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In this work we propose a model that can take into account all the different failure mechanisms occurring in heterogeneous brittle composite materials such as fiber-reinforced concrete (FRC). The model kinematics is based on a judicious combination of the embedded-discontinuity finite element method (ED-FEM) and the extended finite element method (X-FEM) that can represent inelastic deformation and failure modes of three model constituents: concrete, short fibers, and the bond-slip between fiber and concrete. The general framework combining continuum damage and ED-FEM discrete approximation is used for modeling micro-cracks and macro-cracks in concrete. Fibers are taken to be linear elastic, and bond-slip is inelastic, computed along the fiber until complete pull-out, which is described by X-FEM discrete representation. The computations are performed with an incremental-iterative solution procedure and operator-split scheme that can control the fiber slip in each increment and thus easily handle softening response in fiber pull-out. The proposed model performance is illustrated trough several numerical simulations. We include among them the simulation of three-point bending tests on notched specimens with fibers crossing the notch, which provide the validation of the proposed model
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Introduction

Fiber-reinforced cement-based composites have a wide range of applications in building new structural elements with increased durability, as well as in repairing existing ones. One such material is concrete reinforced with short steel fibers, which is often used in sprayed concrete (shotcrete), or for pavements in heavily loaded areas, e.g. airport runways. Also, it can be employed for repairing existing massive structures, such as bridges, dams, and nuclear power plants.

One of the new potential applications lies in building floating foundations for large off-shore wind-turbines.

The addition of steel fibers in concrete increases the tensile strength of the material, its ductility in all three dimensions, and leads to an improved fatigue resistance and better performance under dynamic loading [START_REF] Brandt | Fibre reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineering[END_REF]. More importantly, it gives concrete an improved resistance to cracking, because fibers bridge microcracks and slow-down their coalescence into larger macro-cracks, which lead to the complete localized failure of the structure. To obtain a proper macro-scale response when modeling the behavior of brittle heterogeneous materials with fibers, we have to properly account for the material heterogeneity at the microscale level. In that sense, the addition of short fibers with pull-out represents a new challenge in numerical implementation, and substantially increases the model complexity.

In a number of previous works dealing with complex microstructures, the most often used approach is homogenization, smearing the material properties over a so-called representative volume element. For example, in [START_REF] Savvas | Homogenization of random heterogeneous media with inclusions of arbitrary shape modeled by XFEM[END_REF] the authors are combining the extended finite element method and Monte Carlo simulations for modeling a domain with inclusions. In [START_REF] Gal | Meso-scale analysis of FRC using a two-step homogenization approach[END_REF], the FRC microstructure is modeled with 4 phases: fibers, cement paste matrix, aggregate and interface transition zone (ITZ), using a two-step homogenization. Since it is often difficult to achieve proper balance between model fidelity and computational cost, adaptive solution strategies have been developed, where macro-scale and meso-scale models are combined to obtain improved results. One such multiscale approach for modeling fiber-reinforced concrete can be found in [START_REF] Ren | Multi-scale based fracture and damage analysis of steel fiber reinforced concrete[END_REF]. As an alternative for continuum models, some authors propose using discrete lattice models, in which fibers can be added as zero-length springs positioned at the interface between two elements, as in [START_REF] Bolander | Irregular lattice model for quasistatic crack propagation[END_REF]. In [START_REF] Radtke | A partition of unity finite element method for obtaining elastic properties of continua with embedded thin fibres[END_REF], Radtke, Simone and Sluys are using the partition of unity finite element method (PUFEM or PUM) to model a continuum with embedded thin fibers, but the model is limited to linear elastic behavior. In [START_REF] Radtke | A partition of unity finite element method for simulating non-linear debonding and matrix failure in thin fibre 55 composites[END_REF], they extend the application to the nonlinear behavior of both matrix and fiber, but their model cannot represent fiber pull-out. Another method that exploits the partition of unity property of standard interpolation functions is the extended finite element method (X-FEM) [START_REF] Fries | The extended/generalized finite element method: an overview of the method and its applications[END_REF] where the mesh does not have to match the exact geometry of the microstructure, with global enrichment functions used to model jumps, cracks, inclusions etc. Since fibers can be considered as discontinuities inside the domain, the X-FEM approach is suitable for modeling fiber-reinforced materials, like in [START_REF] Hickman | Stochastic multiscale characterization of short-fiber reinforced composites[END_REF], where the effect of individual fibers is analyzed at the meso-scale, and the observed properties are then transferred to the macro-scale. They apply the approach proposed by Pike and Oskay [START_REF] Pike | XFEM modeling of short microfiber reinforced composites with cohesive interfaces[END_REF], where there are two enrichment functions in the displacement field approximation, one accounting for the discontinuity in the strain field and the other capturing the debonding along the fiber-matrix interface. The extension of their methodology to 3D is given in [START_REF] Pike | Three-dimensional modeling of short fiber-reinforced composites with extended finite-element method[END_REF].

In [START_REF] Ibrahimbegovic | Modelling of reinforced-concrete structures providing crack-spacing based on X-FEM, ED-FEM and novel operator split solution procedure[END_REF], Ibrahimbegovic et al. have applied the X-FEM concept to standard reinforced concrete structures, with the key idea of providing a bond-slip field that has a global representation along the resinforcement bar. The localized failure of concrete is taken into account through the embedded discontinuity finite element method (ED-FEM), that simulates the macro-crack opening placed in the middle of the element. The important feature of their work is the relative description of bond-slip displacements and the operator-split solution procedure that accounts for the sequential motion of the whole reinforced concrete composite. They model a traction test on a RC beam where the ends of the reinforcement bar are constrained to zero bond-slip because the bar is anchored.

The bond-slip is taken into account through a zero-thickness interface element, as in [START_REF] Dominguez | Prediction of crack pattern distribution in reinforced concrete by coupling a strong discontinuity model of concrete cracking and a bond-slip of reinforcement model[END_REF]. In [START_REF] Rukavina | Multi-scale representation of plastic deformation in fiber-reinforced materials: application to reinforced concrete[END_REF], the implementation of bond-slip has been simplified compared to [START_REF] Ibrahimbegovic | Modelling of reinforced-concrete structures providing crack-spacing based on X-FEM, ED-FEM and novel operator split solution procedure[END_REF], since it is handled within a 1D eleasto-plastic framework, without the need to use a special interface element. The bond behavior could also be considered as a frictional slip [START_REF] Ben-David | The dynamics of the onset of frictional slip[END_REF][START_REF] Kammer | Linear elastic fracture mechanics predicts the propagation distance of frictional slip[END_REF]. A multi-scale model for the treatment of slip in reinforced concrete can be found in [START_REF] Sciegaj | A multiscale model for reinforced concrete with macroscopic variation of reinforcement slip[END_REF]. In [START_REF] Wriggers | A computational study of interfacial debonding damage in fibrous composite materials[END_REF], a model for interfacial debonding in fiber-reinforced materials is presented, and in [START_REF] Hutchinson | Models of fiber debonding and pullout in brittle composites with friction[END_REF] pull-out is considered, as well. For determining the bond-slip between fibers and concrete, single-fiber pull-out tests can be performed [START_REF] Beckert | Critical discussion of the single-fibre pull-out test: does it measure adhesion?[END_REF].

All the described models have both advantages and disadvantages, depending on what the main focus and specific area of application are supposed to be.

What we are interested in here, is being able to develop a relatively simple and efficient model of a fiber-reinforced composite material that is still capable of capturing a full set of failure modes. One specific point that most of the models proposed so far are lacking, is the complete fiber pull-out, which represents the main novelty in this work. In experiments, we have observed that the pullout of the fiber from the surrounding matrix is one of the crucial mechanisms leading to the failure of the fiber reinforced specimen, and thus it must not be neglected. Here, we build on our previous works in [START_REF] Ibrahimbegovic | Modelling of reinforced-concrete structures providing crack-spacing based on X-FEM, ED-FEM and novel operator split solution procedure[END_REF] and [START_REF] Rukavina | Multi-scale representation of plastic deformation in fiber-reinforced materials: application to reinforced concrete[END_REF], by upgrading the proposed methodology to model short fibers' pull-out instead of the standard reinforcement's slip. This requires substantial modifications and improvements in both bond-slip modeling and the solution procedure.

The outline of the paper is as follows. In the first part, the proposed macroscale formulation based on the X-FEM approximation of the displacement field is introduced. Then, an overview of the computational procedure for each of the ingredients on the micro-scale is given, including the specific points regarding bond-slip treatment. Then, experimental results are presented, followed by the results of numerical simulations, including those for tension tests and threepoint bending tests. In the end, conclusions and perspectives for future work are given.

Model formulation on the macro-scale

2.1. General case for a randomly oriented fiber

Displacement field approximation

In fiber-reinforced concrete, short fibers are randomly distributed throughout the domain, which leads to a problem of non-conforming meshes, as can be seen in Fig. 1a. It is obvious that one fiber can pass through multiple finite elements, which we can take into account by using the extended finite element method (X-FEM). The latter is based on the partition of unity principle ∑ n a=1 N a (x) = 1 over the domain Ω e , a condition that standard shape functions naturally satisfy [START_REF] Babuska | The partition of unity method[END_REF].

In Figure 1, white elements represent the standard concrete elements, while the grey ones are enriched elements with additional degrees of freedom in every node, accounting for the fiber influence inside the domain. In this way, the bond-slip along the fiber-matrix interface has a global representation, and its continuity is preserved through all the elements containing the fiber.

In X-FEM, the displacement field u(x) can be represented as a sum of the standard and the enriched part

u(x)| Ω e = n ∑ a=1 N a (x) ( d c a + ψ(x) α bs a ) = n ∑ a=1 N a (x) d c a + n ∑ a=1 N a (x)ψ(x) α bs a ( 1 
)
where d c a are standard degrees of freedom (concrete displacements), α bs a are enriched degrees of freedom (bond-slip displacements), N a (x) are standard isoparametric shape functions for the triangular element (n = 3), and ψ(x) is an enrichment function that accounts for the presence of the fiber inside the domain. We can introduce the following notation for the local enrichment functions

N a (x)ψ(x) = N bs a (x) (2) 
which describe the part of the bond-slip field related to each element. Basically, the X-FEM methodology allows us to keep the global representation of bondslip, by coupling all concrete elements along each fiber, without changing the standard finite element framework.

The bond-slip is defined as the relative displacement between the fiber and concrete

α bs = d f -d c (3) 
where the displacement vectors have the following form

α bs a =   α bs a β bs a   , d c a =   u c a v c a   , d f a =   u f a v f a   , (4) 
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To be able to handle the influence of the fiber inside the domain, we have to look closely at the behavior of the composite and its failure mechanisms that are depicted in Figure 2. In the elastic phase (Figure 2a), concrete and fiber move together, and since they remain mutually constrained (having the same displacement), bond-slip is not active. In this case, we can take into account only the standard part of the displacement field, and compute the fiber contribution to stiffness by using the constraint to enforce equality between concrete and fiber displacement with zero slip. Only when concrete starts to crack (Figure 2b), the bond-slip becomes active, and concrete and fiber will no longer have the same displacements. Hence, we have to take into account the enriched part of the displacement field as well.

(a) (b) By separating the contribution of standard and enriched degrees of freedom, the computation is divided into two phases: in the first (global) phase, we will take into account the influence of the concrete, the fiber and the external forces, and in the second (local) phase we will compute the redistribution of slip, with the fiber and bond-slip influence. The fiber is the only one that contributes to both phases, thus representing the coupling term between them. By following the notation in [START_REF] Ibrahimbegovic | Modelling of reinforced-concrete structures providing crack-spacing based on X-FEM, ED-FEM and novel operator split solution procedure[END_REF], we will denote the first phase with the superscript cf (concrete + fiber), and the second phase with fbs (fiber + bond-slip).

From the principle of virtual work, we should have matching values of internal and external virtual work.

G int -G ext = 0 (5) 
The virtual work of internal forces is defined as

G int = ∫ Ω ∇ s w σ dΩ (6)
where w represents the virtual displacement field that has both a standard and an enriched part, as in ( 1)

w(x)| Ω e = 3 ∑ a=1 N a (x) w c a + 3 ∑ a=1 N bs a (x) w bs a ( 7 
)
In the above equation, w c a are virtual concrete displacements, and w bs a are 130 virtual bond-slip displacements.

The virtual work of external forces is defined as

G ext = ∫ Ω w b dΩ + ∫ Γσ w t Γσ dΓ σ ( 8 
)
By inserting ( 6) and ( 8) into (5), we obtain the weak form of the governing boundary value problem

∫ Ω ∇ s w σ dΩ - ∫ Ω w b dΩ - ∫ Γσ w t Γσ dΓ σ = 0 (9) 
Since we assume that all the external loads are applied through concrete, for the virtual work of external forces we use only the standard part of the virtual displacement field [START_REF] Radtke | A partition of unity finite element method for simulating non-linear debonding and matrix failure in thin fibre 55 composites[END_REF], with no enrichment

G ext = ∫ Ω 3 ∑ a=1 N a (x) w c a b dΩ + ∫ Γσ 3 ∑ a=1 N a (x) w c a t Γσ dΓ σ ( 10 
)
We can write the above equation as

G ext = 3 ∑ a=1 w c a f ext a ( 11 
)
where f ext a is the external force vector that is equal to

f ext a = ∫ Ω N a (x) b dΩ + ∫ Γσ N a (x) t Γσ dΓ σ ( 12 
)
For the virtual work of internal forces, we need both the standard and the enriched part of the displacement field approximation, since all three constituents have to be taken into account. By introducing (7) into (6), we get

G int = ∫ Ω ∇ s ( 3 ∑ a=1 N a (x) w c a + 3 ∑ a=1 N bs a (x) w bs a ) σ dΩ ( 13 
)
We can separate Eq. ( 13) into two integrals

G int = ∫ Ω 3 ∑ a=1 ∇ s N a (x) w c a σ dΩ + ∫ Ω 3 ∑ a=1 ∇ s N bs a (x) w bs a σ dΩ ( 14 
)
that we can write as

G int = 3 ∑ a=1 w c a f cf,int a + 3 ∑ a=1 w bs a f fbs,int a ( 15 
)
The internal force vectors in [START_REF] Ben-David | The dynamics of the onset of frictional slip[END_REF] are defined as

f cf,int a = ∫ Ω ∇ s N a (x) σ dΩ ( 16 
)
f fbs,int a = ∫ Ω ∇ s N bs a (x) σ dΩ ( 17 
)
By replacing [START_REF] Pike | XFEM modeling of short microfiber reinforced composites with cohesive interfaces[END_REF] and ( 15) into (5), we obtain

3 ∑ a=1 w c a f cf,int a + 3 ∑ a=1 w bs a f fbs,int a - 3 ∑ a=1 w c a f ext a = 0 (18) 
which we can split into two equations by grouping together the terms related to w c a , and the ones related to w bs

a 3 ∑ a=1 w c a ( f cf,int a -f ext a ) = 0 (19) 3 ∑ a=1 w bs a f fbs,int a = 0 (20) 
The global equation is obtained from the standard part of the displacement field, and the local equation is obtained from the enriched part. Since the virtual displacements are arbitrary, the above set of equations (19 -20) can be written as

f cf,int a -f ext a = 0 (21) 
f fbs,int a = 0 (22) 
The global internal force vector is composed of the concrete and the fiber part, while the local internal force vector has the fiber and the bond-slip contribution

f cf,int a = f c,int a + f f,int,gl a ( 23 
)
f fbs,int a = f f,int,loc a + f bs,int a ( 24 
)
where

f c,int a = ∫ Ω ∇ s N a (x) σ c dΩ (25) f f,int,gl a = ∫ Ω ∇ s N a (x) σ f dΩ (26) f f,int,loc a = ∫ Ω ∇ s N bs a (x) σ f dΩ (27) f bs,int a = ∫ Ω ∇ s N bs a (x) σ bs dΩ ( 28 
)
Now that the internal force vectors are defined, we can write the equilibrium for the whole structure by assembling the contributions from the standard (n)

and the enriched elements (n en ).

• Global equation: concrete, fiber & external force contribution

r cf = n A e=1 f c,int,e + nen A e=1 f f,int,gl,e -f ext = 0 (29) 
• 

   K cf F cf F fbs H fbs       ∆d c n+1 ∆α bs n+1    = -    r cf n+1 r fbs n+1    (31) 
where the tangent stiffness matrices are defined as

K cf = ∂r cf ∂d c = K c + K f = Kc + ∫ Ω B T E f B dΩ ( 32 
)
F cf = ∂r cf ∂α bs = ∫ Ω B T E f B bs dΩ ( 33 
)
F fbs = ∂r fbs ∂d c = F cf,T = ∫ Ω B bs,T E f B dΩ ( 34 
)
H fbs = ∂r fbs ∂α bs = H f + H bs = ∫ Ω B bs,T E f B bs dΩ + ∫ Ω B bs,T C bs B bs dΩ (35)
In the above equations, B contains the derivatives of the standard shape functions for the triangular element, and B bs contains the derivatives of the enriched shape functions. Kc is the condensed stiffness matrix for concrete which is obtained from the micro-scale computations.

The system of equations ( 31) can be solved simultaneously, but since the bond-slip is considered as inelastic, it is more appropriate to solve the equations sequentially, using the operator-split solution procedure [START_REF] Ibrahimbegovic | Nonlinear solid mechanics: theoretical formulations and finite element solution methods[END_REF]. Namely, from [START_REF] Kožar | Method of incompatible modesoverview and application[END_REF], we can write the following system of equations

K cf ∆d c n+1 + F cf ∆α bs n+1 = -r cf n+1 ( 36 
)
F fbs ∆d c n+1 + H fbs ∆α bs n+1 = -r fbs n+1 ( 37 
)
The first equation is solved with the already converged value of slip from the previous time step, so from [START_REF] Stanić | A path-following method for elasto-plastic solids and structures based on control of plastic dissipation and plastic work[END_REF] we can express the increment of bond-slip displacement. By taking into account that r fbs n+1 = 0, it follows

∆α bs n+1 = -(H fbs ) -1 F fbs ∆d c n+1 ( 38 
)
By introducing [START_REF] Isla | Analysis of steel fibers pull-out. experimental study[END_REF] into [START_REF] Batoz | Incremental displacement algorithms for nonlinear problems[END_REF], the global equation becomes

K cf ∆d c n+1 -F cf (H fbs ) -1 F fbs ∆d c n+1 = -r cf n+1 ( 39 
)
which can also be written as

K ∆d c n+1 = -r cf n+1 ( 40 
)
where K is the condensed stiffness matrix

K = K cf -F cf (H fbs ) -1 F fbs (41) 
From [START_REF] Ellis | Simulation of single fiber pullout response with account of fiber morphology[END_REF], we obtain the increment of the concrete displacements and perform the corresponding update

d c n+1 = d c n + ∆d c n+1 ( 42 
)
If r cf n+1 > tol, we perform another global iteration (i), until r cf n+1 ≤ tol, and then we proceed to the local iterations (j) where the redistribution of slip is computed.

Equation ( 37) is solved with a fixed value of concrete displacement, which has been computed in the global phase, so ∆d c = 0, and we have

H fbs ∆α bs n+1 = -r fbs n+1 ( 43 
)
From here, we get the value of slip, and the update is performed as follows

α bs n+1 = α bs n + ∆α bs n+1 ( 44 
)
These local iterations (j) on bond-slip distribution are performed until r fbs n+1 ≤ tol, and when this condition is satisfied, we proceed to the next time step.

Case of a straight fiber placed along the element edge

If, for the sake of clarity in explaining the methodology used, we consider a case when the fiber is parallel to the x-axis and coincides with the elements' edges, as shown in Fig. 3, the number of enriched degrees of freedom is reduced from six to two, which allows us to simplify the formulation. Now, only the first two nodes are enriched, and each one of them has just one additional degree of freedom α bs a . In this case, the enrichment function ψ is taken to be the Heaviside function, which is equal to one in the elements where the fiber is located, and equal to zero in the rest of the domain. For each element, we have

ψ(x) = H(y) =      1, y ≥ ȳ 0, y < ȳ ( 45 
)
where ȳ is the location of the fiber. By exploiting the properties of the Heaviside function, we get

N bs a (x) = N a (x)ψ(x) = N a (x)H(y) = N a (x, 0) = N a (x) (46) 
where N a (x) are the linear shape functions for a truss bar element. So, Eq. ( 1) can be simplified to obtain

u(x)| Ω e = 3 ∑ a=1 N a (x) d c a + 2 ∑ a=1 N a (x) α bs a (47)
Now, the operator nabla in the second integral in 14 becomes the derivative along the fiber domain d/dx, the stress value becomes a scalar, and A represents the area of the fiber.

G int = ∫ Ω 3 ∑ a=1 ∇ s N a (x) w c a σ dΩ + ∫ Γ f 2 ∑ a=1 d dx N a (x)w bs a σA dΓ f (48) 
This allows us to write the internal force vector and stiffnes matrix contributions in a simplified manner. From 46 it follows that f f,int,gl

a = f f,int,loc a = f f,int a , so we can write f c,int a = ∫ Ω ∇ s N a (x) σ c dA (49) f f,int a = ∫ Γ f d dx N a (x) σ f A f dx (50) f bs,int a = ∫ Γ f d dx N a (x)σ bs A bs dx (51)
In a similar fashion, the tangent stiffness matrices can now be reduced to the following form

K cf = ∂r cf ∂d c = K c + K f = Kc + ∫ Γ f B f,T E f A f B f dx (52) F cf = ∂r cf ∂α bs = ∫ Γ f B f,T E f A f B f dx (53) F fbs = ∂r fbs ∂d c = F cf (54) 
H fbs = ∂r fbs ∂α bs = H f + H bs = ∫ Γ f B f,T E f A f B f dx + ∫ Γ f B f,T C bs A bs B f dx (55)
where B f is the matrix containing the derivatives of the fiber shape functions (for a truss bar).

This model with a straight fiber is implemented in the finite element code, as it is explained in Section 2.3. Likewise, all the numerical examples in Section 5 are being solved using this specific formultation.

Algorithmic implementation

The proposed computational procedure is illustrated in Figure 4, where it can be seen how the macro-scale computations are divided into a global and a local phase, and how the micro-scale computations for each constituent are connected to them.

The described formulation is implemented in the computer program FEAP -Finite Element Analysis Program [START_REF] Taylor | Feap -finite element analysis program[END_REF], developed by R.L. Taylor at UC Berkeley, and the operator-split solution procedure is performed through a partitioned approach. In Figure 5, we compare the computational time required for the partitioned (operator-split) solution procedure and for the monolithic approach. The graph is obtained by solving an example from Section 5.1 using both approaches, and then plotting the total computational time against the number of time steps in the analysis. In this case, the operator-split solution procedure turns out to be more than six times faster than the monolithic approach.

Also, while solving many examples with both approaches, it has been observed that the partitioned computation is more robust compared to the monolithic one. That is to say, when solving the equations simultaneously, in several cases the computation did not converge until the end, so the execution could not be completed. It is due to the fact that the nonlinear behaviors exhibited by concrete and by bond-slip are solved simultaneously, which can lead to convergence problems. In contrast, the partitioned computation divides the nonlinearities in two phases, and thus handles them more efficiently. Yet, for the partitioned approach to give accurate results, the chosen time step has to be small enough to allow for a proper redistribution of stresses between the global and the local phase in each time increment. 

Micro-scale computations for each constituent

To be able to model the composite's inelastic behavior and its failure modes at the macro-scale, we have to provide the constitutive law for each model ingredient. This includes a damage model for concrete, with both micro-and macro-cracks, and a complete pull-out of fibers with softening behavior at the interface. Each part has its own micro-scale computation, which provides the input for the corresponding macro-scale: stress value and tangent modulus.

Special emphasis has been put on the bond-slip treatment, where the details for activation, boundary conditions and complete pull-out are presented.

In our approach, we are not approximating the characteristics of the composite as a whole, but are instead analyzing each component separately, and then coupling them in a multi-scale setting. This allows us to have an adequate description of the behavior of every single part of the composite, and to choose a constitutive law and solution procedure most suitable for each one.

Concrete computation

The constitutive behavior of concrete can be described with different models, such as plasticity [START_REF] Ibrahimbegovic | Combined hardening and softening constitutive model of plasticity: precursor to shear slip line failure[END_REF][START_REF] Benkemoun | Anisotropic constitutive model of plasticity capable of accounting for details of meso-structure of two-phase composite material[END_REF], or viscoelasticity models [START_REF] Kozar | Material model for load rate sensitivity[END_REF][START_REF] Kozar | The effect of material density on load rate sensitivity in nonlinear viscoelastic material models[END_REF]. Here, we choose the elasto-damage model with hardening and softening that gives a realistic description of processes leading to complete failure, from the formation of the fracture process zone (FPZ) with the development of micro-cracks, to the opening of the macro-crack that leads to material softening [START_REF] Brancherie | Novel anisotropic continuum-discrete damage model capable of representing localized failure of massive structures: Part I: theoretical formulation and numerical implementation[END_REF][START_REF] Kucerova | Novel anisotropic continuum-discrete damage model capable of representing localized failure of massive structures: Part ii: identification from tests under heterogeneous stress field[END_REF]. The hardening behavior with micro-cracks is modeled with a continuum damage model that is isotropic, and the softening behavior is modeled with an embedded discontinuity in the displacement field that represents the macro-crack opening in the middle of the element. This localized failure is treated within an anisotropic multi-surface model that can take into account the crack opening in mode I (traction), and in mode II (shear).

The chosen damage model is capable of representing the different phases of failure in the material. First, we have the elastic phase, followed by a damage phase with hardening that represents the fracture process zone that is characterized by the development of micro-cracks in the bulk of the material (volumetric dissipation). During the micro-cracks coalescence into a large macro-crack, surface dissipation happens, which is described by the localized failure in the softening phase. In Figure 6 we can observe these three distinctive phases, shown in black (elasticity), blue (hardening), and red (softening). The handling of the displacement jump inside the element is done through the introduction of an incompatible mode function, as in [START_REF] Ibrahimbegovic | A modified method of incompatible modes[END_REF]. The implementation details for the method of incompatible modes can be found in [START_REF] Kožar | Method of incompatible modesoverview and application[END_REF].

The total displacement field of a single element is then a sum of the standard and the incompatible part

u c (x) = N d c + M α c (56)
where d c is the nodal displacement vector for standard degrees of freedom of a constant strain triangle (CST) element, and α c is the vector of incompatible displacements that represent the crack opening at the discontinuity. We denote with N the matrix of linear shape functions for a triangular element, and with M the matrix containing the incompatible shape function, shown on Figure 7. From (56), it follows that the strain field approximation can be written as

ε c = B d c + G r α c ( 57 
)
where B is the matrix of standard shape functions derivatives, and G r is the matrix of the incompatible modes derivatives.

The stress is then computed as

σ c = C ed ε c (58)
where C ed is the elasto-damage modulus, whose value depends on the current state of concrete behavior (elasticity, hardening, or softening).
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The computation is divided in two phases, starting with an isotropic damage model that governs the micro-crack development in the bulk, which is taking place in the hardening part of the response. In the elastic trial step, we compute the trial value of stress σ c and of the internal variables, and with a function φ we check if the step is indeed elastic (for φ ≤ 0), or damage has already started

(for φ > 0): φ = ||σ c || D e - 1 √ E c (σ f -q) (59) 
In (59), ||σ c || D e is the norm of σ c in stress space, D e is the undamaged elastic compliance tensor for the bulk material, which is equal to the inverse of the elastic constitutive matrix. E c is the Young's modulus for concrete, and σf is the limit stress at the first cracking. The stress-like hardening variable that controls the damage threshold evolution, q, is computed as in the following manner for linear hardening

q = -K ξ ( 60 
)
where K is the hardening modulus, and ξ is the hardening variable.

If the principal stress is larger than the ultimate stress σf , softening has The constitutive equation relating the traction at the discontinuity t and the displacement jump α c is based on a traction-separation cohesive law

t = Q-1 α c ( 61 
)
where Q is the damage compliance tensor for the discontinuity.
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To see if the trial value of traction is admissible, we have to check if the damage functions φi for each direction are negative or equal to zero

φ1 = t • n -( σf -q) ≤ 0 (62) φ2 = |t • m| - ( σs - σs σf q) ≤ 0 (63) 
In equations ( 62) and (63), σs / σf is the ratio between the ultimate stress in shear (tangential direction) and in tension (normal direction), and q is the traction-like softening variable that represents the coupling term between the two directions. For the case of exponential softening, we can write

q = σf [ 1 -exp ( - βc σf ξ)] ( 64 
)
where ξ is the softening variable, and βc is the parameter that controls the softening part of the response, whose value is inversely proportional to the fracture energy G f .

After considering all the cases related to the activation of mode I, mode II, or both (as it is described in detail in [START_REF] Brancherie | Modéles continus et discrets pour les problémes de localisation et de rupture fragile et/ou ductile[END_REF]), we obtain the value of the crack opening α c . This, together with the update of the internal variables at the discontinuity, is computed in the local phase of the micro-scale operator-split solution procedure. In the global phase, concrete displacements d c are computed from the following equation

Kc ∆d c = -r c ( 65 
)
where Kc is the condensed stiffness matrix, and r c is the residual vector.

Fiber computation.

In this work, we are considering the fibers to be linear elastic, seeing that in the experiments we have performed, the complete breaking of the fiber was not a predominant failure mechanism. However, the constitutive law could be easily extended to take into account plasticity, as it can appear on fibers with hooks at their ends (see Figure 14).

The stress in the fiber is computed from Hooke's law

σ f = E f ε f (66)
where E f is the Young's modulus for steel, and ε f is the strain, computed as

ε f = 2 ∑ a=1 dN a dx d f a (67)
In the above equation, N a are the linear shape functions for a truss bar, and d f a are nodal values of fiber displacements that are computed from [START_REF] Gal | Meso-scale analysis of FRC using a two-step homogenization approach[END_REF]. The area of the fiber is computed as

A f = ( ϕ f ) 2 π/4
, where ϕ f is the fiber diameter.

Bond-slip computation

Unlike the standard reinforcement, where the ends of the steel bar are anchored in concrete, fiber reinforcement can be pulled-out, so the boundary conditions have to be changed. In [START_REF] Rukavina | Multi-scale representation of plastic deformation in fiber-reinforced materials: application to reinforced concrete[END_REF], it has been shown how the bond-slip in the case of standard reinforcement can be modeled with an 1D elastoplastic law, since the steel bar has the possibility to remain active and carry load even if a crack in concrete appears along it. However, in fiber-reinforced concrete, fibers are short and have a small diameter, and what is even more important, their ends are not fixed. This leads to a completely different failure mechanism in which the fiber's ends can be pulled out of concrete. We have to change the governing constitutive law to take into account the fiber pull-out as a crucial failure mechanism of the composite.

The bond-slip description presented in this work gives a realistic representation of the behavior happening between the matrix and the fiber, without the need to use a special interface element. Compared to the works where such interface elements are used for connecting the two components, i.e. [START_REF] Dominguez | Prediction of crack pattern distribution in reinforced concrete by coupling a strong discontinuity model of concrete cracking and a bond-slip of reinforcement model[END_REF][START_REF] Smolčić | Meso scale model for fiber-reinforced-concrete: Microplane based approach[END_REF][START_REF] Ožbolt | Discrete bond element for 3D finite element analysis of reinforced concrete structures[END_REF][START_REF] Kohnehpooshi | Non-linear three dimensional finite elements for composite concrete structures[END_REF],

our approach allows for a much easier numerical implementation.

The bond stress in the element can be computed directly from the stress-slip diagram, so we do not need to resort to path-following and arc-length solution algorithms, such as the ones described in [START_REF] Batoz | Incremental displacement algorithms for nonlinear problems[END_REF] or [START_REF] Stanić | A path-following method for elasto-plastic solids and structures based on control of plastic dissipation and plastic work[END_REF]. This way of computing slip is simple and efficient, but lacks a history of slip evolution in each element, which is important when handling more complex loading-unloading cycles. That is why a novel framework for handling bond-slip is proposed in section 3.4, which is based on a bond-slip function φ that checks the admissibility of stress, and then performs the corresponding corrections if needed.

In the following sections, several details regarding bond-slip treatment will be presented, such as the activation condition, the choice of fixed nodes, and the complete pull-out of the fiber.

Bond-slip activation condition

In the beginning of the analysis, we assume a perfect bond between the fiber and the concrete until the first crack in concrete appears in one of the enriched elements. At that moment, the crack opening that happens at the local level of the element, activates the bond-slip globally, in all the elements containing the fiber. This is due to the coupled representation by the ED-FEM and the X-FEM approach: the ED-FEM takes care of the crack α c in the concrete element, while the X-FEM deals with the global distribution of slip α bs along the fiber.

When describing the processes happening on the interface, we consider the stresses and strains acting along the fiber, in x-direction. They are defined in the Gauss numerical integration point for each 1D truss bar element of length l f,e that is embedded into the 2D solid element. From (57), it follows that the strain in concrete in x-direction in the fiber Gauss point is equal to

ε c x = 2 ∑ a=1 dN a dx d c x,a + dM dx α c x ( 68 
)
where d c x,a and α c x are the longitudinal components of the standard displace-ments and the crack opening in concrete, respectively. In the beginning of the analysis, there are no cracks in concrete, and α c x = 0, so the incompatible part in (68) vanishes, and we have

ε c x = 2 ∑ a=1 dN a dx d c x,a (69) 
In this first phase, we assume that concrete and the fiber have a perfect bond (described by the first, vertical part of the diagram shown in Figure 8a and 8b), and that there is no slip between them, so α bs = 0. From ( 3) and (67) it follows

ε f = 2 ∑ a=1 dN a dx ( d c x,a + α bs ) = 2 ∑ a=1 dN a dx d c x,a (70) 
which is the same as (69). This means that for the first phase with no cracks, we can write

α c = 0; α bs = 0; ε c x = ε f (71) 
When the crack in concrete appears, the incompatible part has to be taken into account when computing the concrete strain along the fiber, according to (68). This crack opening causes a difference in strain between the fiber and concrete, which means that now the bond-slip is also active, so we have

α c > 0; α bs ̸ = 0; ε c x ̸ = ε f (72) 
As soon as the crack in concrete appears in any of the enriched elements, 290 the slip gets activated in the whole fiber, because the continuity of slip along the fiber has to be satisfied globally. The physical interpretation of this process is that the crack in concrete damages the interface and causes the deterioration of the bond strength, which leads to the increase of slip, until the complete fiber pull-out. 

Choice of boundary conditions for enriched DOFs

According to the X-FEM methodology, our model has standard degrees of freedom -concrete displacements d c a , and enriched degrees of freedom -slips α bs a . The boundary conditions for the standard degrees of freedom are defined on the level of the whole structure, and the boundary conditions for the enriched degrees of freedom have to be defined somewhere along the fiber, to avoid rigidbody modes. In standard reinforced concrete, the choice of boundary conditions represents an easy task, since the ends of the fiber are usually anchored in concrete, and the slip is zero at these points. However, for fiber reinforcement, the situation is not so clear, since the ends of the fiber move relatively to concrete, and can be completely pulled out.

In three-point bending tests presented in the experimental part in Section 4, we have observed that the fibers get pulled out on either the left, or the right side of the notch. This means that the fixed point could be taken to be in the middle of the notch, with α bs = 0, while the ends are free to move and eventually exit the surrounding concrete. We have extended this reasoning to include the behavior of the material in which a crack opens, so the fixed point could be placed in the middle of the cracked element. Since we apply the boundary conditions in nodes, we have a choice of fixing either the left or the right node, or both of them. The latter proved not to be a good choice, because by fixing both nodes at the same time, the global behavior of the composite changes, and there are some spurious stresses in the central element. The comparison of different fixed points will be shown in numerical examples presented in Section 5.1.

Linear and exponential pull-out law

The behavior at the interface between the steel fiber and the surrounding concrete can be described with a linear pull-out law shown in Fig. 8a. The bond-slip stress σ bs can be defined from the diagram

σ bs = ( τ y + Kbs |α bs | ) sign(α bs ); where Kbs < 0 ( 73 
)
where the value of slip in the Gauss point is computed from

α bs n+1 = 2 ∑ a=1 N bs a α bs a ( 74 
)
where the bond-slip shape functions N bs a are actually the product of the standard shape functions for concrete, and the X-FEM enrichment function ψ. For our case they are equal to the linear shape functions for a truss bar, as shown in (46). The bond-slip area is defined as the surface of the fiber that is in contact with the surrounding concrete, A bs = ϕ f π. In (73), Kbs is the tangent modulus for the pull-out part of the response.

The value of this modulus can be identified from experimental tests, like the ones shown in Section 4.1, or presented in [START_REF] Isla | Analysis of steel fibers pull-out. experimental study[END_REF]. The maximal slip at the fiber pull-out can be computed from

α bs max = - τ y Kbs (75)
and when this value is reached, the bond stress equals zero. This model implementation can lead to numerical problems, since the sign of the bond stress changes after this point, which is not in accordance with the physical processes happening on the interface.

To avoid complications regarding the introducing of a special condition when the stress reaches zero in the linear law, we describe the pull-out with an exponential function shown in Figure 8b. The bond stress is getting close to zero, but never reaches it, which provides computational robustness in handling bond-slip. The exponential pull-out law is described with the following equation

σ bs = [ τ y -τ y ( 1 -exp (-β bs |α bs |) )] sign(α bs ) (76) 
where β bs is the parameter that controls the pull-out part of the response. The area under the curve in Figure 8b represents the energy needed to pull out the fiber completely.

For the exponential bond-slip law, the tangent modulus is computed as the derivative of the bond stress with respect to the slip, which is equal to

C bs = -τ y β bs exp (-β bs |α bs |) sign(α bs ) (77)

Bond-slip computational framework

The computation of slip presented in the previous section can be extended to take into account the history values of internal variables for bond-slip, to be able to properly handle more complex loading programs. This approach fits in a framework analogous to the one already presented for concrete, with the damage functions φ, and φ1 and φ2 for checking the admissibility of stress (or traction), together with the damage multipliers γ and γ1 and γ2 , for controlling the damage evolution and updating the internal variables for the bulk and for the discontinuity. A detailed description of such a framework can be found in [START_REF] Ibrahimbegovic | Nonlinear solid mechanics: theoretical formulations and finite element solution methods[END_REF].

In a similar fashion, we introduce a bond-slip function φ which checks the admissibility of bond stress σ bs . We can write it in the following manner

φ = |σ bs | -(τ y -q) ( 78 
)
where q is the stress-like softening variable that controls the pull-out threshold evolution. For linear softening it is defined as

q = Kbs ξ (79) 
while for exponential softening it has the form

q = τ y ( 1 -exp (-βbs ξ) ) (80) 
When the micro-scale computation for slip is active, it starts with the elastic trial step which assumes no change in internal variables compared to the previous time step. The trial value of the bond-slip function is obtained from (78)

φtrial n+1 = |σ bs,trial n+1 | -(τ y -qn ) (81) 
In the above equation, the value of q is taken from the previous time step:

345 qn = -Kbs ξn , where ξ is the softening variable for bond-slip.

For concrete, in the computation at the discontinuity, the trial value of traction t is computed from the local equation h = 0. In a similar way, the trial value of bond stress is computed from the 'local' equation on the multi-scale, r fbs = 0. The difference between the two is that the local equation for concrete is computed on the element level, at each element's Gauss point, while the 'local' equation for the redistribution of slip is assembled from all the enriched elements and is computed globally along the fiber. From (30) it follows

nen A e=1 f bs,int a = - nen A e=1 f f,int a (82)
Since, the slip at pull-out starts from the fiber ends and goes towards the centre, with the equilibrium that has to be satisfied at any node, we can write

∫ Γ f d dx N a (x) σ f A f dx = - ∫ Γ f d dx N a (x)σ bs A bs dx (83)
from which it follows

σ bs = - A f A bs σ f (84) 
According to the above equation, and from (66), ( 67) and (74), we can write

σ bs = - E f A f A bs ( Bd c + α bs ) ( 85 
)
where α bs is the value of slip at the Gauss point of the fiber segment in each element.

The trial value of bond stress is computed from (85), by taking the value of slip from the previous time step

σ bs,trial n+1 = - E f A f A bs ( Bd c n+1 + α bs n ) (86) 
If the trial value of the bond-slip function (81) is less than or equal to zero, φtrial n+1 ≤ 0, the values of internal variables do not change

ξbs n+1 = ξbs n (87) α bs n+1 = α bs n (88)
However, if φtrial n+1 > 0, we have to update the internal variables, which is done with the corresponding Lagrange multiplier for bond-slip γ, which handles the evolution of internal variables ξn+1 = ξn + γn+1 (89)

α bs n+1 = α bs n + γn+1 sign(σ bs n+1 ) (90) 
To obtain the value of γn+1 , we start with (85), from which we obtain

σ bs n+1 = - E f A f A bs ( Bd c n+1 + α bs n+1 + α bs n -α bs n ) (91) = - E f A f A bs ( Bd c n+1 + α bs n ) - E f A f A bs ( α bs n+1 -α bs n ) (92) = σ bs,trial n+1 - E f A f A bs γn+1 (93) 
Since the sign of the bond stress and its final value are the same, we can introduce (91) into (78), to get

φn+1 = |σ bs,trial n+1 | - E f A f A bs γn+1 -(τ y -qn+1 ) (94) = |σ bs,trial n+1 | -(τ y -qn ) - E f A f A bs γn+1 + ( qn+1 -qn ) (95) = φtrial n+1 - E f A f A bs γn+1 + ( qn+1 -qn ) (96) 
For linear softening, we have

qn+1 -qn = -Kbs ( ξn+1 -ξn ) = -Kbs γn+1 (97) 
By introducing (97) into (94), we get

φn+1 = φtrial n+1 - ( E f A f A bs + Kbs ) γn+1 (98) 
According to [START_REF] Ibrahimbegovic | Nonlinear solid mechanics: theoretical formulations and finite element solution methods[END_REF], the value of γ is positive when φ = 0, so we can write

0 = φtrial n+1 - ( E f A f A bs + Kbs ) γn+1 (99) 
from which we obtain the value of the Lagrange multiplier for bond-slip

γn+1 = φtrial n+1 E f A f A bs + Kbs (100) 
For exponential softening, we can obtain γn+1 in a similar fashion, with a change concerning the softening variable q, that is now described through (80),

and not through (79). We thus have

qn+1 -qn = τ y exp ( -βbs ξn ) [ 1 -exp ( -βbs γn+1 )] (101) 
When we insert it into (94), we get

φn+1 = φtrial n+1 - E f A f A bs γn+1 + τ y exp ( -βbs ξn ) [ 1 -exp ( -βbs γn+1 )] (102) 
For exponential softening, the value of γn+1 cannot be obtained directly, but it has to be computed iteratively. Namely, by linearizing (102), we have

Lin [ φ(k) n+1 ] := φ(k) n+1 + Dγ φ(k) n+1 γ(k) n+1 = 0 ⇒ γ(k) n+1 = - φ(k) n+1 Dγ φ(k) n+1 γ(k+1) n+1 = γ(k) n+1 + ∆ γ(k) n+1 ( 103 
)
For both linear and exponential softening, the final value of stress is computed with the updated value of the bond-slip displacement

σ bs n+1 = -E f ( Bd c n+1 + Bα bs n+1 ) (104)

Complete fiber pull-out

The total pull-out energy is represented by the area under the softening part of the response in Figure 8, and can be defined as

G bs f,total = ∫ Γ f ∫ ∞ t bs σ bs αbs dt dx (105)
which gives as a result

G bs f,total = τ y β bs l f,po (106) 
In the above equation, l f,po is the length of the part of the fiber that is being pulled-out (on the left or on the right side of the fixed node). Since the value G bs f,total accounts for the whole pull-out energy (the integral goes until infinity), it is more suitable to define a limit value that is equal to some percentage of the total energy, i.e. 95 %, as shown here

G bs f,limit = 0.95 G bs f,total (107) 
The amount of pull-out energy that has been reached at some moment in time (for a certain value of slip α bs ), is computed for each element separately

G bs,e f,comp = τ y β bs ( 1 -exp(β bs α bs ) ) l f,e (108) 
and their contributions are then summed for all elements on the pull-out side to obtain

G bs f,comp = npo ∑ e=1 G bs,e f,comp (109) 
In the end, we can write the condition for the complete pull-out

G bs f,comp ≥ G bs f,limit (110) 
which checks if the computed pull-out energy (109) is larger than the limit pull-350 out energy (107). If this condition is satisfied, the fiber has been completely pulled-out of concrete on one side of the crack.

Experimental testing of bond-slip

Single-fiber pull-out tests

To investigate the behavior on the interface between concrete and the fiber, 355 single-fiber pull-out tests have been performed. A part of these results has been presented in [START_REF] Rukavina | Modelling fibers in fiberreinforced composites[END_REF]. A numerical simulation of single-fiber pull-out tests can be found in [START_REF] Ellis | Simulation of single fiber pullout response with account of fiber morphology[END_REF]. The concrete mixture is composed of aggregate fractions of 0 -4 mm, which makes it more like a mortar, which is, in addition, micro-reinforced with short steel fibers of diameter ϕ = 0.2 mm and length l = 13 mm. Force-displacement diagrams for specimens with different embedded lengths 370 are shown on Figure 12. We can observe the different shape of the diagrams, with a steep post-peak response for the specimens with 1/4 embedded length (Figure 12a). The large area under the curve for the specimens with 1/2 embedded length (Figure 12b) shows that more energy was needed to pull out such fiber. This difference is due to different failure mechanisms. In the case of the larger smaller embedded length, the frictional effects do not have time to develop and the fiber pull-out is caused by the failure of concrete around it, without the full straightening of the hook.

Despite the difference in peak pull-out force among the three specimens for a chosen embedded length, the shapes of the graphs are rather similar. The differences are due to the imperfections in the specimen production, and the imprecise positioning of the fiber inside the specimen. For example, specimen 1 (the red graph) has a very small pull-out force compared to the other two. This is due to the fact that a chunk of material around the fiber hook broke and separated, making room for the fiber to just slip out of the hole, without having to develop the whole set of failure mechanisms on the interface. To provide a comparison between two different embedded lengths, we take the two specimens with highest pull-out force from Figure 12, for both cases (specimens 3 and 4). The comparison, shown on Figure 13, confirms the explanations given above, as the area under the curve is approximately three times larger for the fiber that is half embedded, compared to the one that has just a quarter of its length inside concrete. The peak pull-out force for the specimen with 1/4 embedded length equals F max = 287.42 N, while the one for the 1/2 embedded length equals F max = 361.12 N.

Figure 14 shows a fiber after pull-out. This particular fiber was embedded into the concrete specimen with half its length. The straightening of the hook at the embedded end is clearly visible. This observations will be very useful for the model implementation. 

Three-point bending test on notched specimens

To test the influence of fiber pull-out in a more realistic setting than the one provided by single-fiber pull-out tests, three-point bending tests on special specimens have been performed. The results and figures for this experimental part are taken from [START_REF] Grbac | Nonlinear analysis of a fiber-reinforced beam (Nelinearni proračun gredice armirane vlaknima)[END_REF]. The load-displacement curve for three specimens can be seen in Figure 17.

There is a difference in the results due to small imperfections during the pouring of concrete in moulds, and insufficiently precise positioning of the fibers over the notch. Nevertheless, specimens exhibit similar behavior, and distinct phases of the computed response and failure mechanisms can be observed. First, there is a linear elastic phase, followed by the hardening of the material due to the formation of micro-cracks around the notch. Then, a macro-crack starts to appear in concrete, leading to material softening. There is a jump in force for the value of displacement between 1.5 and 2 mm, due to the bond-slip activation, so the fibers get pulled out while the concrete cracks above the notch.

During the tests, the fibers did not break, but they all got pulled-out of concrete. That means that the fibers have not reached their ultimate strength, because the interface between the steel and concrete was the weakest link that failed first. Figure 18 shows the pulled-out fibers at the end of the test.

Numerical simulation

In order to illustrate the performance of the proposed model with pull-out, we have run numerical simulations for several different examples, including a specimen subjected to tension, or to three-point bending. The latter also serves as a validation test since it can be compared with the experimental results.

Tension test

We start by modelling a sample loaded in tension containing a horizontal fiber (see Figure 19). The sample, of dimensions 4x4 mm 2 , is fixed at the left end, and subjected to imposed displacement ū = 0.05 mm at the right end.

The example is taken from [START_REF] Radtke | A partition of unity finite element method for obtaining elastic properties of continua with embedded thin fibres[END_REF]. We will first run a simulation with the matrix material taken to be linear elastic, and then perform different analyses with a nonlinear behavior of the matrix, where the bond-slip is taken into account.

Linear elastic case

We analyze four different cases: with no fiber, with a short (l f = 1 mm), medium (l f = 2 mm) and long (l f = 3 mm) fiber. The Young modulus of the matrix material is E c = 20000 MPa, and the Poisson ratio ν c = 0.2. The fiber has a diameter ϕ f = 0.05 mm, and Young's modulus E f = 500000 MPa. Unlike [6], we assume a perfect bond on the fiber-matrix interface, so that we do not consider bond stiffness for a linear elastic case.

We choose a mesh of 512 triangular elements, shown in Figure 20a. The elements shown in black contain the fiber, and are thus enriched accordingly.

Here, we show the example with the medium fiber of length l f = 2 mm. In Figure 20b, the contour plot of the displacements in x-direction at the end of the analysis is shown, where the influence of the fiber can be clearly seen.

In Figure 21, the force-displacement diagram plots the imposed displacement on the right end vs. the reaction in x-direction on the left end of the specimen, for the case with no fiber, with a short, medium and long fiber. We can notice 455 that the increase in the fiber length leads to an increase in stiffness, providing a stiffer response of the whole sample, with higher stress at the same strain. In Figure 22, it can be seen that our result for the sample with medium fiber is in a good agreement with the one obtained in [START_REF] Radtke | A partition of unity finite element method for obtaining elastic properties of continua with embedded thin fibres[END_REF], despite our assumption of a perfect bond between the fiber and concrete. 

Damage case

We can now consider the nonlinear behavior of the matrix material, where the chosen material parameters are the following: Young's modulus E c = 2000 MPa, Poisson's ratio ν c = 0.2, the stress at the first cracking σf = 4.5 MPa, the hardening modulus K = 1000 MPa, the ultimate stress σf = 10 MPa. The ratio of the softening parameter and the ultimate stress is βc / σf = 20. The shear/tension ratio (the ratio between the ultimate stress in the tangential and the normal direction) is chosen to be σs / σf = 0.3. There is a weak stripe near the middle of the specimen (shown in grey in Figure 23a), where ultimate stress is chosen to be half the value of the one in the other elements σf,weak = 5 MPa. This will lead to the formation of the crack in one of the enriched elements containing the fiber, that will allow us to observe the bond-slip behavior that we want to examine.

The Young modulus for the fiber is E f = 500000 MPa, and its diameter ϕ f = 0.05 mm, like in the previous example. The material parameters for bond-slip are τ y = 6 MPa, and β bs = 20.

In Figure 24, we can see the force-displacement curves for different fiber lengths, where the reaction on the left edge of the specimen is plotted against the displacement imposed at the right edge. It is clearly visible that the addition of the fiber increases the ductility of the specimen, and the length of the fiber influences the post-peak response. The macro-crack has developed in the weak zone, and micro-cracks have appeared around the fiber edges (see Figure 23b).

The direction of the "bump" in the middle of the contour plot marks the side on which pull-out is taking place. The bond-slip activation happens when the enriched element located in the weak zone cracks, which causes a jump in the force-displacement diagrams shown in Figure 23.

The slip along the fiber for three different fiber lengths is shown in Figure 25. In all three cases, the fixed point is in the node left of the crack, and it can be seen that it has zero slip. The short (dotted line) and the medium fiber (thick solid line) have a pronounced pull-out on the left side, with the right side almost fixed, while the long fiber (dashed line) has a more balanced distribution of slip on both sides. In all cases, the slips on the left side of the crack are positive, while the slips on the right side are negative, because the fiber is moving (relatively to the concrete) from the ends to the centre (in other words, towards the crack).

When we consider a case without bond-slip, we get the result without a jump, as shown in Figure 26. Of course, this is not a realistic representation, because it would suppose a perfect bond between the fiber and the matrix even after the cracking, which has been shown experimentally not to be the case. In Figure 27, we can see the stress distribution in concrete in x-direction for the case with and without bond-slip. When we do not consider bond-slip (Figure 27b), the fiber is constrained to move with concrete throughout the whole analysis, and the largest stresses appear around the fiber ends. In the case with bond- slip (Figure 27a), the redistribution of stresses takes place, and the stress is concentrating around the point where the slip is fixed.
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In section 3.3, we have already mentioned the importance of choosing an appropriate fixed point for the enriched degrees of freedom, where the slip takes zero value. The solid line and the dotted line in Figure 28 represent the case when either the right, or the left node is fixed, and it can be seen that there is no big difference between them. In contrast, when both nodes are fixed, the 510 result changes, which can especially be visible on the local level of the fiber (see Figure 28b). The exponential pull-out bond-slip law depends on the parameter βbs : the larger it is, the steeper the descent of the curve, meaning that less energy is needed to pull-out the fiber completely. Figure 29 the same four cases. For the smallest value of βbs , the bond stress is still close to the starting value of 6 MPa on both sides. When we increase βbs to 20, the slip activates on the left side, but the values of stress remain larger than zero in all the elements, so complete pull-out has not happened yet. For βbs = 200, the 525 fiber has been completely pulled out from the three elements on the left side, as the bond stress in them has approached zero. For the largest value of βbs , complete pull-out is happening on both sides of the crack.

It is interesting to show the relationship between the bond stress σ bs , and the stress in the fiber σ f , that is given in Figure 31. Here, the sign of the stress just denotes the direction in which it is acting: since both ends of the fiber are moving towards the crack (relatively to concrete), the bond stress has a positive value on the left side, and a negative value on the right side. The opposite is true for the fiber stress. Before the bond-slip activation, the fiber has the same displacements as concrete, and the fiber stress slowly increases in time.

When the crack in concrete appears, and the bond-slip activates, the stress in the fiber suddenly drops to the same value of the bond-slip stress, but of the opposite sign. This is in accordance with the local equilibrium equation [START_REF] Ibrahimbegovic | A modified method of incompatible modes[END_REF], which gives the relationship between the internal force vectors for the fiber and for bond-slip. In this example we have taken that the area of the fiber is equal to the fiber diameter [START_REF] Radtke | A partition of unity finite element method for simulating non-linear debonding and matrix failure in thin fibre 55 composites[END_REF], as is the bond-slip area A bs = A f = ϕ bs . Since the shape functions are the same, it follows that σ f = -σ bs . In our example, the enriched element on the far left (element 1) is the first one from which the fiber is being completely pulled out, as it is the first one to reach σ bs ≈ σ f ≈ 0. It can be seen on Figure 32, where the evolution of bond stress in time is plotted for the three elements left of the crack. We did not show the evolution of bond stress in the elements right of the crack, since they do not get close to complete pull-out, as it can be seen in Figure 31.

Figure 33 shows the pull-out energy evolution in time, where it can be seen that the value of the bond-slip parameter βbs is inversely proportional to the pull-out energy G bs f,comp . In the first two cases, the pull-out energy is constantly increasing, while for the third and the fourth case, it seems almost constant.

To further examine this behavior in detail, we have plotted in Figure 34 the computed energy G bs f,comp (black solid line) compared to the total energy G bs f,total (red dashed line), for four different cases. We can observe that for the first two cases the complete pull-out of the fiber does not happen, and only 7 % of the total energy is reached in the first case, and 52 % in the second. The third case, with βbs = 200, reaches the limit value G bs f,limit = 0.2137N/mm at time t = 0.70, and that is when the fiber gets completely pulled out of concrete.

The fourth case reaches the pull-out state very soon after the slip activation, at t = 0.41. We now consider a case when the crack does not appear in the middle of the specimen, but has a different location. We are controlling this by varying the position of the weak zone (see Figure 35). In Figure 36 we can see the influence of the crack location on the global response of the specimen, and in Figure 37 its influence on the local distribution of slip along the fiber. It can be observed that the crack in the middle-left part of the specimen (in element 3) results with the largest slip on the left side, and the crack in the middle-right (in element 6) results with the largest slip on the right side, since it is always the shorter part of the fiber that gets pulled out. This is explained by the fact that the longer part of the fiber needs more energy to break the bond and get pulled-out, as has been shown experimentally in our single-fiber pull-out tests presented in In the mesh refinement study (see Figure 38) we compare the force-displacement diagrams for three different meshes: a coarse mesh that consists of 128 elements (where the fiber is represented by 4 elements), a fine mesh that consists of 512 elements (where the fiber is represented by 8 elements), and an extra fine mesh that consists of 1152 elements (where the fiber is represented by 12 elements). In the force-displacement diagrams (see Figure 38a) and on the slip and stress distribution along the fiber (see Figures 38b and38c), we can see that all three meshes give similar results. The convergence for the bond stress at the left 585 end of the fiber compared to the number of elements in the mesh is shown in Figure (38d). Since we wanted to keep the same width of the weak stripe for all the meshes, for mesh 128 it consisted of one column of elements, for mesh 512 of two columns, and for mesh 1152 of three. Not all the elements in the weak stripe cracked for every case, and here could lie the main reason for the 590 slight difference in the computed results. Also, mesh 128 could be considered too coarse, since the fiber is represented by only four enriched elements, which is not enough for a sufficiently precise description of bond-slip along the fiber. 

Three-point bending test

Several insights gained from the experimental tests presented in Section 4 595 have been already implemented in our model, such as the slip activation condition, or the fact the main failure mechanism for fibers is their pull-out. In this part, we will apply our developed finite elements with enriched degrees of freedom to simulate the three-point bending tests shown in Section 4.2.

Since the experimental results show a scattering of results, and as for con-600 structing the model we are making more than a few approximations (3D vs. of the central enriched element that crosses the notch to be a valid trigger for the slip activation. Rather, the slip will be activated when the first among the other elements containing the fiber cracks.

In Figure 40 stress.

Conclusion

In this work, we have developed a model for computing the ultimate limit state of brittle materials reinforced with short fibers, which is capable of taking into account different failure modes in the matrix and in the bond-slip at the interface. The main novelty pertains to efficient modeling of inelastic bond-slip behavior with the failure mode due to complete fiber pull-out. For a proper kinematics description with different failure modes, in this model we combine the embedded discontinuity approach (ED-FEM) for describing localized failure in the matrix material, with the extended finite element (X-FEM) representation of the fiber influence inside the domain.

The model formulation is presented in detail, and all the ingredients for the implementation in a finite element code are given. Of special interest for this problem is the multi-scale computational procedure with all damage mechanisms in concrete and slip that are encapsulated within a single element (yet keeping the slips connected by the X-FEM approach), which allows to take into account the softening phenomena both for concrete cracking and for bond-slip. We have verified that such a novel approach for taking into account the bondslip between the fiber and the concrete performs well, as has been shown in a several illustrative numerical examples. The experimental part of this work has allowed us to observe different failure mechanisms taking place in fiber reinforced concrete, and that has lead to the numerical implementation of such observations (e.g. that the fibers do not break, but they get pulled-out of concrete). Also, the three-point bending tests on special notched specimens have been valuable for comparison between the experimental and numerical results, and thus for our model validation.

The proposed model robustness is the main advantage when it comes to further extending this work by taking into account the random distribution of fibers inside the domain, which would provide a more realistic representation of fiber-reinforced composite materials.

Figure 1 :

 1 Figure 1: Non-conforming mesh: (a) a randomly oriented fiber in the domain; (b) degrees of freedom of a fully enriched element.

Figure 2 :

 2 Figure 2: Two phases of the composite behavior: (a) uncracked state; (b) cracked state.

Figure 3 :

 3 Figure 3: Conforming mesh: (a) the fiber coincides with elements' edges; (b) degrees of freedom of a partially enriched element.

Figure 4 :

 4 Figure 4: Algorithm flow-chart for the multi-scale framework.

Figure 5 :

 5 Figure 5: Comparison of total computational time for a monolithic and partitioned approach, obtained from an example in section 5.1.

Figure 6 :

 6 Figure 6: Crack development in concrete -three phases of material behavior: elasticity (black), hardening (blue), softening (red): (a) stress-strain diagram for the bulk material; (b) tractionseparation cohesive law at the discontinuity; (c) micro-cracks (blue) and macro-crack (red) in a specimen.

Figure 7 :

 7 Figure 7: Incompatible shape function M for for a CST element when the discontinuity passes through the middle of the element.

  started, and we proceed to the computation at the discontinuity. Then, we shift from the continuum damage model (micro-crack development), to the localized failure model (macro-crack opening). Since the softening part of the response is 235 controlled by an anisotropic multi-surface damage model, we have to consider each direction at the discontinuity surface separately. This kind of model can account for the crack opening in mode I (in the direction of the normal vector n) and mode II (in the direction of the tangential vector m).
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Figure 8 :

 8 Figure 8: Pull-out law for the interface: (a) linear; (b) exponential.

Figure 9 :

 9 Figure 9: Six specimens containing a fiber: three with 1/4 embedded length, and three with 1/2 embedded length.

Figure 10 :

 10 Figure 10: Single-fiber pull-out tests: (a) specimen with embedded fiber; (b) experimental setup.

Figure 11 :

 11 Figure 11: Different embedded lengths for the fiber: l fe = 7.5 mm (one quarter of the fiber length), and l fe = 15 mm (one half of the fiber length).

Figure 12 :

 12 Figure 12: Results for the single-fiber pull-out tests: (a) specimens with 1/4 embedded length; (b) specimens with 1/2 embedded length.

Figure 13 :

 13 Figure 13: Results of single-fiber pull-out tests with different embedded lengths.

Figure 14 :

 14 Figure 14: Fiber at the end of the analysis, where the straightening of the hook is visible on the pull-out side.

Figure 15 :Figure 16 .

 1516 Figure 15: The fiber bridging the notch.

Figure 16 :

 16 Figure 16: Three-point bending test [41]: (a) specimen; (b) experimental setup.

Figure 17 :

 17 Figure 17: Results of the three point bending test [41]: load-displacement curve for three specimens.

Figure 18 :

 18 Figure 18: Steel fibers at the end of the test [41].

Figure 19 :

 19 Figure 19: Sample with horizontal fiber [6].

Figure 20 :

 20 Figure 20: Linear elastic analysis for the domain with a medium fiber (l f = 2 mm): (a) Finite element mesh with enriched elements shown in black ; (b) Contour plot of displacements inx-direction at the end of the analysis.

Figure 21 :

 21 Figure 21: Force-displacement diagram for the linear elastic behavior of the matrix material, for different fiber lengths.

Figure 22 :

 22 Figure 22: Comparison with [6] for a medium fiber (l f = 2 mm).

Figure 23 :

 23 Figure 23: Damage analysis for the domain with a medium fiber (l f = 2 mm): (a) finite element mesh with enriched elements shown in black and weakened elements shown in grey; (b) contour plot of displacements in x-direction at the end of the analysis, where the cracks are shown with red lines.

Figure 24 :

 24 Figure 24: Force-displacement curves for the damage case for different fiber lengths.

Figure 25 :

 25 Figure 25: Slip distribution along the fiber for different fiber lengths.

Figure 26 :

 26 Figure 26: Force-displacement curve with and without bond-slip for the medium fiber.

Figure 27 :

 27 Figure 27: Stress distribution in concrete in x-direction: (a) with bond-slip; (b) without bond-slip.

  shows the bond stress vs. slip 515 diagram for four different values of the bond-slip parameter. When βbs = 2, the stress-slip relation is almost linear, whether for βbs = 2000, the stress drops immediately, starting for very small values of slip. When the stress σ bs gets close to zero, that means that the interface has no residual strength whatsoever, and the fiber is pulled out of concrete.520The distribution of bond stresses along the fiber is shown in Figure30 for

Figure 28 :Figure 29 :

 2829 Figure 28: Influence of the choice of the fixed node: (a) on the global level (force-displacement diagram); (b) on the local level of the fiber (slip distribution).

Figure 30 :

 30 Figure 30: Bond-slip stress along the fiber for different values of the tangent modulus βbs .

Figure 31 :

 31 Figure 31: Bond stress and fiber stress along the fiber at the end of the analysis for the example with medium fiber and βbs = 200.

Figure 32 :

 32 Figure 32: Evolution of bond stress in time for three elements on the left.

Figure 33 :

 33 Figure 33: Pull-out energy in time for different values of the bond-slip parameter β bs .

Section 4 . 1 .

 41 When the crack appears completely on the right (in element 8), the bond-slip does not get activated at all and is equal to zero along the whole fiber. A similar scenario happens when the crack is completely on the left (in element 1), when the slip gets barely activated, which is in accordance with the experimentally observed phenomena.

Figure 35 :

 35 Figure 35: Position of the weak zone in the specimen (a) completely on the left -element 1; (b) in the middle-left -element 3; (c) in the middle-right -element 6; (d) completely on the right -element 8.

  left end crack in the middle-left crack in the middle-right crack on the right end

Figure 36 :

 36 Figure 36: Force-displacement diagrams for different crack locations.

  left end crack in the middle-left crack in the middle-right crack on the right end

Figure 37 :

 37 Figure 37: Slip along the fiber for different crack locations.
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Figure 38 :

 38 Figure 38: Mesh refinement study for three different meshes (128, 512 and 2048 elements): (a) force-displacement diagrams; (b) slip distribution along the fiber; (c) bond stress along the fiber; (d) convergence: bond stress at the left end of the fiber plotted against the number of elements in the mesh.

Figure 40 :

 40 Figure 40: Results of the numerical simulation for the three-point bending test: the forcedisplacement diagram is computed for unit thickness.

Figure 41 .

 41 Figure 41. Since in the numerical simulation the model of the specimen has a unit thickness, the values have to be multiplied by the real thickness of the specimen (t = 100 mm) to enable the comparison with the experimental results for specimen 4 shown on Figure 17. The two curves do not represent an exact match, but there is a resemblance in all the disctinctive phases related to the different failure mechanisms of the composite material. The drop in force of around 2 kN happens at the same value of displacement, d = 1.41 mm. The softening part that follows is also

Figure 42 :

 42 Figure 42: Three point bending test with a fiber bridging the notch: (a) crack pattern; (b) deformed mesh (scale = 50).

Figure 43 :

 43 Figure 43: Numerical simulation of the three-point bending test -distribution along the fiber at the end of the analysis: (a) slip; (b) bond stress.

Local equation: fiber

  

			& bond-slip contribution	
		r fbs =	nen A e=1	(	f f,int,loc,e + f bs,int,e	)	= 0	(30)
	135	2.1.3. Linearization and operator-split solution procedure
		Since Eqs. (29) and (30) are nonlinear, an incremental iterative solution
		procedure is employed, with the pseudo-time parameter t that can handle an
		incremental sequence. By linearizing (29 -30) around the displacement values
		at time t n+1 we obtain the following system of equations, where the unknowns
		are the incremental values of d c n+1 and α bs n+1 at time t n+1

embedded length, after the debonding of the fiber from the matrix, energy is dissipated by frictional effects on the surface, with additional mechanical friction due to the straightening of the hook at the end of the fiber. In the case of the
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2D, number of fibers in the specimen, chosen material properties, etc.), our goal is not to obtain an exact match between the numerical and the experimental results, but rather provide a qualitative comparison of the failure mechanisms exhibited by the specimen. In this numerical model we consider the specimen in Figure 39 to be a 2D plane-strain representation of the real 3D specimen. To be able to implement in the mesh the fiber that is crossing the notch (in accordance with our conforming description of the fiber position along the element's edge), two rows of elements at the bottom of the notch are straight. The mesh in the other parts of the domain is unstructured, and is finer around the notch, to give a better representation of crack development. Also, we are modeling the notch with a stripe of very weak elements, whose ultimate strength is 1/100 of the value for the other elements. We have chosen to do it this way to allow for the continuity of the enriched elements representing the fiber.

The chosen material parameters for our model are as follows: for concrete:

σf,weak = 0.035 MPa, σf,weak = 0.04 MPa, β/ σf = 50; for the fiber: E f = 210000 MPa, A f = 0.0283 mm 2 ; for the bond: β bs = 30, τ y = 6 MPa, A bs = 0.1885 mm. For computing the area of the fiber A f , we take the area of ten fibers divided by the specimen thickness. A similar calculation is performed for the bond-slip area A bs .

To clarify one point regarding the bond-slip activation: since here the notch (or "opening") is present from the beginning, we will not consider the cracking similar, with the curve obtained numerically being above, and then below the experimental one, which in the end results with a similar area under the curve (which represents the fracture energy). The major difference between the two curves can be observed in the first part, before the activation of slip. This could be due to the choice of material parameters for concrete, which were based on experimental tests on cubes cut out from these specimens, which was presented in [START_REF] Grbac | Nonlinear analysis of a fiber-reinforced beam (Nelinearni proračun gredice armirane vlaknima)[END_REF].

The crack pattern is shown in Figure 42a, where the cracks in the elements representing the notch develop in the first few time steps, since the elements in the notch are very weak. The crack above the notch is clearly visible, and it represents the main failure mechanism of concrete. Also, the enriched element right of the notch has a crack that develops around time 0.028, which serves as a trigger for bond-slip activation. The deformed configuration at the end of the analysis is shown in Figure 42b.

In Figure 43, where the slip and the bond stress along the fiber at the end of the analysis are shown, it is easy to see that the fiber is getting pulled out from the left side. The maximum slip reached in the elements on the left is 0.12 mm, while the bond stress on the same side is almost equal to zero. The right side of the fiber stays in place, with a negligible slip, and still high values of bond