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INTRODUCTION

Many technologies exist to diagnose leukemic cells, such as morphometric imaging [START_REF] Hallek | Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institutes Working Group 1996 guidelines[END_REF], flow cytometry [START_REF] Hallek | Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institutes Working Group 1996 guidelines[END_REF] or mass spectroscopy [START_REF] Zhang | Differential expression of histone post-translational modifications in acute myeloid and chronic lymphocytic leukemia determined by high-pressure liquid chromatography and mass spectrometry[END_REF]. However, these techniques require important human resources, consumables and external labelling or specific preparation of sample preventing its analysis by another complementary modality.

Raman spectroscopy appears as an alternative method, which is a label free and nondestructive biophotonic technology probing the biochemical composition of a sample. Subtle pathophysiology -linked variations in a biological sample have a direct impact on its molecular signature, leading to detectable modifications in its Raman spectrum.

In recent years, many applications of Raman spectroscopy have been reported in the biomedical field, particularly at the cellular level, e.g. for the identification of cell state transitions [START_REF] Ichimura | Visualizing cell state transition using Raman spectroscopy[END_REF][START_REF] Schulze | Assessing differentiation status of human embryonic stem cells noninvasively using Raman microspectroscopy[END_REF][START_REF] Chan | Label-free separation of human embryonic stem cells and their cardiac derivatives using Raman spectroscopy[END_REF], for the detection of epigenetic changes in living cells [START_REF] Poplineau | Raman microspectroscopy detects epigenetic modifications in living Jurkat leukemic cells[END_REF], for the identification of immune cell categories [START_REF] Ichimura | Nonlabel immune cell state prediction using Raman spectroscopy[END_REF][START_REF] Chen | The use of wavelength modulated Raman spectroscopy in label-free identification of T lymphocyte subsets, natural killer cells and dendritic cells[END_REF], or for the detection of immune cell activation [START_REF] Ichimura | Nonlabel immune cell state prediction using Raman spectroscopy[END_REF][START_REF] Weselucha-Birczynska | Raman microspectroscopy tracing human lymphocyte activation[END_REF][START_REF] Hobro | Raman spectroscopy as a tool for labelfree lymphocyte cell line discrimination[END_REF]. All these studies show that Raman microspectroscopy could be used as a new diagnostic tool in cytopathology.

However, this translational research remains far from the patient's bedside for several reasons [START_REF] Byrne | Spectropathology for the next generation: Quo vadis?[END_REF], including the sensitivity of this technology experimental conditions, environment or sample preparation mode, that can generate detectable pernicious changes in the Raman data. Adaptive computational pre-processing methods are thus needed to develop transferable models able to compensate for the high sensitivity of Raman spectroscopy to these interferences changes.

In this context and based on two measurement campaigns (2010,2016) at two different sample periods with different experimental conditions, our objective was to evaluate the impact of these changes on Raman spectra acquired on lymphocytes from blood smears of healthy and B-cell Chronic Lymphocytic Leukemia (B-CLL) patients. Two different pre-processing procedures using a sequential method and a parallel method based on Extended Multiplicative Signal Correction (EMSC) [START_REF] Afseth | Extended multiplicative signal correction in vibrational spectroscopy, a tutorial[END_REF] were developed in order to correct these spectral modifications due to the different experimental conditions. Their ability to homogenize the two different datasets were evaluated by Principal Component Analysis (PCA) and Partial Least Squares -Discriminant Analysis (PLS-DA).

MATERIALS AND METHODS

Patients and sample preparation

In this study, one group of healthy patients and one group of untreated B-CLL patients, with a Matutes score over 3 and a stage A in the Binet classification, were formed from the two different measurement campaigns. This study was approved by local ethics committees. The two campaigns were conducted under different experimental conditions (Table 1). The first campaign was achieved in the years 2010-2011 during the IHMO project funded by the ANR (Agence Nationale de la Recherche). All patients were recruited at the Reims Champagne-Ardenne hospital center (RCA-HC), as previously described [START_REF] Happillon | Diagnosis approach of chronic lymphocytic leukemia on unstained blood smears using Raman microspectroscopy and supervised classification[END_REF] For each patient, one smear was prepared directly in the recruitment hospital according to its specific standard clinical conditions. At RCA-HC, a manual spreading is realized by depositing a blood drop on a conventional glass slide and spreading it with another glass slide. At MGN-HC, an automatic spreading is preferred. Smears are produced by depositing a blood drop on a conventional glass slide and spreading it with an automated device (HemaPrep). In the two recruitment hospitals, all samples were prepared without prior chemical treatment.

Acquisition of Raman spectra

For the two measurement campaigns, Raman data were acquired with a multimodal device developed by the TRIBVN company (Châtillon, France). The system combines a conventional microscope (ECLIPSE FN1, Nikon SA, Champigny-sur-Marne, France) and a Raman spectrometer (HORIBA FRANCE SAS, France). The microscope was equipped with a motorized XYZ stage (Ludl Electronic Products Ltd, New-York, USA) and two dry lenses (Nikon): i) a 40x lens (NA 0.6) for automatic smear exploration and localization of lymphocytes, ii) a high magnification lens used for Raman acquisitions on lymphocytes. Between the two campaigns, different objectives with specific characteristics were used as indicated in Table 1.

The Raman spectrometer was composed of a 532 nm laser excitation source (Toptica Photonics, Munich, Germany) delivering a power of 13 mW on the sample, a holographic grating of 1200 g/mm and a -70°C cooled-Pelletier CCD (Charge Coupled Device) detector (Andor Technology, South Windsor, CT, USA) of 1024 x 256 pixels and a 100 µm confocal hole. This set-up leads a spectral range from 700 to 3170 cm -1 and a spectral resolution of 4 cm -1 .

For the IHMO campaign, the data acquisitions were realized in our laboratory by a biophysicist. A single Raman spectrum was acquired on the center of nucleus of 1862 healthy and 2681 CLL cells with an acquisition time fixed to two accumulations of 10 seconds, corresponding to 4543 acquired Raman spectra.

For the M3S project, half of the data acquisitions was realized in our laboratory by a biophysicist and the other half by a clinical technician in a clinical environment (MGN-HC, Belgium). Three Raman spectra were acquired at three different positions on the nucleus, with an interval of 1 µm, for one accumulation of 10 seconds, corresponding to 1449 healthy and 1709 CLL cells. For each cell, the three spectra were averaged, leading to a data set of 3158 spectra for this campaign.

Each cell is thus characterized by its Raman spectrum and its physiopathological label, heathy or CLL as determined on the basis of clinical criteria, used in further supervised classification. For each measurement campaign, 77 cells were analyzed in average per patient.

Spectral data pre-processing

To keep only relevant cell information for further classifications, it is essential to correct Raman spectra from unwanted effects such as noise, glass background, baseline mainly due to cell fluorescence, and variation in acquisition volume.

To reduce noise in the Raman spectra, a Savitzky-Golay smoothing [START_REF] Savitzky | Smoothing and differentiation of data by simplified least squares procedures[END_REF] has been applied using a window length of 9 points and a third order polynomial function.

In this study, two different pre-processing protocols were applied separately, as two different options, on the whole dataset. The first one (Pre-processing 1), used during the IHMO project [START_REF] Happillon | Diagnosis approach of chronic lymphocytic leukemia on unstained blood smears using Raman microspectroscopy and supervised classification[END_REF], is a stepwise method applied individually to each spectrum.

The contribution of the glass signal was estimated in each spectrum by fitting a mean reference Raman spectrum of glass by ordinary least squares. This contribution was subtracted from the spectrum. Then, the baseline was corrected using a second order polynomial function. Finally the spectrum was normalized using the standard normal variate (SNV) method [START_REF] Barnes | Standard normal variate transformation and detrending of near-infrared diffuse reflectance spectra[END_REF].

The second pre-processing protocol (Pre-processing 2) consists in the application of a joined method, i.e. pre-processing the Raman spectra altogether, based on Extended Multiplicative Signal Correction (EMSC) [START_REF] Afseth | Extended multiplicative signal correction in vibrational spectroscopy, a tutorial[END_REF]. This method uses the mean spectrum of the data set as the reference spectrum to guide all corrections. The baseline and the glass signal were neutralized using a fourth order polynomial function and a mean Raman spectrum of glass [START_REF] Kerr | A multivariate statistical investigation of background subtraction algorithms for Raman spectra of cytology samples recorded on glass slides[END_REF], respectively. The dataset is normalized around the reference spectrum.

Principal Component Analysis

Principal Component Analysis (PCA) is an unsupervised data analysis tool used to explore the structure of a dataset. More specifically, it projects data into a new orthonormal coordinates system computed to maximize the data variance on each of these new axes. PCA finds the sources of variability in the form of latent variables called principal components or loadings. The projection coefficients of each data on the principal components are called the scores and express the contribution of each principal component into each data. The first principal components express the principal sources of variation into the dataset and the visualization of their scores gives an easy way to analyze the dataset structure.

PCA has been widely used in vibrational spectroscopy due to its capacity to ease the visualization of multidimensional complex datasets.

In our study, PCA was used: i) in order to analyze the spectral differences induced by the experimental setup modifications between the two projects; and ii) to evaluate the capacity of the developed pre-processing protocols to homogenize the data set.

Feature selection and Partial Least Squares -Discriminant Analysis

In order to quantify the efficiency of the proposed pre-processing procedures, a supervised analysis was realized by computing sensitivity (B-CLL patients) and specificity (healthy patients) using a supervised processing composed of a feature selection and a supervised classification by Partial Least Squares -Discriminant Analysis (PLS-DA).

In this work, a canonical correlation analysis was applied to the data in order to achieve a supervised feature selection [START_REF] Hardoon | Canonical correlation analysis: An overview with application to learning methods[END_REF][START_REF] Abdi | Canonical correlation analysis[END_REF]. In order further to decrease the number of selected variables, a supervised data dimension reduction using the cell labels (heathy or CLL) was developed and applied to the discriminant wavenumbers selected by the canonical correlation analysis. The first step consisted in the computation of the Fisher-score at each wavenumber. The second step computed the wavenumber correlation coefficient matrix from the dataset. In the third step, the elements of being smaller than a threshold fixed to 0.7 were removed. Each line of was thus composed of highly correlated wavenumbers. In the fourth step, each line was reduced to its wavenumber having the highest Fisher-score computed in the first step, i.e. the most discriminant wavenumber. The last step computed the unique wavenumbers composing , i.e. removed repeated wavenumbers. At the end of this very fast procedure, all the spectral information is summarized in its most representative and discriminant wavenumbers.

PLS-DA [START_REF] Barker | Partial least squares for discrimination[END_REF] is a linear supervised classification method used to model the covariance structure between data and labels by latent variables. This method has been proved particularly effective for multicolinear data composed of more features than observations, typically observed in Raman spectroscopy studies [START_REF] Gaydou | Vibrational Analysis of Lung Tumor Cell Lines: Implementation of an Invasiveness Scale Based on the Cell Infrared Signatures[END_REF][START_REF] Palermo | Raman Spectroscopy Applied to Parathyroid Tissues: A New Diagnostic Tool to Discriminate Normal Tissue from Adenoma[END_REF]. In our project, PLS-DA was chosen for its simple mathematical model depending on a unique hyper parameter being the number of latent variables.

A PLS-DA classifier is optimized by a training step necessary to construct a predictive model, especially to select the optimal number of latent variables. To this end, data were randomly divided into two subsets, i.e. a training set composed of 70% of patients is used to optimize the classifier, while the 30% of remaining patients compose the external validation set used to independently evaluate the predictive performance of this model in terms of sensitivity and specificity.

The training step is realized by means of a cross-validation strategy. Different crossvalidation methods can be used to optimize the parameters of the supervised learning algorithm [START_REF] Happillon | Diagnosis approach of chronic lymphocytic leukemia on unstained blood smears using Raman microspectroscopy and supervised classification[END_REF][START_REF] Graça | Mid-infrared (MIR) metabolic fingerprinting of amniotic fluid: A possible avenue for early diagnosis of prenatal disorders?[END_REF]. As a dataset must always be considered at the highest hierarchical level [START_REF] Guo | Common mistakes in cross-validating classification models[END_REF], data were considered at the patient level in our study by using leave-one-patient-out cross-validation strategy [START_REF] Gaydou | Vibrational Analysis of Lung Tumor Cell Lines: Implementation of an Invasiveness Scale Based on the Cell Infrared Signatures[END_REF][START_REF] Palermo | Raman Spectroscopy Applied to Parathyroid Tissues: A New Diagnostic Tool to Discriminate Normal Tissue from Adenoma[END_REF]. The spectra acquired on the patients composing the external validation set are then injected into this final model. The performance of the classifier is evaluated in terms of sensitivity and specificity estimated on this external validation set.

In

RESULTS AND DISCUSSION

Different experimental designs between IHMO and M3S projects

At the end of the IHMO project, suggestions have been emitted in order to improve the quality of the collected Raman signal and to standardize the sample preparation protocol for clinical application. Experimental and instrumental modifications have thus been made during the M3S project. The switch from manual to automatic spreading has resulted in homogeneous smears and thicker cells. Replacing the IMHO 100X/0.90NA lens with a 150X/0.95NA lens in the M3S project increased confocality and signal-to-noise ratio and significantly reduced the contribution of glass to lymphocyte Raman spectra. Indeed, the large magnification and numerical aperture of the 150X lens enhance Raman scattering (excitation and collection)

induced by a lower volume of analysis than the 100X lens.

As stated in previous studies [START_REF] Read | Chemical fixation methods for Raman spectroscopy-based analysis of bacteria[END_REF][START_REF] Mlynáriková | Influence of culture media on microbial fingerprints using Raman spectroscopy[END_REF], such modifications impact the acquired Raman spectra. In the following, we will evaluate their influence on the Raman spectra acquired on lymphocyte nuclei.

Non-transferability of IHMO models on M3S data

First, the data acquired during the IHMO project were pre-processed using preprocessing protocol 1 as described in the "Materials and methods" section. From these data, a feature selection was applied, and a supervised PLS-DA classification model was developed. A sensitivity of 80% and a specificity of 84% were achieved in internal validation. In external validation, performance was 95% and 75% for sensitivity and specificity, respectively.

This pre-treatment protocol 1 and this trained PLS-DA model were blindly applied to the Raman data acquired on the 50 patients (26 healthy and 24 CLL) of the M3S measurement campaign. A sensitivity of 95% and a specificity of 27% were achieved, indicating the non-transferability of this supervised model to the M3S data. In order to investigate the origins of these limitative results, the raw data from the two campaigns were processed and compared in the next section.

In a previous study [START_REF] Happillon | Diagnosis approach of chronic lymphocytic leukemia on unstained blood smears using Raman microspectroscopy and supervised classification[END_REF], data from the first campaign were also processed by Preprocessing 1 and Support Vector Machines (SVM), leading to an efficient classification model. Applied to the M3S dataset, this classifier failed in distinguishing healthy volunteers from B-CLL patients with similar results (data not shown).

However, for the sake of clarity, we preferred to focus on a unique and simple supervised classification technique such as PLS-DA throughout this paper focused on the pre-processing step of raw data.

Highlighting the spectral differences between the two measurement campaigns

The introduction of Raman spectroscopy into the clinic is severely hampered by the strong Raman signature of the glass slides that are routinely used in haematology department to produce blood smears. A key point of the IMHO and M3S measurements campaigns was the acquisition of Raman spectra on lymphocytes under clinical conditions, i.e. to work on fresh blood smears spread on glass slides.

As part of the M3S measurement campaign, experimental optimizations were carried out. Indeed, the smear spreading method has been automated and modifications have been made at the microscope level to optimize the optical set-up.

Figures 1a and1b show the averages of the SNV normalized spectra acquired on lymphocytes [START_REF] Happillon | Diagnosis approach of chronic lymphocytic leukemia on unstained blood smears using Raman microspectroscopy and supervised classification[END_REF] during the IHMO and M3S campaigns, respectively. The spectra baseline has been corrected using a polynomial function of order 2. Even reduced using a laser source with excitation at 532 nm [START_REF] Kerr | A multivariate statistical investigation of background subtraction algorithms for Raman spectra of cytology samples recorded on glass slides[END_REF][START_REF] Butler | Using Raman spectroscopy to characterize biological materials[END_REF][START_REF] Mikoliunaite | The substrate matters in the Raman spectroscopy analysis of cells[END_REF], a significant contribution of glass, characterized by the 1050-1150 cm -1 region, is still visible on these spectra (localized by a black arrow). A greater contribution of glass can be observed for the IHMO spectra (Figure 1a) compared to the M3S spectra (Figure 1b) due to the confocality of the respective employed objectives.

These observations are confirmed by PCA [START_REF] Hotelling | Analysis of a complex of statistical variables into principal components[END_REF] applied to explore the sources of variance into the IHMO and M3S datasets. As can be seen on the two first PCs (Figure 2a) the main source of variability is due to glass. The cumulated variance in the datasets achieved 99,5% with these two first PCs. Figure 2b shows the corresponding score plot of each campaign. It can be noticed that PC1 separates the data according to the measurement campaigns. Even if some similarities exist between the two datasets, visualized by the overlapping part of the score plot, they spread in opposite directions proving that the datasets contain spectral interferences limiting their comparison. These observations are supported by Figure 1S in supplementary data, which presents the estimated probability densities of the scores of components 1 and 2.

These interferences can originate from changes not only in instrumental set-up but also in spreading procedure between the two campaigns. Various studies have already shown that different sample handling, preparation, storage or experimental changes can induce variations in Raman spectra [START_REF] Read | Chemical fixation methods for Raman spectroscopy-based analysis of bacteria[END_REF][START_REF] Mlynáriková | Influence of culture media on microbial fingerprints using Raman spectroscopy[END_REF].

A possible solution to avoid glass contribution would have been to use substrates without Raman signal in the analyzed spectral range (700 to 3170 cm -1 ), such as calcium fluoride (CaF2), quartz or barium fluoride (BaF2) as commonly used in a large majority of published studies [START_REF] Vanna | Label-free imaging and identification of typical cells of acute myeloid leukaemia and myelodysplastic syndrome by Raman microspectroscopy[END_REF] , [START_REF] Draux | Raman spectral imaging of single living cancer cells: a preliminary study[END_REF][START_REF] Ramoji | Toward a spectroscopic hemogram: Raman spectroscopic differentiation of the two most abundant leukocytes from peripheral blood[END_REF][START_REF] Meade | Growth substrate induced functional changes elucidated by FTIR and Raman spectroscopy in in vitro cultured human keratinocytes[END_REF]. However, these substrates are not practical for large-scale applications in clinical routine because of their cost. The use of glass slide was thus a requirement of IHMO and M3S project specifications, which were drawn up in the context of application in clinical settings.

Incomplete correction by Pre-Processing 1

During the IHMO project, the efficient Pre-processing 1 was developed in order to remove glass contribution [START_REF] Happillon | Diagnosis approach of chronic lymphocytic leukemia on unstained blood smears using Raman microspectroscopy and supervised classification[END_REF], however the poor results presented in section 3.2 are suspected to be due to an instability of Pre-processing 1 to correct for variance due to experimental changes during the M3S project. The correction efficiency of Preprocessing 1 was therefore evaluated on the spectra of the two measurement campaigns.

As can be seen on Figures 3a and3b, the spectral contribution of glass in the 1050-1150 cm -1 region is neutralized within the datasets.

This observation is confirmed by the application of PCA on these data. Indeed, PC1

and PC2 presented on Figure 4a do not exhibit the characteristic glass band in the 1050-1150 cm -1 region. However, as can be seen on the score plot considering PC1 and PC2 presented in Figure 4b, PC2 separates data according to the measurement campaigns. These observations are supported by Figure 2S in the supplementary data, which presents the estimated probability densities of the PC1 and PC2 scores. These poor results may be due to the sequential design of Pre-processing 1, inducing an accumulation of estimation errors which amplify the small spectral differences existing between the two campaigns due to different instrumental and experimental conditions, and to its individual spectrum-based correction, which introduces an inter-spectrum variability.

These results demonstrate the inadequate correction of Pre-Processing 1, preventing the transferability of IHMO models on M3S. In order to overcome this problem, Pre-Processing 2 was developed.

High performance of Pre-Processing 2

The spectra of the two campaigns were subjected to Pre-Processing 2. Contrary to Pre-Processing 1 which removes glass signal, Pre-processing 2 aims at neutralizing the variance of glass signal, while preserving its features, as can be seen on Figure 5. The neutralization of the glass signal variability is confirmed by the application of PCA on these data. Indeed, no characteristic glass band can be seen on PC1 and PC2 presented on Figure 6a.

The efficiency of Pre-Processing 2 to remove the spectral responses generated by the modification of experimental and instrumental conditions for the M3S campaign can be evaluated by the PCA score plot using the two first PCs (Figure 6b). It appears an overlapping between the IHMO and M3S datasets illustrated by mixed up of the different PC1 and PC2 scores. These observations are supported by Figure 3S in the supplementary data, which presents the estimated probability densities of the scores for the different measurement campaigns. Figure 3S-C shows a single estimated probability density for both measurement campaigns, which shows a homogeneity of the data. This observation can be explained by the properties of EMSC. First, EMSC is a data-driven method. Indeed, it uses the same reference spectrum computed from the entire dataset to guide the corrections of the spectra.

Second, it is a model-based method, i.e. quantifying and separating simultaneously the different undesired variability sources in the spectra [START_REF] Afseth | Extended multiplicative signal correction in vibrational spectroscopy, a tutorial[END_REF]. Because of these two properties, Pre-processing 2 treats all the data jointly from all the undesired effects at once using a batch algorithm, resulting in a minimization of the modelization error.

Consequently, the data pre-processed by this method are known to be more homogeneous than with other iterative polynomial correction methods [START_REF] Kerr | A multivariate statistical investigation of background subtraction algorithms for Raman spectra of cytology samples recorded on glass slides[END_REF].

Furthermore, the fast execution speed of EMSC pre-treatment is another important advantage for our clinical application [START_REF] Kerr | A multivariate statistical investigation of background subtraction algorithms for Raman spectra of cytology samples recorded on glass slides[END_REF].

Taken together, these results are in accordance with previous studies demonstrating the efficiency of EMSC to pre-process Raman spectra acquired on biological samples deposited on aluminum and CaF2 slides [START_REF] Liland | Model-based pre-processing in Raman spectroscopy of biological samples[END_REF] and also to efficiently neutralize glass signal variability from Raman spectra acquired on cytological samples [START_REF] Kerr | A multivariate statistical investigation of background subtraction algorithms for Raman spectra of cytology samples recorded on glass slides[END_REF].

Further classification models will thus be more reliable since constructed exclusively on useful biomolecular information of interest. Indeed, the choice of appropriate preprocessing steps is crucial for the construction of an efficient chemometric chain that includes the training of a supervised classification model [START_REF] Bocklitz | How to pre-process Raman spectra for reliable and stable models?[END_REF].

Model transferability

Previously, it was shown by PCA that Pre-processing 2 permitted to correct and homogenize Raman data from two measurement campaigns with different experimental conditions.

To support the previous results and assess if the pre-treatment strategy alone is sufficient to achieve transferable models, a predictive model was constructed on the IHMO dataset (pre-processed by Pre-processing 2) by PLS-DA coupled with feature selection and leave-one-patient-out cross validation as described in section 2.6.

Table 2 presents the performance of this PLS-DA model for the classification of healthy and CLL patients in internal and external validation, and in blind test on M3S dataset. Although good performance is obtained for internal validation, this model lacks accuracy in external validation, and results fall when blindly tested on the M3S dataset.

The same experiment was realized by reversing IHMO and M3S datasets, i.e. the model was constructed on the M3S data and blindly tested on the IHMO data. Similar results were obtained as presented in Table 2, with the same similar loss of performance from the internal validation to the external validation on the M3S data and the blind test on the IHMO dataset.

These results demonstrated that pre-treatment alone is not sufficient to build a highperformance model despite effective correction and homogenization of the two given sets. The models being trained on a dataset acquired during a unique measure campaign, a possible interpretation of these results is that these models are specific to a particular experimental condition and fail when they predict the state of data acquired with a different experimental condition. However, whatever the model, the performance decrease is similar between the external validation set and the blind set.

This argument can thus be rejected. The low number of patients composing the training set is a more pertinent argument.

In order to increase the number of patients, the data sets from the two measurement campaigns were used to construct a prediction model. Table 3 presents Of course, the predictive results presented in Table 3 may be improved by optimizing the supervised classification strategy. However, this is the objective of a forthcoming article describing in detail how the choices made at each step of the supervised classification strategy impact the discrimination between Raman spectra acquired on lymphocytes of B-CLL and healthy patients.

In this study, PLS-DA was chosen because it is an efficient technique [START_REF] Hobro | Raman spectroscopy as a tool for labelfree lymphocyte cell line discrimination[END_REF][START_REF] Mclaughlin | Discrimination of human and animal blood traces via Raman spectroscopy[END_REF][START_REF] Liu | Raman microspectroscopy of nucleus and cytoplasm for human colon cancer diagnosis[END_REF] commonly used in spectroscopy. Furthermore, it is a method easier to optimize than other classic supervised classification methods, such as SVM or Random Forest, since PLS-DA depends on only one parameter, which is the number of latent variables.

Conclusion

This article demonstrates that changes in experimental and instrumental conditions have a direct impact on the Raman signals acquired on healthy and B-CLL lymphocytes. It is therefore important to correctly choose a pre-processing method to homogenize the data sets and construct relevant transferable models. Two different pre-processing strategies were studied: a step-wise one working on each spectrum individually and a parallel and joined one based on EMSC. PCA and PLS-DA analyses suggest that the EMSC based pre-processing is effective in homogenizing Raman spectra acquired with different experimental and instrumental conditions.

EMSC is a very flexible pre-processing method. For example, it has been used to correct the signal variability induced by interferences such as glass [START_REF] Kerr | A multivariate statistical investigation of background subtraction algorithms for Raman spectra of cytology samples recorded on glass slides[END_REF], paraffin [START_REF] Nallala | Infrared spectral imaging as a novel approach for histopathological recognition in colon cancer diagnosis[END_REF],

agarose [START_REF] Sockalingum | Label free technologies 3: infrared imaging applied to paraffinized tissue microarrays for colon cancer diagnosis[END_REF] or variability inherent to the analysis of replicates [START_REF] Kohler | Reducing inter-replicate variation in Fourier transform infrared spectroscopy by extended multiplicative signal correction[END_REF][START_REF] Guo | Extended multiplicative signal correction based model transfer for raman spectroscopy in biological applications[END_REF]. The strength of EMSC relies on the use of a linear model in which new interference sources can be easily incorporated, on the use of a reference spectrum to guide spectra preprocessing and normalization, and on the simultaneous estimation of the contribution of these different model components making EMSC very stable, even in the case of very large spectral variations.

The use of simple and universal pre-processing is important in the case of acquisition devices with very different technical characteristics, such as differences in spectral resolution, signal-to-noise ratio or fluorescence background. It would be interesting to evaluate the performance of the EMSC to correct and homogenize data acquired either from different systems with very different configurations (detector, grating, optic…). EMSC can be easily modified in order to incorporate additional interferences [START_REF] Kerr | A multivariate statistical investigation of background subtraction algorithms for Raman spectra of cytology samples recorded on glass slides[END_REF][START_REF] Kohler | Estimating and correcting Mie scattering in synchrotron-based microscopic Fourier transform infrared spectra by extended multiplicative signal correction[END_REF] or to use multiple reference spectra [START_REF] Skogholt | Preprocessing of spectral data in the extended multiplicative signal correction framework using multiple reference spectra[END_REF], in order to improve data quality. In addition, this method can be easily combined with other upstream pre-processing such as interpolation to standardize spectral resolution or denoising methods [START_REF] Savitzky | Smoothing and differentiation of data by simplified least squares procedures[END_REF][START_REF] Barton | Algorithm for optimal denoising of Raman spectra[END_REF] to reduce the impact of noise. 

Sensitivity Specificity

Pre-processing 1

Internal validation 79% 63%

External validation 80% 58%

Pre-processing 2

Internal validation 86% 83%

External validation 84% 81%

  . The second campaign was performed in the years 2015-2016 during the M3S project funded by the European Community. All patients were recruited at Mont Godinne-Namur hospital center (MGN-HC). Taken together, both campaigns resulted in the inclusion of 41 healthy patients (15 from IHMO and 26 from M3S) and 59 untreated B-CLL patients (35 from IHMO and 24 from M3S).

  each cross-validation cycle, all the spectra corresponding to one patient of the training set are removed from the data set and used as the internal validation set. This process is repeated several times until each patient from the training set has been used once for the internal validation. Then, overall sensitivity and specificity in internal validation are calculated. This procedure is repeated for a number of latent variables varying from 2 to 40. The optimal number of latent variables is the one giving the model with the highest sensitivity and specificity. Then, the entire training set is used to construct a new model with the selected number of latent variables. In this work, a number of latent variables equal to 6 was found as the optimal value.

Figure

  Figure 2S(C) shows two very different estimated probability densities that correspond to the two different measurement campaigns IMHO and M3S.

  the performance of PLS-DA in classifying healthy and B-CLL patients after mixing M3S and IMHO data. The results show that PLS-DA model constructed using the data treated by Pre-processing 1 has a high prediction error both during training and validation steps. Better performance was obtained on the data transformed using Pre-processing 2.

Figure 1 .

 1 Figure 1. Comparison between IHMO and M3S spectral data. Mean (solid black line) and standard deviation (shaded areas) of the SNV normalized Raman spectra acquired on lymphocytes during the (a) IHMO and (b) M3S campaigns. The black arrows identify the spectral regions characteristic of the glass contribution.

Figure 2 .

 2 Figure 2. Results of PCA applied to the SNV normalized Raman spectra acquired during the IHMO and M3S measurement campaigns. (a) PC1 and PC2 loadings. (b) PC1 vs PC2 score plot of IHMO (black) and M3S (grey) spectral data.

Figure 3 .

 3 Figure 3. Evaluation of Pre-processing 1. Mean (solid black line) and standard deviation (shaded areas) of pre-processed Raman spectra acquired on lymphocytes during the (a) IHMO and (b) M3S campaigns. The black arrows identify the spectral regions characteristic of the glass contribution.

Figure 4 .

 4 Figure 4. PCA applied on the data pre-processed by Pre-Processing 1. (a) PC1 and PC2 loadings. (b) PC1 vs PC2 score plot of IHMO (black) and M3S (grey) spectral data.

Figure 5 .

 5 Figure 5. Evaluation of Pre-processing 2. Mean (solid black line) and standard deviation (shaded areas) of pre-processed Raman spectra acquired on lymphocytes during the (a) IHMO and (b) M3S campaigns. The black arrows identify the spectral regions characteristic of the glass contribution.

Figure 6 .

 6 Figure 6. PCA applied on the data pre-processed by Pre-Processing 2. (a) PC1 and PC2 loadings. (b) PC1 vs PC2 score plot of IHMO (black) and M3S (grey) spectral data.

  

  

  

Table 1 -

 1 Experimental and instrumental differences between the IMHO and M3S measurement campaigns.

		IMHO	M3S
	Microscope lens	100X/NA: 0,90	150X/NA: 0,95
	Blood smear spreading method	Manual	Automatic
	Number of accumulations	2	1
	Number of spectra per cell	1	3
	Number of patients analyzed	25 healthy and 45 B-CLL patients	36 healthy and 34 B-CLL patients
	Experimenter	by a biophysicist	½ by a biophysicist and ½ by a clinical technician
			½ in a research laboratory
	Acquisition place	In a research laboratory (Reims, France)	(Reims, France) and ½ in clinical environment (MGN-
			HC, Belgium)

Table 2 -

 2 Performance comparison of PLS-DA in internal and external validation and blind test sets for models trained exclusively on IMHO or M3S datasets pre-processed by Pre-processing 2.

	Sensitivity	Specificity

Table 3 -

 3 Performance comparison of PLS-DA in internal and external validation for models trained using simultaneously the IMHO and M3S datasets, in function of the pre-processing protocol.
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