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Abstract

This paper is devoted to numerical analysis of deformation and failure of transversely isotropic

rocks. A three-dimensional discrete element (DEM) model is proposed in the framework of the

particle flow code (PFC). The anisotropic rocks are characterized by a matrix phase in which

non-persistent weak layers are embedded. The mechanical behavior of the matrix is described by

a non-linear bond contact model while that of weak layers by a smooth joint contact model. The

local elastic and strength properties in the bond and smooth joint models are calibrated from

the corresponding macroscopic properties. Numerical predictions are compared with experi-

mental data obtained from triaxial compression tests performed on a clayey rock, Tournemire

shale. The anisotropic behavior of both elastic modulus and failure strength is well reproduced.

The influence of confining stress on the failure strength of shale rock is also captured. A series

of three dimensional numerical simulations are further performed for different orientations of

weak layers and confining stresses. The effect of weak layers and confining stress on both lo-

cal cracking process and macroscopic failure mode of rock samples is investigated and discussed.

Keywords: Anisotropic rocks, Three dimensional discrete element model, Weak layers,

Smooth joint contacts, Nonlinear bond model, Confining stress effect

1. Introduction

Inherent anisotropy is one of the most representative features of many rocks, especially

in sedimentary and metamorphic rocks. The micro-structure of anisotropic rocks is generally

characterized by oriented fabric elements such as bedding or weak layers, oriented mineral grains

and pores, as well as oriented joints. The deformation and strength properties of anisotropic5
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rocks are strongly dependent on the loading orientation with respect to these fabric elements.

A large number of experimental studies have been conducted on different kinds of anisotropic

rocks. It is not easy to make an exhaustive review of all previous studies and only some

representative ones are mentioned here. For instance, Niandou et al. [1] have investigated the

effect of weak layers orientation on the plastic deformation and failure strength of Tournemire10

shale under different values of confining stress. It is found that depending on the loading

orientation with respect to weak layers, the failure process of this rock can be characterized

by three mechanisms, cracking of clayey matrix, sliding along weak layers and mixed cracking-

sliding. Cho et al. [2] have studied the deformation and failure strength of three different

types of anisotropic rocks and obtained similar results. Fjr and Nes [3] have performed uniaxial15

and triaxial compression tests on Mancos shale to investigate the effect of confining stress on

failure process. Some other studies have focused on the fracture initiation and propagation in

transversely isotropic rocks [4–6]. Most of previous studies have shown that the geometrical

and mechanical properties of weak layers played an essential role on the deformation and failure

process of anisotropic rocks.20

Based on experimental studies, different kinds of analytical strength criteria have been

proposed. Also without giving an exhaustive review, the first generation of criteria have been

directly deduced from those for isotropic rocks by introducing some empirical functions to

reproduce the evolution of main strength parameters with loading orientation, for instance

cohesion and frictional angle [7, 8]. Then, some authors have developed more physically-based25

three dimensional strength criteria by considering a set of weak joints in rock samples [9, 10].

The failure strength of anisotropic rocks is controlled by the weak joints when the loading

orientation is between 15◦ and 75◦ [11] with respect to these joints. In a more rigorous way, the

representation theorem of tensorial functions has been proposed and applied to the formulation

of strength criteria of anisotropic rocks [12–14]. More recently, some authors have proposed30

the critical plane approach [15] and the fabric tensor based method [16] for the description of

mechanical strength of anisotropic rocks.

In order to complete the analytical approaches mentioned above and also to better capture

the local cracking mechanism of rocks and soils, alternative numerical approaches have been

developed, especially with particle-based methods. In these methods, the failure of rocks and35

soils is related to the cracking or breaking of contact surfaces between grains. Among various

numerical methods, the particle flow code(PFC) is one of the widely used ones. The basic

principles of this method can be found in [17, 18]. With this method, it is possible to describe

the individual motion of grains and the local deformation of contact surfaces. Although ini-

2



tially developed for soil-like materials, with the help of bonded contact models, this discrete40

method has also successfully been applied to rock-like cohesive materials [19–22]. Recently, by

introducing smooth joint contact models [23, 24], the particle flow method has been extended

to describe anisotropic rocks, both in two-dimensional [25–28], and in three-dimensional config-

urations [29, 30]. Unlike analytical criteria, in these numerical models, it is possible to consider

the effect of spatial distribution and orientation of weak layers on strength of anisotropic rocks.45

Some modified smooth-joint contact models have been proposed for modeling jointed rock mass-

es [31–33]. The particle flow models have further been applied to the analysis of stress-induced

borehole breakout around underground structures [34] and modeling of hydraulic fracturing

[35].

However, in most previous studies, simple models have been used for both bond and smooth50

joint contacts. In particular, in those models, the shear strength is a linear function of normal

stress. As a consequence, those models are not able to well reproduce the mechanical strength

of rocks in a wide range of confining stress. In our previous study [36], we have proposed an

improved nonlinear bond model for isotropic rocks. The proposed nonlinear bond model is

able to well capture the effect of confining stress on the mechanical response of isotropic rocks.55

The motivation of the present study is to describe the mechanical behavior of anisotropic rocks

under a large range of confining stress. The following methodology is adopted. The nonlinear

bond model is first extended to anisotropic rocks. The elastic and strength parameters of the

model depend on the orientation of bond contacts. Smooth joint contacts are then introduced to

represent the inherent weak layers in anisotropic rocks. A unified model is further proposed to60

describe the mechanical strength of smooth joint contacts. The present study shall significantly

improve the previous studies and provide an efficient numerical model for the description of

deformation and failure process of anisotropic rocks.

The present paper is organized as follows. The numerical procedure for the generation of

anisotropic rock samples is first presented. The formulation of the unified model for both bond65

and smooth joint contacts is then given. After the calibration of the model’s parameters, three

dimensional simulations of triaxial compression tests are performed on an anisotropic clayey

rock, Tournemire shale. Numerical results are compared with experimental data. A series

of sensitivity calculations are further realized. The obtained results are analyzed in order to

investigate the effect of weak layers and confining stress on the deformation and failure behavior70

of anisotropic rock samples.

In the present paper, the following sign convention will be adopted. The compressive normal

stress is denoted as a positive value and the tensile normal stress as a negative one.
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2. Generation of anisotropic rock samples

In the framework of discrete element method for rock-like materials, the continuum rock75

mass is replaced by an assembly of discrete particles which are connected by bonded contact

interfaces. In the case of isotropic materials, the contact interfaces are randomly distributed

in space without preferential orientations. In anisotropic materials, mechanical properties are

orientation dependent. We assume that the anisotropic properties are due to the presence of

oriented weak layers. The orientation of weak layers is defined by the angle θ with respect to80

x − y plane in the global coordinates frame, as illustrated in Fig. 1. In order to define the

loading orientation with respect to weak layers, a local coordinates frame is also introduced.

At the microscopic level, anisotropic rocks are represented by an isotropic rock mass in which

weak layers are embedded. The isotropic rock mass is composed of a random assembly of

particles with bonded contacts. The weak layers are represented by smooth joint contacts.85

Therefore, the following numerical procedure is proposed for the generation of anisotropic rock

samples. An isotropic distribution of bonded contacts is first constructed. A number of smooth

joint contacts are then inserted in the selected orientation θ, which is defined by the angle with

respect to the x−y plane (see Fig. 2). For the insertion of smooth joint contacts in the isotropic

rock matrix, a number of reference contacts are first selected by the following method. The90

orientation of each contact is defined by the vector line linking the centers of two neighboring

particles O1 − O2 as shown in Fig. 3. The orientation of the linking line is given by the angle

90− θ with respect to the x− y plane. The angle 90− θ is further decomposed into two angles,

respectively as α in the y − z plane and β in the x − z plane. If two angles α and β both

meet the specified values, then the contact between these two neighboring particles is chosen95

as the reference contact O. Each reference contact is further taken as the center point of a

smooth joint zone which is assumed to be penny shaped (see Fig. 3). The size of each smooth

joint zone or weak layer zone is further defined by its radius R. Finally, all contacts inside the

penny shaped weak layer zone are considered as the smooth joint contacts, such as C1 and C2

in Fig. 3.100
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Fig. 2: Illustration of anisotropic rock sample generation
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Fig. 3: Illustration of choice of smooth joint contacts

The spatial distribution of contact number is dependent on the shape and size of numerical

sample. If a constant radius R is used for all weak layers, the number of smooth joint contacts

inside each weak layer zone will depend on its orientation. In order to avoid this inconvenient

geometrical effect and obtain a quasi constant number of smooth joint contacts when the shape

and size of rock samples are modified, we assume that the radius of weak layer zone R is a

function of its orientation angle θ as follows: R = (1 + fR (θ))R0

fR (θ) = rR |cos (π/2− θ)|
(1)

R0 denotes the radius of the weak layer zone with θ = 0. rR is a dimensionless parameter intro-

duced here to obtain a quasi constant number of smooth joint contacts for different orientations

of weak layer zones. Its value depends on the shape and size of numerical sample. For a three

dimensional cubic sample, as the size of sample is identical along three axes, the radius of weak

layer zone should also be the same in all orientations. Therefore, in this particular case, one105

gets rR = 0.

By using the numerical procedure described above, seven anisotropic rock samples are gen-

erated. The size of all the samples is 40*40*80mm3. The average radius of particles is taken

as 1mm. The choice of this value is motivated by the fact that the average radius of particles

should be small enough with respect to the size of samples, for instance 40 to 50 times smaller.110

Further, according to the size of rock samples considered here, the values of R0 and rR are
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respectively taken as 1 mm and 0.3. Seven different orientations of weak layers are considered,

ranging from 0◦ to 90◦ with a constant interval of 15◦. Three representative samples are shown

in Fig. 4. In these Figures, we also show the spatial distribution of bond contacts and smooth

joint contacts. One can see that the number of smooth joint contacts in all anisotropic rock115

samples is nearly the same and about 400. This indicates that the proposed generation proce-

dure is able to correctly reproduce anisotropic rock samples containing weak layers in different

orientations.
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Fig. 4: Three representative anisotropic rock samples and corresponding spatial distribution

of bond contacts and smooth joint contacts

3. Presentation of contact models

In order to describe the mechanical behavior of anisotropic rocks, we propose here a unified120

mechanical model for the bond contact in the rock matrix and the smooth joint contact in the

weak layers. The proposed model is then implemented in the standard 3D Particles Flow Code.

The formulation of the model is presented in this section.
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3.1. Bond contact model

Before failure of bond contacts, their mechanical behavior is described by an elastic model.

In the present study, the emphasis is put on the failure process of bond contacts. The elastic

behavior of bond contacts is described by a simple linear model already implemented in the

PFC3D code [37]. The local force-displacement relations are given by:

Fn = knun (2)

∆Fs = −ks∆us (3)

Fn and un respectively denote the normal force and relative displacement at the contact; ∆Fs125

and ∆us are the incremental shear force and relative displacement. kn is the secant normal

elastic stiffness while ks is a tangent shear elastic stiffness.

When the local contact forces reach critical values, the bond contact is broken. The breakage

of contact is defined by a local failure criterion. In the standard PFC3D code, two linear

failure criteria are available [18, 38], namely the contact bond model (CBM) and parallel bond130

model (PBM). As mentioned above, those models are not able to correctly take into account

the effect of normal force on the shear strength of bond contacts. In our previous study

[36], a nonlinear failure criterion has been developed and successively applied to modeling the

mechanical strength of isotropic rocks for a wide range of confining stress. This model is here

extended to anisotropic rocks.135

The proposed nonlinear failure criterion is illustrated in Fig. 5. Two failure mechanisms

are considered, respectively the tensile failure and shear failure. The tensile failure occurs

when the normal contact force Ft,f exceeds the normal strength ϕt. For the shear failure, it

is known that the shear strength of contact is dependent on the compressive normal force Fn.

As a consequence at the macroscopic scale, the macroscopic shear strength of rocks is strongly

sensitive to confining stress. In order to consider this feature, the shear strength is described

by a bi-linear function of the normal contact force. When the normal contact force is less

than the transition threshold ϕcr, the shear strength is defined by the cohesion ϕs and the

frictional angle φ1. When the normal contact force is higher than ϕcr, a second frictional angle

φ2 is introduced to define the shear strength under high confining stress. In general, we have

φ2 < φ1 due to the fact that initial micro-cracks in rocks are closed and the asperity of some

micro-cracks can be destroyed when the confining pressure is high. Physically, the transition

normal contact force ϕcr defines two regimes of shear failure in rocks respectively under low and

high confining stress. The value of ϕcr can be identified from the macroscopic failure surface
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obtained from triaxial compression tests under a large range of confining stress, as mentioned

in [36]. The failure criterion for contact interface is then expressed in the following form:

Ft,f = ϕt , tensile failure (4)

Fs,f =


0

ϕs + Fn tanφ1

ϕs + ϕcr(tanφ1 − tanφ2) + Fn tanφ2

, Fn < ϕt

, ϕt ≤ Fn ≤ ϕcr

, Fn ≥ ϕcr

(5)

As a difference with classical soil-like materials, most rocks are cohesive materials. In the

particle-based models as that used here, discrete particles are bonded by contact interfaces.

When a contact interface is broken, its tensile strength or inherent cohesion is assume to be

completely destroyed. The breakage of contact interface can be seen as an equivalent process to

micro-cracking in rocks. It is known that the surfaces of micro-cracks in most rocks are not fully

smooth. Under a compressive normal stress, those micro-cracks are closed and exhibit some

residual shear strength. This residual shear strength is here interpreted by a residual value

of the friction coefficient of contact interface denoted by φr. The residual strength envelop is

shown in Fig. 5 and is described by the following criterion:

Fs,r =

 0

Fn tanφr

,Fn ≤ 0

,Fn > 0
(6)
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Fig. 5: Peak and residual strength envelopes of bi-linear criterion for bond contact and

smooth joint contact

3.2. Smooth joint contact model

In the unified model proposed in this study, the failure of smooth joint contacts is described

by the same relations as those for the bond contacts, given in 4, 5 and 6. However, the strength
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parameters (cohesion and frictional coefficients) of the smooth joint contacts are deteriorated

with respect to those of the bond contacts. Furthermore, after failure, the relative motion of140

particles around a broken smooth contact is different with that of particles around a broken

bond contact. A comparison between two kinds of contacts is given in Fig. 6. For a broken

bond contact, two neighboring particles are restricted to rolling one to another around the

contact interface as shown in Fig. 6(a). However, for a broken smooth joint contact shown in

Fig. 6(b), the pair of particles can slide along the orientation of weak layer θ and move each to145

other with a limited overlap.

(a) Bond model

nb

Fixed

tb

(b) Smooth joint model

nj

Joint

q

Fixedtj

Fig. 6: Relative motions of two neighboring particles around a broken bond contact and a

broken smooth joint contact

3.3. Anisotropy of elastic stiffness

In particle-based models, the elastic behavior is described by the local normal and shear

elastic stiffness coefficients of contact surfaces, respectively denoted as kn and ks. The issue here

is to calibrate these local elastic coefficients from the macroscopic elastic properties measured

from laboratory tests. For this purpose, a number of numerical investigations have been per-

formed, for instance [39, 40]. It is found that it is possible to establish some empirical relations

between the local elastic coefficients and macroscopic elastic modulus and Poisson’s ratio. The

local tangent elastic stiffness ks can be related to the normal one kn by the ratio coefficient kr

such that ks = kr.kn. Further, the ratio kr depends on the macroscopic Poisson’s ratio and

varies in the range 1.0-3.0. These previous results are here adopted. However, in isotropic

materials, the local elastic stiffness coefficients are kept constant for all contacts of different

orientations. This is not the case for anisotropic materials. The elastic stiffness coefficients kn

and ks of a contact should vary with its relative orientation with respect to the weak layers. For

instance, the elastic stiffness of contacts parallel to the weak layers is generally smaller than
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that of contacts in other orientations. Inspired by [41], the following relations are proposed:
kn = (1 + rk · f (φ, θ)) · k0n, ks = (1 + rk · f (φ, θ)) · k0s
k0n = 2Ec · (R1 +R2) , k

0
s = kr · k0n

f (φ, θ) = a
/(
b+ (1− b) e−cδ

)
−a, δ = arctan |tan (φ− θ)|

(7)

φ is the orientation angle of contacts. k0n and k0s denote the elastic stiffness of contacts for

φ = θ. As mentioned above, the value of k0n is calculated from the elastic modulus Ec and the

radius of two neighbouring particles, denoted by R1 and R2. The value of k0s is related to that150

of k0n through the ratio coefficient kr.

Three parameters a, b, and c are introduced in the function f (φ, θ) to account for the

spatial variation of local elastic stiffness of contacts. This function defines the ratio between

the stiffness of contacts with the direction angle φ and that with the angle θ. The variation of

f (φ, θ) with the relative angle δ is presented in Fig. 7 for different values of b while the values155

of a and c are equal to 0.1. The maximum value of f(φ, θ) defines the anisotropy degree of

elastic stiffness and it is sensitive to the value of b. The maximum value of f(φ, θ) is found for

δ = 90◦. It means that the maximum of elastic stiffness is found for the contacts which are

perpendicular to weak layers. At the macroscopic scale, with the help of the function f (φ, θ),

it is possible to describe the variation of elastic modulus with loading orientation in anisotropic160

rocks. The values of three parameters a, b and c can be identified from experimental values

of elastic modulus measured in uniaxial or triaxial compression tests performed in different

loading orientations.
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Fig. 7: Illustration of the function f (φ, θ), δ = arctan |tan (φ− θ)|

3.4. Anisotropy of mechanical strength

Similarly to the elastic stiffness, the mechanical strength parameters of a contact are also

dependent on its orientation with respect to the weak layers. According to previous studies
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[36, 42], among five parameters involved in the failure criterion of contacts defined above, the

tensile strength ϕt and the pure shear strength ϕs have a more significant effect than other

parameters on the macroscopic mechanical strength. Therefore, it is assumed that their values

vary with the relative orientation angle of contacts with respect to the weak layers orientation

φ− θ. A similar variation function as that for the elastic stiffness is used, that is: ϕt = (1 + rs · f (φ, θ)) · ϕt0, ϕs = (1 + rs · f (φ, θ)) · ϕs0
f (φ, θ) = a

/(
b+ (1− b) e−cδ

)
−a, δ = arctan |tan (φ− θ)|

(8)

ϕt0 and ϕs0 are the strength parameters for the contacts parallel to the weak layers, i.e. φ = θ.165

For the sake of simplicity, the values of three parameters a, b and c are the same as those for

the elastic stiffness.

4. Three-dimensional simulation of conventional triaxial compression test

In order to assess the efficiency of the proposed model, three-dimensional simulations are

performed to investigate macroscopic responses of anisotropic rocks in conventional triaxial170

compression tests. Numerical results are compared with experimental data obtained on Tourne-

mire shale from the Massif Central in France. This is a clayey rock with sub-horizontal parallel

weak layers. A series of conventional triaxial compression tests were performed on this rock

with different values of confining stress and loading orientations [1].

4.1. Calibration of model’s parameters175

In view of performing numerical simulations, a three dimensional sample is first generated

by using the procedure proposed above. As shown in Fig. 4, the numerical sample is a cuboid of

40mm wide and 80mm high. It is constituted of about 20,000 randomly distributed particles.

The largest radius of particle is 1.2 mm, and the smallest one is 0.8 mm. It is noted that

the mechanical behavior of samples may be affected by the choice of particle size. According180

to a large number of previous studies, for instance [36, 43], the particle size effect is largely

reduced when the sample size is about 50 times larger than the average particle radius. This

is nearly the case for the present study. Other geometric parameters can be found in Table

1 and Table 2. Parallel weak layers are inserted in the sample with the algorithm proposed

above. However, in practice, the selection of smooth joint contacts inside the penny shaped185

weak layers is a delicate task. Indeed, it is difficult to identify the contacts whose orientation is

exactly perpendicular to the weak layers. Therefore, it is necessary to introduce a small angle

tolerance for the selection of smooth joint contacts. In the present study, we have taken ±5◦
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and ±4◦ as the tolerances of the angles α and β respectively. There is no theoretical criteria

to choose such angel tolerances. Their values should be small enough so that the thickness of190

weak layers is much smaller than the sample size. Further the reference radius of smooth joint

contact zone R0, i. e. the radius of the smooth joint contact zone with θ = 0 as defined in (1),

is taken as 2 mm.

After the numerical sample is generated, the elastic and strength parameters are calibrated

respectively for the bond and smooth joint models. This is done during two stages. In the195

first stage, the local elastic parameters are identified from the macroscopic elastic properties

obtained in triaxial compression tests by an iterative procedure. We first set some large values

for the local strength parameters of the bond and smooth joint models so that no cracking of

contacts occurs and its effect on elastic response is eliminated. The coefficient kr is initially

set to the value of 2.0. The maximum value fmax of the function f (φ, θ) is taken as 5.0. The200

stiffness coefficients k0n and k0s of the weak layers with the orientation 0◦ are obtained from the

contact elastic modulus E0
C , which is calculated from the macroscopic Young modulus E0. The

elastic stiffness coefficients k90n and k90s of the contacts with the orientation 90◦ are determined

from the contact elastic modulus E90
C which is calculated from the macroscopic Young modulus

E90. Then, the value of fmax is updated and adjusted. After several iterations, the final local205

elastic parameters of two bond models can be obtained.

In the second stage, the elastic parameters identified during the first stage are fixed while the

strength parameters involved in two contact models are identified by using macroscopic failure

stresses obtained in triaxial compression tests performed under two representative orientations,

for instance 0◦ and 45◦. The identification procedure is further divided into two steps. In210

the first step, the peak stress from a test under a low confining stress and with the loading

orientation 0◦ is used. In this case, as the axial stress is perpendicular to weak layers, the

effect of weak layers is generally small and is neglected. Only the failure of bond contacts

is considered for this loading orientation. The values of two frictional coefficients tanφ1 and

tanφ2 are initially taken as identical. Starting from some arbitrary large values, the values of215

ϕt and ϕs are step by step updated until the experimental peak stress is well reproduced by

the numerical prediction. In the second step, the peak stress from a test under a low confining

stress and with the loading orientation 45◦ is used. For this orientation, the role of weak layers

is dominant. By keeping the strength parameters of bond contacts unchanged, the strength

parameters of the smooth joint model are updated to reproduce the experimental peak stress.220

Finally, taking two tests under a high confining stress, the values of two frictional coefficients

tanφ1 and tanφ2 as well as the transition threshold ϕcr are fitted from experimental peak
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stresses. Note that in some cases, it is needed to make a updating of elastic parameters due to

the interaction between elastic deformation and failure process. The set of parameters obtained

for Tournemire shale are given in Table 1 and Table 2.225

Table 1: Input parameters for three-dimensional sample generation

Parameters used in f (φ, θ) Elastic parameters Strength parameters

Variables a, c 0.1, 0.1 0.1, 0.1

Variables b, fmax 1.23 ∗ 10−2, 9.0 1.23 ∗ 10−2, 9.0

Variable rk 1.0 −

Variable rs − 0.15

Table 2: Geometrical, physical and mechanical parameters for bond model and smooth joint

model

3D Sample

Width of sample (mm) W 40.0

Height of sample (mm) H 80.0

Total grain number in sample 20916

Average radius (mm) r 1.0

Initial void ratio 0.2

The reference radius (mm) R0 2.0

Coefficient rR in function fR (θ) rR 0.5

Mechanical parameters Bond model Smooth joint model

Normal contact stiffness for test (N/m) k0n 5.6 ∗ 108 8.0 ∗ 107

Shear contact stiffness for test (N/m) k0s 2.8 ∗ 108 4.0 ∗ 107

Inter-particle coefficient of friction tanφ1 0.36 0.6

Inter-particle coefficient of friction tanφ2 1.9 1.3

Normal bond strength (N) ϕt0 2.5 ∗ 104 0.42 ∗ 104

Shear bond strength (N) ϕs0 8.0 ∗ 104 0.73 ∗ 104

The critical normal stress (N) ϕncr 2.0 ∗ 105 1.5 ∗ 105

Inter-particle coefficient of friction tanφr 0.05 0.05

Note: These parameters for the smooth joint model are calculated with the average radius of weak layer

zone r .

4.2. Experimental verification

In order to verify the consistency of determined parameters, the macroscopic axial elastic

modulus and peak stress of Tournemire shale are predicted by the proposed model. In Fig. 8(a),

the variation of axial elastic modulus for two different confining stresses (5MPa and 50MPa) are
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presented. One can see that the proposed model correctly reproduces the anisotropic property230

of macroscopic elastic modulus. In Fig. 8(b), the variation of peak stress with confining stress

is presented for two loading orientations (0◦ and 45◦). It is found that the nonlinear pressure

dependency of peak stress is well described by the unified bond and smooth joint model.
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Fig. 8: Comparison of axial elastic modulus and peak stress between numerical results and

experiment data for Tournemire shale

In order to further check the performance of the numerical model, other numerical simu-

lations are performed for five confining stresses (1MPa, 5MPa, 20MPa, 40MPa and 50MPa)

and seven loading orientations (ranging from 0◦ to 90◦). The obtained numerical axial stress-

strain curves are presented in Fig. 9. For all confining stresses, the strain-stress curves are

clearly dependent on loading orientation. On the other hand, for a given loading orientation,

the mechanical response is influenced by confining stress. In particular, for loading orienta-

tions close to 0◦ or 90◦, there is a clear transition from brittle to ductile behavior when the

confining stress increases. This is a typical property of most rocks. For loading orientations

around 45◦, this transition seems less pronounced. For such orientations, the failure process

of anisotropic rocks is strongly influenced by the frictional sliding along weak layers. With

further experimental data, the smooth joint contact model can be improved to better capture

this transition feature. For a quantitative comparison, the numerical values of peak differential

stress are compared with experimental data in Fig. 9(e). A very good agreement is obtained.

For all loading orientations, the peak stress as well as the residual stress increase when the

confining stress is higher. There are two maximum values of peak stress obtained either at 0◦

or 90◦. The minimum value of peak stress occurs between 30◦ and 60◦ for all confining stresses.

For convenience, two strength anisotropy coefficients are usually defined as follows:

K1 =
(σ1 − σ3)‖
(σ1 − σ3)⊥

(9)
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K2 =
(σ1 − σ3)max

(σ1 − σ3)min

(10)

K1 defines the ratio between the peak stresses in the principal directions, respectively paral-

lel and perpendicular to the weak layers, and K2 gives the ratio between the maximum and235

minimum peak stress. The values of these two coefficients for Tournemire shale under different

confining stresses are shown in Fig. 10. The value of K1 is nearly constant and equal to 1.0,

indicating that the strength difference between the two principal directions is very small. The

value of K2 decreases from 1.96 to 1.47 with the increase of confining stress from 1MPa to

50 MPa. This implies that the strength anisotropy is attenuated when the confining stress240

becomes high. These numerical results are also consistent with the experimental data obtained

from other anisotropic rocks [11].
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Fig. 9: Stress-strain curves and peak differential stress for Tournemire shale samples with

different loading orientations and under various confining stresses
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5. Further analysis of deformation and failure process

After the description of macroscopic stress-strain responses of anisotropic rocks in the pre-

vious section, the spatial distribution of deformation and broken contacts in three dimensional245

specimens are now discussed.

5.1. Spatial distribution of micro-cracks

We adopt here the terminology commonly used for rock-like materials. When a cohesive

contact between two particles is broken according to the failure criteria defined above, the

contact is seen as a micro-crack.250

In Fig. 11, we show the stress-strain curves and the evolution of broken contact numbers

in triaxial compression tests with three loading orientations (0◦, 45◦, 90◦) and two confining

stresses (1MPa and 40MPa). In order to better capture the failure process of samples in the

different tests, four characteristic stages are identified on the stress-strain curve of each test.

The stage 1 corresponds to the initiation of micro-cracks, the stage 2 is defined by the peak255

differential stress, the stage 3 is related to the coalescence of micro-cracks and the stage 4

represents the onset of macroscopic cracks and the beginning of residual strength phase. In

this study, we put the emphasis on the macroscopic cracking stage. Therefore, unless specified,

all the results presented in the subsequent figures are collected at the stage 4, namely at the

points A4, B4, C4, D4, E4 and F4 shown in Fig. 11.260

It is found that the local cracking process is both influenced by confining stress and loading

orientation. In a general way and for two confining stresses considered here, in the matrix

zone, the number of tensile cracks is systematically higher than that of shear cracks. For the

low confining stress of 1MPa, the number of shear cracks is very small. It increases when
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the confining stress reaches 40MPa. This means that the failure process of the matrix zone265

is dominated by tensile cracking, and the shear cracking becomes significant only when the

confining stress is high enough. However, in the weak layers, the number of shear cracks is

higher than that of tensile cracks, except for the case of 1MPa confining stress and with the

orientation of 90◦. In this case, the weak layers are parallel to the axial stress. When the weak

layers are weakly confined, many contacts are broken by extension. In all other cases, it seems270

that the shear cracking is dominating against the tensile cracking. However, the difference of

number between tensile and shear cracks is much less important for the weak layers than for

the matrix zone. It seems that the failure process inside the weak layers is characterized by a

combined shear and tensile cracking mode.

In Fig. 12, one gives the repartition of different kinds of cracks for seven loading orientations275

and three confining stresses. These results confirm that the failure process of the matrix zone

is dominated by tensile cracks and the failure of the weak layers by combined tensile and shear

cracking. When the confining stress is high, the failure of weak layers is controlled by shear

cracks for all loading orientations. Under a low confining stress, this is also the case for the

loading orientations between 0◦ and 30◦. But for θ ≥ 30◦, it seems that the tensile cracking280

plays an important role in the weak layers. On the other hand, the total number of both

tensile and shear cracks for different loading orientations and confining stresses can be further

deduced from Fig. 12. It is found that for all loading orientations, the number of tensile cracks

is dominating under low confining stress while the number of shear cracks continues to increase

and becomes dominating when the confining stress is high enough.285

In addition, the spatial distribution of micro-cracks in three dimensional samples is presented

in Fig. 13 for five loading orientations and two confining stresses. It is found that for the two

principal orientations, namely θ = 0◦ and θ = 90◦, one can observe a diffuse distribution of

micro-cracks. For other orientations in the range of 15◦ ≤ θ ≤ 60◦, there is clearly the formation

of oriented localized cracking bands. The orientation of localized bands is nearly parallel to290

the weak layers. Therefore, for these loading orientations, the macroscopic failure is strongly

controlled by that of the weak layers.

Moreover, for a deep investigation of the relationship between the failure mode and mi-

croscopic cracking process, the statistical analysis of spatial orientations of cracked contacts is

performed and the obtained result is shown in Fig. 14 for three selected loading orientations295

and two confining stresses. It is interesting to observe that the spatial orientations of cracked

bonds are strongly correlated with the loading orientation with respect to the weak layers.
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(a) θ = 0◦ (b) θ = 45◦ (c) θ = 90◦

(d) θ = 0◦ (e) θ = 45◦ (f) θ = 90◦

Fig. 11: Number evolution of different kinds of micro-cracks for three selected loading

orientations and two confining stresses of 1MPa and 40MPa (black for total crack number, red

and yellow respectively for tensile and shear cracks in weak layers, blue and green respectively

for tensile and shear cracks in matrix phase)
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Fig. 12: Repartition of micro-cracks in matrix phase and weak layers for different loading

orientations and confining stresses
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Fig. 13: Spatial distribution of cracked contacts for different loading orientations under two

different confining stresses (red and yellow for tensile and shear cracks in weak layers; blue

and green for tensile and shear cracks in matrix phase)
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Fig. 14: Spatial distribution of cracked contacts orientations for different loading orientations

under low and high confining stresses (blue for matrix phase; red for weak layers)

5.2. Spatial distribution of displacement

On the other hand, the spatial distribution of particles displacements inside three dimen-

sional samples is evaluated and shown in Fig. 15(a). Notice that the bottom surface of samples

is blocked in the vertical direction. According to these results, it seems that the displacement

pattern is more significantly influenced by loading orientation than by the confining stress. For

instance, the displacement distributions are very similar for two principal orientations, 0◦ and

90◦, for which the axial stress is respectively perpendicular and parallel to the weak layers. One

obtains a quasi vertical gradient of displacement for these two cases. For other loading orien-

tations in which the weak layers are inclined to the axial stress. The displacement distribution

is clearly affected by the presence of weak layers and one obtains an inclined displacement

gradient. We can distinguish two blocks. The upper one is sliding with respect to the lower one

along an inclined direction. However, the spatial distribution of displacement does not provide

an obvious description of macroscopic failure process of samples. For this reason, we introduce
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the following displacement localization coefficient, which is defined by:

Fcoe =
|Di+1 −Di|

|(Di+1 −Di)max|
(11)

The quantity (Di+1 −Di) defines the displacement difference between two adjacent particles,

and (Di+1 −Di)max the biggest value obtained in the sample. This coefficient helps us to cap-300

ture the localization mode of relative displacement between particles. The obtained spatial

distribution of the displacement localization coefficient is presented in Fig. 15(b). It is inter-

esting to observe that the macroscopic failure mode in anisotropic rocks is strongly affected

by the loading orientation with respect to the weak layers. When the applied stress is either

perpendicular or parallel to the weak layers, one obtains a diffuse failure mode with some ran-305

domly distributed local failure zones. But there are no major localized bands. However, when

the loading orientation is inclined to the weak layers, one can identify one or several major

localization bands. The inclination of those bands is influenced by both the confining stress

and loading orientation. For a given loading orientation, the inclination angle increases when

the confining stress is higher. But for a loading orientation between 45◦ and 60◦, it seems that310

the inclination angle of localized bands is nearly parallel to that of the weak layers and it is

little affected by the confining stress.
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(a) Displacement

(b) Displacement localization coefficient

Fig. 15: Spatial distribution of displacement and displacement localization coefficient in

samples for different loading orientations and confining stresses

6. Concluding remarks

In this paper, we have developed a new particle-based model for modeling deformation and

strength properties of anisotropic rocks. A numerical procedure has been proposed to generate315

oriented weak layers in a three dimensional rock sample. Each anisotropic sample is composed

of bond contacts in the matrix phase and smooth joint contacts in the weak layers. We have

further proposed a unified nonlinear model for the description of tensile and shear failure for

both the bond and smooth joint contacts. The comparison between numerical predictions and
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experimental data has shown that the proposed model was able to well reproduce the effect320

of confining stress on the elastic and strength properties of anisotropic rocks. The cracking

process at the microscopic scale has been studied. In a general way, the failure of matrix

phase is dominated by the tensile cracking while the shear cracking becomes more and more

important when the confining stress increases. In the weak layers, the shear cracking is the

dominant process, in particular under a high confining stress. Under a low confining stress,325

the tensile cracking plays an important role. For a given confining stress, the tensile cracking

in the weak layers is more important when the loading direction is parallel to the weak layers.

About the macroscopic failure mode of samples, it is found that when the loading direction

is either parallel or perpendicular to the weak layers, one obtains a diffuse failure mode. For

other situations, significant inclined localization bands can be formed. In particular, when the330

inclination angle of weak layers is between 45◦ and 60◦, the localized bands are nearly parallel

to the weak layers. In our future studies, we shall investigate time-dependent deformation and

failure as well as hydromechanical interactions.
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[5] Abbass Tavallali and André Vervoort. Effect of layer orientation on the failure of layered

sandstone under brazilian test conditions. International journal of rock mechanics and350

mining sciences, 47(2):313–322, 2010.
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