONS

This paper proposes a rigorous spatial variability assess-
ment procedure adapted to unidimensional piecewise-trend-
stationary trajectories, called SCAP-1D. This strategy may
enable structures stakeholders to assess an additional infor-
mation from sensors after diagnosis campaigns as it allows
to precisely determine the correlation length of quantities of
interest, such as chloride concentration, resistivity or corro-
sion potential. It may also be of great interest for the design
of Structure Health Monitoring systems.

While spatial variability is often estimated through ap-
proximate methods, our algorithm checks each mathematical
hypothesis required to perform its assessment while remov-
ing non-stationarities due to piecewise-linear environmental
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effects, preventing calculation errors up to 100%.
Here, after an exhaustive presentation of the theoretical

aspects of SCAP-1D (covering piecewise-assessment tech-
niques, normality tests and stationarity tests), numerical
studies have been carried out to validate its ability to accu-
rately estimate spatial variability of a gaussian random field
in three typical cases of a constant mean, a stepped-mean and
a bilinear mean.

It has been shown that, (i) provided the stationary trajec-
tory is ergodic, SCAP-1D precisely estimates the mean, the
variance and the correlation length, (ii) the ratio step am-
plitude/standard deviation pilots the efficiency of SCAP-1D
with a minimum detection value around 2, (iii) the slope
steps should be above 30 times the ratio standard devia-
tion/domain size. It has also been highlighted that initial-
izing the correlation length through Least Square Estimation
significantly reduces the procedure execution time, and that
the trajectory size should be significantly higher than the ex-
pected correlation length in order to validate the ergodicity
hypothesis.

The procedure has finally been tested on Half-Cell Cor-
rosion Potential measurements carried out on the Île de Ré
bridge. Measurement noise has been taking into account with
simple Maximum Likelihood estimators adjustments. This
led to the following conclusions : (i) SCAP-1D is fully ca-
pable of determining mean and slope steps on limited exper-
imental data (ii) Using SCAP-1D on a unique trajectory with
few points (about 30 points) is enough to accurately deter-
mine material spatial variability, on the conditions of limited
noise (SNR above 5), filtered aberrant data, accurate mean
model and homogeneous properties along the structure.

For future works, it is of a great interest to extend the
procedure to non-uniform and two-dimensional grids which
may lead to detect non-stationarities on whole surfaces with-
out constraining the measurements locations. We also point
out that the SCAP-1D procedure currently gets numerous pa-
rameters which may highly impact its results if not fully un-
derstood. Its partial automation with adequate analysis tools
is thus of interest to get it used by engineers and structures
stakeholders.

To achieve this goal, a systematic statistical evaluation of
the performance of the algorithm should also be carried out
in order to precisely characterize the influence of the random
field model, the auto-covariance function and the SCAP-1D
parameters on the accuracy and the efficiency of the algo-
rithm. This could guide future users in the choice of global
settings of the procedure.
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Traitement du signal 20 (2) (2003) 119–135.

[13] S. Mallat, W. Hwang, Singularity detection and
processing with wavelets, IEEE Transactions
on Information Theory 38 (2) (1992) 617–643.
doi:10.1109/18.119727.
URL http://ieeexplore.ieee.org/document/

119727/

[14] E. S. Page, CONTINUOUS INSPECTION
SCHEMES, Biometrika 41 (1-2) (1954) 100–115.
doi:10.1093/biomet/41.1-2.100.
URL https://academic.oup.com/biomet/

article/41/1-2/100/456627

[15] D. V. Hinkley, Inference about the change-point
from cumulative sum tests, Biometrika 58 (3) (1971)
509–523. doi:10.1093/biomet/58.3.509.
URL https://academic.oup.com/biomet/

article/58/3/509/233432

[16] M. Basseville, Detecting changes in signals and sys-
tems – a survey, Automatica 24 (3) (1988) 309–326.
doi:10.1016/0005-1098(88)90073-8.

[17] J. Labeyrie, Stationary and transient states of ran-
dom seas, Marine Structures 3 (1) (1990) 43–58.
doi:10.1016/0951-8339(90)90020-R.
URL http://linkinghub.elsevier.com/

retrieve/pii/095183399090020R

[18] R. Killick, P. Fearnhead, I. A. Eckley, Optimal
Detection of Changepoints With a Linear Com-
putational Cost, Journal of the American Statis-
tical Association 107 (500) (2012) 1590–1598.
doi:10.1080/01621459.2012.737745.
URL https://amstat.tandfonline.com/doi/

abs/10.1080/01621459.2012.737745

[19] B. Jackson, J. Scargle, D. Barnes, S. Arabhi, A. Alt,
P. Gioumousis, E. Gwin, P. San, L. Tan, Tun Tao Tsai,
An algorithm for optimal partitioning of data on an
interval, IEEE Signal Processing Letters 12 (2) (2005)
105–108. doi:10.1109/LSP.2001.838216.
URL http://ieeexplore.ieee.org/document/

1381461/

[20] D. Kwiatkowski, P. C. B. Phillips, P. Schmidt, Y. Shin,
Testing the null hypothesis of stationarity against the
alternative of a unit root: How sure are we that
economic time series have a unit root?, Journal of
Econometrics 54 (1) (1992) 159–178. doi:10.1016/

0304-4076(92)90104-Y.
URL http://www.sciencedirect.com/science/

article/pii/030440769290104Y

[21] D. A. Dickey, W. A. Fuller, Likelihood Ratio
Statistics for Autoregressive Time Series with



SCAP-1D : A Spatial Correlation Assessment Procedure from Unidimensional Discrete Data 27

a Unit Root, Econometrica 49 (4) (1981) 1057.
doi:10.2307/1912517.
URL http://www.jstor.org/stable/1912517?

origin=crossref

[22] T. J. Sweeting, Uniform Asymptotic Normality of the
Maximum Likelihood Estimator, The Annals of Statis-
tics 8 (6) (1980) 1375–1381.
URL http://www.jstor.org/stable/2240949

[23] K. V. Mardia, R. J. Marshall, Maximum Likelihood Es-
timation of Models for Residual Covariance in Spa-
tial Regression, Biometrika 71 (1) (1984) 135–146.
doi:10.2307/2336405.
URL http://www.jstor.org/stable/2336405

[24] M. H. Faber, Statistics and Probability Theory,
Vol. 18 of Topics in Safety, Risk, Reliability and
Quality, Springer Netherlands, Dordrecht, 2012.
doi:10.1007/978-94-007-4056-3.
URL http://link.springer.com/10.1007/

978-94-007-4056-3

[25] U. K. Müller, Size and power of tests of sta-
tionarity in highly autocorrelated time series,
Journal of Econometrics 128 (2) (2005) 195–213.
doi:10.1016/j.jeconom.2004.08.012.
URL http://linkinghub.elsevier.com/

retrieve/pii/S030440760400154X

[26] D. N. DeJong, J. C. Nankervis, N. E. Savin, C. H.
Whiteman, The power problems of unit root test in time
series with autoregressive errors, Journal of Econo-
metrics 53 (1-3) (1992) 323–343. doi:10.1016/

0304-4076(92)90090-E.

[27] D. Rios Insua, F. Ruggeri, M. P. Wiper, Bayesian
Analysis of Stochastic Process Models, 1st Edition,
Wiley Series in Probability and Statistics, Wiley, 2012.
doi:10.1002/9780470975916.
URL https://onlinelibrary.wiley.com/doi/

book/10.1002/9780470975916

[28] J.-F. Coeurjolly, E. Porcu, Fast and exact simulation
of complex-valued stationary Gaussian processes
through embedding circulant matrix, Journal of
Computational and Graphical Statistics (2017) 0–
0doi:10.1080/10618600.2017.1385468.
URL https://amstat.tandfonline.com/doi/

abs/10.1080/10618600.2017.1385468

[29] F. Schoefs, A. Clément, A. Nouy, Assessment of ROC
curves for inspection of random fields, Structural Safety
31 (5) (2009) 409–419. doi:10.1016/j.strusafe.

2009.01.004.
URL http://www.sciencedirect.com/science/

article/pii/S0167473009000034

[30] I. Othmen, S. Bonnet, F. Schoefs, Statistical inves-
tigation of different analysis methods for chloride
profiles within a real structure in a marine envi-
ronment, Ocean Engineering 157 (2018) 96–107.
doi:10.1016/j.oceaneng.2018.03.040.
URL http://linkinghub.elsevier.com/

retrieve/pii/S0029801818303056

[31] F. Schoefs, M. Oumouni, R. Clerc, I. Othmen, S. Bon-
net, Statistical analysis and probabilistic modeling of
chloride ingress spatial variability in concrete coastal
infrastructures, in: Edition 4, Split, Croatie, Editions
Paralia, Split, Croatia, 2017, pp. 229–234. doi:10.

5150/cmcm.2017.042.
URL http://www.paralia.fr/cmcm/e04-42.pdf

[32] J. I. Myung, M. A. Pitt, Model Compar-
ison Methods, in: Methods in Enzymol-
ogy, Vol. 383, Elsevier, 2004, pp. 351–366.
doi:10.1016/S0076-6879(04)83014-3.
URL https://linkinghub.elsevier.com/

retrieve/pii/S0076687904830143

[33] N. T. Nguyen, Z.-M. Sbartaı̈, J.-F. Lataste, D. Breysse,
F. Bos, Assessing the spatial variability of concrete
structures using NDT techniques – Laboratory tests
and case study, Construction and Building Materials
49 (Supplement C) (2013) 240–250. doi:10.1016/

j.conbuildmat.2013.08.011.
URL http://www.sciencedirect.com/science/

article/pii/S0950061813007411

[34] Y. Sahraoui, A. Chateauneuf, The effects of spatial
variability of the aggressiveness of soil on system relia-
bility of corroding underground pipelines, International
Journal of Pressure Vessels and Piping 146 (2016)
188–197. doi:10.1016/j.ijpvp.2016.09.004.
URL https://linkinghub.elsevier.com/

retrieve/pii/S0308016116303088

[35] L. Bourreau, Diagnostic de corrosion sur ouvrage : fia-
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A Appendix A : Iterative Algorithm of Maximum Likelihood Estimation of the mean and geostatistic properties - case
of a Gaussian Random Field

Data:
ZZZ : trajectory
Input:
AAA : nodal piecewise-linear function matrix
fcov(xxx, lc) : supposed auto-covariance function of GGG
lc0 : initial value of the correlation length
µ̂µµ0 : initial vector of the piecewise-linear mean
σ̂2

0 : initial value of the variance
ε : initial error on geostatistical parameter evaluation
tol : tolerance on geostatistical parameter evaluation
Result:
ĜGG : random gaussian part of ZZZ assessment
µ̂µµ : assessment of the piecewise-polynomial mean of ZZZ
σ̂2 : assessment of the constant variance of GGG
ĈCC : assessment of the auto-covariance matrix of ZZZ
l̂c : assessment of the constant correlation length of GGG
α̂αα : assessment of the regression coefficients of µ

RRR : modeled autocorrelation matrix of GGG
while ε < tol do

model GGG autocorrelation matrix ;

RRR = RRR( fcov,xxx, lc0)

assess the piecewise-polynomial mean via MLE ;

α̂αα =
ZZZ′R̂RR

−1
AAA

AAA′R̂RR
−1

AAA
; µ̂µµ = AAAα̂αα

assess the variance of GGG via MLE ;

σ̂
2 =

1
n
(ZZZ− µ̂µµ)′RRR−1 (ZZZ− µ̂µµ)

assess the gaussian random part of the trajectory and the auto-covariance matrix ;

ĜGG =
ZZZ− µ̂µµ√

σ̂2
; ĈCC = σ̂

2.RRR

assess the correlation length of ĜGG via MLE, with L defined as the likelihood function of parameter lc of multivariate normal
distribution ;

l̂c = argmax
lc

L(lc) = argmin
lc

[−2log(L(lc))] = argmin
lc

[
log
(
|ĈCC|
)
+ ĜGG

′
ĈCC
−1

ĜGG
]

update the error on geostatistical parameter evaluation

ε = ‖σ̂2− σ̂
2
0 ‖⇔ ε = ‖l̂c− l̂c0‖⇔ ε = ‖µ̂µµ− µ̂µµ000‖

update initial geostatistical parameters
µ̂µµ0 = µ̂µµ ; σ̂

2
0 = σ̂

2 ; lc0 = lc

end
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B Appendix B : Iterative Algorithm of Maximum Likelihood Estimation of the mean and geostatistic properties - case
of a Gaussian Random Field with additive noise

Data:
ZZZ : trajectory
Input:
AAA : nodal piecewise-linear function matrix
fcov(xxx, lc) : supposed auto-covariance function of GGG
l̂c0 : initial value of the correlation length
µ̂µµ0 : initial vector of the piecewise-linear mean
σ̂2

0 : initial value of the variance
τ̂2

0 : initial value of the noise
ε : initial error on geostatistical parameter evaluation
tol : tolerance on geostatistical parameter evaluation
Result:
µ̂µµ : assessment of the piecewise-polynomial mean of ZZZ
σ̂2 : assessment of the constant variance of ZZZ−µµµ

τ̂2 : assessment of the constant noise in ZZZ−µµµ

ĈCC : assessment of the auto-covariance matrix of ZZZ
l̂c : assessment of the constant correlation length of ZZZ−µµµ

α̂αα : assessment of the regression coefficients of µµµ

while ε < tol do
model CCC autocovariance matrix ;

CCC = σ̂
2
0 .RRR

(
fcov,xxx, l̂c0

)
+ τ̂

2
0 .111n

assess the piecewise-polynomial mean via MLE ;

α̂αα
′ =

ZZZ′CCC−1(AAA111n)

(AAA111n)′CCC−1(AAA111n)
; µ̂µµ = AAAα̂αα

assess the variance, noise and correlation length via MLE ;(
σ̂

2, τ̂2, l̂c
)
= argmin

σ 2,τ2,lc

[
log(|CCC(σ2,τ2, lc)|)+

(
(ZZZ−AAAααα)′CCC(σ2,τ2, lc)−1(ZZZ−AAAααα)

)]
update the error on geostatistical parameter evaluation

ε = ‖σ̂2− σ̂
2
0 ‖⇔ ε = ‖l̂c− l̂c0‖⇔ ε = ‖µ̂µµ− µ̂µµ000‖

update initial geostatistical parameters
µ̂µµ0 = µ̂µµ ; σ̂

2
0 = σ̂

2 ; l̂c0 = lc

end




