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ABSTRACT 9 

Seismic fragility curves give the probability of exceedance of the threshold of a damage state 10 

of a structure, or a non-structural component, conditioned on the intensity measure of the 11 

seismic motion. Typically, fragility curves are constructed parametrically assuming a 12 

lognormal shape. In some cases, which cannot be identified a priori, differences may be 13 

observed between non-parametric fragility curves, evaluated empirically based on a large 14 

number of seismic response analyses, and their estimations via the lognormal assumption. 15 

Here, we present an optimized Monte Carlo procedure for derivation of non-parametric fragility 16 

curves. This procedure uses clustering of the intensity measure data to construct the non-17 

parametric curve and parametric models averaging for optimized assessment. In simplified 18 

case studies presented here as illustrative applications, the developed procedure leads to a 19 

fragility curve with reduced bias compared to the lognormal curve and to reduced confidence 20 

intervals compared to an un-optimized Monte Carlo-based approach. In the studied cases, 21 

this procedure proved to be efficient providing reasonable estimations even with as few as 22 

100 seismic response analyses. 23 
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1 INTRODUCTION 27 

A multitude of procedures is now available for probabilistic seismic assessment of structures 28 

[1]. Most notable is the framework by Yang et al. [2], which was the basis for the FEMA P-58 29 

guidelines [3]. Here, we focus on fragility curves giving the probability to exceed a damage 30 

state threshold conditioned on a measure of the intensity of the seismic motion, such as the 31 

fragility curves defined in [4]. Such fragility curves are used for probabilistic assessment of 32 

seismic risk [5] for structures and non-structural components in nuclear installations [6] and 33 

critical civil infrastructure, such as hospitals and ports of major urban areas in earthquake 34 

prone regions [7]. They can also be used to evaluate the impact of construction details on the 35 

structural performance of installations under seismic excitations [8–11] and in rapid response 36 

applications for risk management during a seismic crisis [12]. The use of fragility curves is not 37 

limited to earthquake-related problems, they are also used in the case of other types of loading 38 

such as wind [13]. 39 

The classical formulation of a fragility curve makes the hypothesis that the curve 40 

follows a lognormal shape. D’Ayala et al. [14] and FEMA [3] describe a series of procedures 41 

for analytical fragility curve estimation, which are commonly applied. Analytical fragility curve 42 

estimation is based on Engineering Demand Parameter (EDP) observations as a function of 43 

the Intensity Measure (IM). In order to obtain such observations, either cloud analysis, 44 

Incremental Dynamic Analysis (IDA) [15] or Multiple Stripes Analysis (MSA) [16] may be 45 

performed. Linear regression [17] is a common method for lognormal fragility curve estimation. 46 

The most well established methods for adjusting a lognormal fragility curve to observations 47 

from IDA or MSA were developed by Baker [4] and are based on the method of moments and 48 

Maximum Likelihood Estimation (MLE), respectively.  49 
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However, Mai et al. [18] observed differences between non-parametric fragility curves 50 

based on kernel density estimation and lognormal fragility curves according to different 51 

procedures and highlighted the effect of the derivation procedure on lognormal fragility curves. 52 

Noh et al. [19] also used kernel smoothing in order to construct non-parametric fragility curves 53 

showing that this can be an efficient solution when using sparse data. Lallement et al. [20] 54 

consider non-parametric fragility curves more truthful representations of observations and 55 

construct curves based on generalized additive models and Gaussian kernel smoothing. 56 

Furthermore, in [21], lognormal fragility curves for structural components did not represent 57 

effectively observations from simulations of the seismic response of a bridge. 58 

The simplest construction of a non-parametric curve puts the EDP observations in bins 59 

according to the corresponding IM and estimates empirically the probability of exceeding the 60 

damage state threshold for every bin [22]. In practice, due to the prohibitive computational 61 

cost of most nonlinear mechanical models, the development of numerically efficient methods 62 

is required to evaluate such curves using a minimal number of computations. 63 

Here, we propose a procedure based on Monte-Carlo (MC) simulations, which uses 64 

Parametric Models Averaging (PMA) in order to optimize the computation of non-parametric 65 

fragility curves, which are constructed based on k-means clustering [23] of the intensity 66 

measure data. Optimization is employed in order to obtain reduced confidence fragility curve 67 

intervals compared to the empirical estimations with an un-optimized MC approach. The key 68 

elements of the optimization are: (i) the EDP observations are computed with seismic 69 

response analyses using synthetic accelerograms, which are realizations of stochastic 70 

processes, (ii) the non-parametric fragility curve is expressed through the law of total 71 

probability as the weighted average of parametric fragility curves, each one of which is 72 

estimated based on the synthetic ground motions generated by a stochastic process. In the 73 

optimized approach, two alternative parametric models per process are proposed for the 74 

probability of exceedance of the damage state threshold. Finally, the range of applicability of 75 

each parametric model per process is analyzed. 76 
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To illustrate the proposed methodology, “simple” stochastic processes are defined 77 

generating synthetic accelerograms based on original seed acceleration records (Section 2). 78 

The generation results in a set of synthetic accelerograms reproducing the ground motion 79 

variability observed in the original set of ground motion records. The procedure for selection 80 

of the original seed records defining the processes is out of the scope of this work. Here, for 81 

simplicity, the initial set of ground motions are selected using magnitude and distance as 82 

criteria. 83 

Here, the non-parametric fragility curves are estimated using as IM the Peak Ground 84 

Acceleration (PGA) or the spectral acceleration at the frequency of an oscillator. However, the 85 

developed procedure is independent of the selected IM. In the studied cases, the 95 % 86 

confidence interval (CI) of the estimated fragility curves is significantly reduced due to the 87 

optimization. Moreover, the bias of the fragility curves according to the optimization is tolerable 88 

or negligible with respect to the reference curve obtained with a very large number of 89 

observations, as long as the applicability recommendations are respected. 90 

2 SYNTHETIC GROUND MOTION GENERATION 91 

2.1 Motivation 92 

Here, synthetic ground motions are employed in order to cover the range of IMs of 93 

interest and eventually obtain fragility curves based on IM clustering that are well discretized. 94 

Moreover, synthetic ground motions are used in order to exploit the statistical characteristics 95 

of the ground motions given by a process, such as the distribution of the IMs of the generated 96 

motions, in the context of the optimization of the computation of non-parametric fragility 97 

curves. A "simple" synthetic ground motion generator is developed, which reproduces the 98 

spectral variability of recorded accelerograms, because no hypothesis is introduced 99 

concerning their frequency content. Moreover, the original recorded accelerograms are 100 

selected from the European Strong Motion Database [26,27] using simple criteria, i.e. 5.5 < M 101 

< 6.5 and R < 20 km. Selection of the original ground motions is out of the scope of this study. 102 
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It is worth noting that the main idea in the PMA methodology is that the synthetic ground 103 

motion database consists of realizations of several stochastic processes. Therefore the 104 

methodology herein could be used theoretically in conjunction with other procedures for 105 

synthetic ground motion generation defining stochastic processes, such as the model in 106 

Rezaeian and Der Kiureghian [24]. A study of the effect of the ground motion generator is out 107 

of the scope of this article. As far as the most appropriate generator is concerned, that depends 108 

on the problem at hand and the available data (e.g. response spectra, acceleration records, 109 

see [1]). 110 

2.2 Synthetic Ground Motion Generation Process 111 

The generation process in this framework begins with retaining the FFT amplitude of 112 

every real record in the original data set, replacing the phases with a vector of uniformly 113 

distributed random values, computing the new ground motion via inverse FFT and imposing a 114 

modulation function. The result is a series of unadjusted synthetic ground motions, which are 115 

subsequently adjusted so that they are on average “spectrally equivalent” with the ground 116 

motion records in the sense of acceleration response spectra. The i-th accelerogram (i = {1, 117 

..., Nr}) in a data set of Nr ground motion records may be expressed with Equation 1. The 118 

amplitudes (Ar,im) of the i-th real record (��,����) are computed with the FFT algorithm and are 119 

used in combination with random phase (φs,ijm) in order to compute the j-th realization of a 120 

stationary Gaussian process (Equation 2). 121 

 122 

��,���� = ∑ 
��,��
����� + ��,����      � = {1, … , ��}����  (1) 123 

 124 

��,� ��� = ∑ 
��,��
����� + ��,� �������      � = {1, … , ��}      ! = {1, … , ��} (2) 125 

 126 

where φs,ijm is the phase which is assumed to be a random variable with a uniform distribution 127 

U(-π,π) according to Boore [28], and ωm is the m-th discrete angular frequency. The Nr 128 
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stationary Gaussian processes are converted to non-stationary processes using Nr modulation 129 

functions. Here the function by Housner and Jennings [29] (Equation 3) is used, however other 130 

modulation functions, e.g. [30], may be considered. 131 

 132 

"���� =
#$%
$& ' ()*,+,

- 0 ≤ � ≤ 0�,�1.0 0�,� < � ≤ 03,�45�(5)6,+� 03,� < � ≤  �7,�
      � = {1, … , ��} (3) 133 

 134 

where T1,i and T2,i are the times defining the plateau of this modulation function and td,i is the 135 

total duration of the i-th acceleration record. Here, T1,i and T2,i are set equal to the times of 136 

observation of the 5 % and 95 % of the Arias intensity in the original acceleration record. The 137 

Arias intensity (Ir,i) of the i-th acceleration record is given by Equation 4. 138 

 139 

8�,� = 93: ; ��,�3���<�     � = {1, … , ��}(=,+>  (4) 140 

 141 

T1,i and T2,i are computed with Equations 5 and 6. As an example, Figure 1a shows the 142 

modulation function used for the synthetic ground motions based on real record No. 11. 143 

 144 

93: ; ��,�3���<� = 0.05 ∙)*,+> 8�,�         � = {1, … , ��} (5) 145 

 146 

93: ; ��,�3���<� = 0.95 ∙)6,+> 8�,�         � = {1, … , ��} (6) 147 

 148 
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a) b)  149 

Figure 1 a) Modulation function b) synthetic accelerogram and its original acceleration 150 
record 151 
 152 

The j-th realization of an unadjusted synthetic accelerogram (��>,� ���) based on the i-153 

th acceleration record is given by Equation 7. 154 

 155 

��>,� ��� = "���� ∙ ∑ 
��,�� ∙ 
����� + ��,� �������     � = {1, … , ��}     ! = {1, … , ��} (7) 156 

 157 

Subsequently, the synthetic ground motions generated based on an acceleration 158 

record are all scaled with the same scaling factor (ci), which minimizes the sum of the squares 159 

of the differences between the acceleration response spectrum of the acceleration record for 160 

5 % damping (Sa,r,i(f)) and the median spectrum for 5 % damping of the scaled synthetic ground 161 

motions (B ∙ CD,�>,��E�) over the frequencies between 0.2 and 25 Hz (Equation 8). The adjusted 162 

synthetic ground motions (��,� ���) are given by Equation 9. As an example, Figure 1b shows 163 

record No. 11 and one of its spectrally equivalent synthetic accelerograms. Figure 2 shows 164 

the acceleration response spectrum of ground motion record No. 11, the spectra of all 165 

synthetic ground motions generated based on this record and the median spectrum of the 166 

synthetics (B�� ∙ CD,�>,���E�). 167 

 168 

B� = FGH I���J� 
 ∑  � CD,�,��E� − B ∙ CD,�>,��E��3 L�3M NOL�>.3 NO �      � = {1, … , ��} (8) 169 

 170 
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��,� ��� = B� ∙ "���� ∙ ∑ 
��,�� ∙ 
����� + ��,� �������      � = {1, … , ��}      ! = {1, … , ��} (9) 171 

 172 

 173 

Figure 2 Acceleration response spectra for 5 % damping of the adjusted synthetic 174 
ground motions and their original ground motion 175 
 176 

 177 

Based on Nr = 96 original acceleration records, a total of Nr×Ns = 48000 “spectrally 178 

equivalent” synthetic accelerograms are generated (Ns = 500 based on every acceleration 179 

record) in order to be used in the analytical seismic fragility curve estimation. Figure 3a shows 180 

the 15th, 50th and 85th percentiles of the acceleration response spectra for 5 % damping of the 181 

ground motion records in the data set, and the corresponding percentiles of the spectra based 182 

on the synthetic ground motions. The percentiles of the spectral values of the synthetic ground 183 

motions match well that of the acceleration records and we consider that the ground motion 184 

variability of the synthetics reproduces the variability in the original ground motion data set. 185 

We observe in Figure 3b that the percentiles of the acceleration response spectra of the 186 

synthetic ground motions for 2 % damping also match well the percentiles of the response 187 

spectra of the acceleration records. Therefore, we consider that the adjustment technique is 188 

quasi-independent of the damping value in the computation of the response spectra. 189 

 190 
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a) b)  191 

Figure 3 Percentiles of the acceleration response spectra for a) 5 % and b) 2 % damping 192 
of the synthetic accelerograms and the ground motions in the original data set 193 
 194 

3 FRAGILITY CURVE CONSTRUCTION 195 

3.1 Structural Model 196 

For the illustrative application of this framework and for verification of the PMA-based 197 

methodology an inelastic single degree of freedom structure is employed. Its frequency is 5 198 

Hz, it has a damping ratio of 5 % and yield displacement (uy) of 3.3·10-3 m. Its post-yield 199 

stiffness, defining kinematic hardening, is equal to the 20 % of its elastic stiffness (Figure 4a). 200 

The response of the structure is computed by solving Equation 10 with the central difference 201 

method. 202 

 203 

IPQ � ��� + BPR � ��� + E� ��� = −I��,� ��� (10) 204 

 205 

where m is the mass of the oscillator, PQ � ��� and PR � ��� are the relative acceleration and velocity 206 

of the mass, respectively, and E� ��� is the nonlinear resisting force. 207 

 208 
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a) b)  209 

 210 

Figure 4 a) Backbone curve of the inelastic oscillator b) maximum oscillator 211 
displacement (max(|uij(t)|)) observations as a function of the PGA 212 
 213 

Figure 4b shows the maximum response of the inelastic oscillator under excitation with 214 

the acceleration records and the generated synthetic ground motions. We observe that, in this 215 

case, the responses under the synthetic ground motions are spread over an area between 216 

and around the responses computed with the ground motion records. These data are used in 217 

the different approaches here for deriving fragility curves. 218 

3.2 Empirical Non-Parametric Fragility Curves Based On MC Simulations and IM 219 

Clustering 220 

The class of non-parametric fragility curves constructed here is based on MC 221 

simulations and clustering of the Intensity Measure observations. In the illustrative example, 222 

the maximum oscillator displacement is used as the EDP and the PGA is selected as IM for 223 

simplicity while acknowledging that other IMs may be more efficient [31]. The total Intensity 224 

Measure (IM) observations of all recorded and synthetic ground motions are classified to a 225 

number of clusters with k-means clustering [23]. K-means clustering is an iterative optimization 226 

procedure, which groups the IM observations in a selected number Nc of clusters. This 227 

procedure also returns an IM value as the centroid of each cluster. The centroid of each cluster 228 

is equal to the mean of the IM observations grouped in that cluster and the optimization 229 

procedure consists in minimizing the sum of squares of its differences from the observations 230 
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in its cluster, i.e. the variance. Here, the IM observations are grouped into Nc = 20 clusters 231 

using the function “kmeans” in MATLAB [32], while the effect of IM discretization is out of the 232 

scope of this work. Subsequently, the point probabilities are classically computed at the IM 233 

cluster centroids (Cl, l = {1,...,Nc}) as the ratio of the number of exceedances of the damage 234 

state threshold, which are observed in the analyses corresponding to the IMs in a cluster, to 235 

the number of total observations in the cluster. In this case, the damage state threshold is 236 

equal to the yield displacement (3.3·10-3 m) without loss of generality. Figure 5 shows the non-237 

parametric fragility curve computed in this case with 48096 seismic response analyses using 238 

all available recorded and synthetic accelerograms. Whenever the entirety of original and 239 

synthetic ground motions is used, the empirical Monte-Carlo-based non-parametric fragility 240 

curve will be called “reference”. The derivation of the other curves in Figure 5 follows. 241 

 242 

 243 

Figure 5 Lognormal, reference and fragility curve according to Equation 11 244 
 245 

3.3 New Formulation Of The Non-Parametric Fragility Curves 246 

The proposed PMA methodology in this paper for optimized estimation of non-247 

parametric fragility curves is based on Equation 11. This equation expresses the discrete 248 
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fragility curve P(f│Cl), which is defined at Nc cluster centroids (Cl), by means of the law of total 249 

probability. 250 

 251 

S�E|UV� = ∑ 
W�EXUV ∩ C��∙W�UVXC��∙W�Z+��[\+]* ∑ 
W�UVXC��∙W�Z+��[\+]*  (11) 252 

 253 

The conditional probability P(f|Cl∩Si) corresponds to the probability of exceeding the 254 

damage state threshold at cluster centroid Cl under excitation with ground motions originating 255 

from random process Si. This is practically the fragility curve estimated with the ground 256 

motions originating from process Si. The conditional probability P(Cl|Si) is the probability of 257 

sorting the IM observations, which correspond to the ground motions belonging to process Si, 258 

in the l-th cluster. As an example, Figures 6a and 6b show P(f|Cl∩S23) and P(Cl|S23), 259 

respectively, which result from an empirical computation. Finally, the probability P(Si) equals 260 

the fraction of the number of ground motions used, which belong to random process Si, to the 261 

total number of ground motions used to estimate the fragility curve. If we generate an equal 262 

number of synthetic ground motions for every one of Nr acceleration records, and all available 263 

ground motions are used in the computation, then P(Si) = 1/Nr. This is the case in the validation 264 

of the Equation 11 which is presented in Figure 5. We use 96x500 synthetic ground motions 265 

generated by the random processes Si in addition to the 96 ground motions in the original data 266 

set. Figure 5 shows that, as expected, the fragility curve defined by Equation 11 coincides with 267 

the empirical fragility curve used as reference. 268 

 269 

 270 
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a) b)  271 

Figure 6 a) Empirical probability of exceeding the damage state threshold (max(|uij(t)|) 272 
= 3.3∙10-3 m) based on the synthetics generated based on the acceleration record S23 at 273 
the cluster centroids (Cl) b) probability of observing a PGA value in the synthetics 274 
based on acceleration record S23 275 
 276 

3.4 Lognormal Curve Adjusted To The Non-Parametric Curve 277 

In order to observe potential differences between lognormal fragility curves and the non-278 

parametric curves estimated with the different approaches herein, a Maximum Likelihood 279 

Estimation of the lognormal cumulative distribution function is employed. The MLE of the 280 

lognormal curve uses the point probabilities constituting the empirical fragility curve based on 281 

the selected IM and corresponding EDP observations. The MLE is performed with Equations 282 

12-15 and the estimated lognormal curve is given by Equation 16. 283 

 284 

S��V , GV , UV� = �^!�^!��^5�^�! ∙ S�E|UV��^ ∙ �1 − S�E|UV���^5�^ (12) 285 

 286 

` = ∏ S��V , GV , UV�bcV��  (13) 287 

 288 

ln �`� = ∑ fg� 
 �^!�^!��^5�^�!� + GV ∙ g�h 
V��i^�5V��j�k � + ��V − GV� ∙ g� l1 − h 
V��i^�5V��j�k �mnbcV��  (14) 289 

 290 

{�̅, p̅q = FGH IFr�s,k�  �g� �`�� (15) 291 

 292 
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S�E|8t� = h 
V�uv5V�s̅kw � (16) 293 

 294 

Where nl is the number of EDP observations corresponding to the IM observations in the l-th 295 

cluster, rl is the number of EDP observations, which correspond to the IM observations in the 296 

l-th cluster, that exceed the damage state threshold, Cl the IM centroid of the l-th cluster, P(f|Cl) 297 

the empirical fraction of EDP observations exceeding the damage state threshold in the l-th 298 

cluster, P(nl,rl,Cl) the binomial distribution, L the likelihood function, Φ the standard normal 299 

cumulative distribution function, A and β the median and the dispersion of the lognormal 300 

distribution, respectively, �̅ and p̅ their estimations, P(f|IM) the probability of exceeding the 301 

damage state threshold given the IM. The difference with the curve fitting by Baker [4] is that 302 

the fractions of damage state threshold exceedances at the cluster IM centroids are used 303 

instead of the fractions at the IMs of EDP stripes. Figure 5 includes a lognormal curve 304 

computed with this approach using the point probabilities, which constitute the reference 305 

fragility curve. 306 

4 OPTIMIZATION WITH PARAMETRIC MODELS AVERAGING 307 

In order to illustrate the optimization of the non-parametric clustering fragility curve 308 

estimation, we are employing five approaches: (i) MC un-optimized, (ii) lognormal un-309 

optimized, (iii) lognormal optimized, (iv) PMA – Model 1 and PMA – Model 2, and (v) reference. 310 

The reference curve has already been described and used in the validation of Equation 11. 311 

PMA – Model 1 and PMA – Model 2 are the two forms of the optimized approach which are 312 

described in Sections 4.1-4.2. 313 

In the MC un-optimized approach, the number of seismic response analyses is firstly 314 

selected. Subsequently, an equal number of IM observations are selected from every cluster, 315 

equal to the number of total analyses divided by the number of clusters (rounded down to the 316 

closest integer). If there are less IM observations in some clusters than required, we select 317 

those available and we select the rest by selecting an even number of observations from the 318 
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rest clusters and so on. After determining the number of IM observations per cluster that will 319 

be selected, the actual selection of the IM observations is made. This selection is based on 320 

the results of k-means clustering of the IM observations based on all synthetic and recorded 321 

accelerograms. K-means returns for every IM observation the index of the cluster to which the 322 

observation is sorted. Based on the returned indices, lists of the IM observations per cluster 323 

are made and the required observations per cluster are randomly selected from the 324 

corresponding lists. Subsequently, the seismic ground motions, which correspond to the 325 

selected IM observations, are used as excitations in dynamic time-history analyses of the 326 

oscillator in order to compute EDP observations. In the MC un-optimized approach, as in the 327 

reference, the probability of exceeding the damage state threshold is estimated empirically at 328 

the l-th cluster centroid as the observed fraction of EDP observations exceeding the damage 329 

state threshold to the total number of EDP observations corresponding to the IM observations 330 

in the cluster. The lognormal curve derived using the data used in the MC un-optimized 331 

approach will be called lognormal un-optimized. 332 

The optimized PMA approach is based on Equation 11 and follows the procedure of the 333 

MC un-optimized approach with three modifications. First, the conditional probability P(Cl|Si) 334 

is not estimated with the selected IM observations, but with a very large number of IM 335 

observations in order to obtain a very precise estimation. Here, each P(Cl|Si) distribution is 336 

empirically estimated with all available 501 IM observations; 500 observations corresponding 337 

to the synthetics and 1 to the original acceleration record. Practically, this means that the 338 

estimation of P(Cl|Si) in the optimized approach and in the computation for the reference 339 

fragility curve are identical. It is worth noting that the estimation of P(Cl|Si) does not require 340 

any seismic response analyses, but it requires only IM observations based on synthetic ground 341 

motions, which has a small computational cost. Second, IM observations (and the 342 

corresponding seismic ground motions used to compute EDP observations through seismic 343 

response analyses) are selected only if they are sorted in a cluster ki where P(Cl|Si) reaches 344 

its maximum. This is one of the key elements of the optimization process. In order to do so, 345 

the IM observations sorted in clusters other than the cluster, where P(Cl|Si) of their process of 346 
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origin is maximized, are expunged from the lists of IM observations per cluster, from which IM 347 

observations are randomly drawn. The third and most important modification concerns the 348 

conditional probability of  exceeding the damage state threshold in the case of each process 349 

(P(f|Cl∩Si)). Instead of the empirical estimation of P(f|Cl∩Si), the optimized approach employs 350 

two alternative parametric models. The first model (parametric model 1) assumes that 351 

P(f|Cl∩Si) remains constant as a function of the IM, and that it is equal to P(f|Cki∩Si). The 352 

second model (parametric model 2) uses a lognormal curve for P(f|Cl∩Si). In the following, the 353 

parametric models 1 and 2 are analyzed. 354 

4.1 Parametric Model 1 355 

The first model for P(f|Cl∩Si) is defined by a single parameter for every process. When 356 

using this model, the optimized approach will be called PMA – Model 1. This one parameter 357 

is taken equal to the empirical estimation of the probability of exceeding the damage state 358 

threshold at the ki-th IM cluster centroid, where S�UV|C�� obtains its maximum value (Equation 359 

17). The one-parameter models are defined by Equation 18 and model the probability of 360 

exceeding the damage state threshold (SL�) per process as constant throughout all cluster IM 361 

centroids. 362 

 363 

x� = FGH IFr �V� S�UV|C��        � = {1, … , �� = 96}        g = {1, … , �J = 20} (17) 364 

 365 

SL� = S�E|UV ∩ C�� = S�EXU{+ ∩ C��        � = {1, … , �� = 96}        g = {1, … , �J = 20} (18) 366 

 367 

As an example, Figure 7 (top left) shows the empirical conditional probability 368 

S�EXU{6| ∩ C3-� estimated with the observations corresponding to the ground motions based 369 

on the 23rd accelerogram record. Moreover, Figure 7 (top middle) shows the corresponding 370 

model used in the optimized approach, which assumes a constant probability (red curve), 371 

which is estimated at the cluster IM centroid for which S�UV|C3-� is maximized (Figure 7 372 
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bottom). When employing parametric model 1, an error is introduced with respect to P(f|Cl∩Si). 373 

In specific, P(f|Cl∩Si) is under- and overestimated at IM cluster centroids where Cl > Ck and Cl 374 

< Ck, respectively. The extent to which P(f|Cl∩Si) is under- or overestimated varies, and 375 

generally increases with the distance between Cl and Ck. However, the introduced error is 376 

mitigated by the fact that Equation 11 computes the product P(f|Cl∩Si)·P(Cl|Si). The further Cl 377 

is found from Ck, the smallest the introduced error, because P(Cl|Si) diminishes with the 378 

distance from Ck (e.g. Figure 7 bottom). Moreover, the fact that P(f|Cl∩Si) is simultaneously 379 

under- and overestimated (e.g. Figure 7 middle) at Cl > Ck and Cl < Ck, respectively, also 380 

mitigates the global error in the estimation of the fragility curve, as the underestimation on one 381 

side balances to some extent the overestimation on the other. 382 

 383 

   384 

Figure 7 Top left: Empirical fragility curve based on the ground motions originating 385 
from acceleration record 23. Top middle: parametric model 1 (constant probability of 386 
damage state threshold exceedance). Top right: parametric model 2 (lognormal model) 387 
Bottom: conditional probability P(Cl|S23). 388 
 389 
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4.2 Parametric Model 2 390 

The lognormal curve is used as the second alternative parametric model for P(f|Cl∩Si) 391 

for every process. This form of the optimized approach will be called PMA – Model 2. In order 392 

to define this model for every process, two parameters are required: the dispersion and the 393 

median of the lognormal curve. These two parameters could be computed, if two or more point 394 

probabilities were available, to which the lognormal curve might be fitted. Since the optimized 395 

approach selects only IMs (and corresponding accelerograms) in cluster ki, where P(Cl|Si) is 396 

maximized, and computes the corresponding EDPs and S�EXU{+ ∩ C��, the only available point 397 

probability is 
U{+ , S�EXU{+ ∩ C���. Therefore, we assume that the dispersion of the lognormal 398 

curve for every process (βi) is equal to the dispersion of the lognormal fragility curve (p̅, which 399 

will be referred to as β for simplicity), which is derived with Equations 12-16 using the data 400 

selected according to the optimized approach. This curve will be called lognormal optimized 401 

(there is no actual optimization here, this is simply part of the naming scheme). This allows us 402 

to compute the median of the curve for every process (Ai) with Equation 19. Based on Ai and 403 

βi, the parametric model for every process is subsequently defined with Equation 20. 404 

 405 

�� = 4r} 'ln�U{+� − p� ∙ h5� 
S�EXU{+ ∩ C���,        p� = p (19) 406 

 407 

S�E|UV ∩ C�� = h 
~��i^�5~��s+�k+ � (20) 408 

 409 

As an example, Figure 7 (top right) shows P(f|Cl∩S23) as estimated with the lognormal 410 

parametric model (cyan curve). In this case, the model approximates well the empirical 411 

estimation of the probability of exceeding the damage state threshold. This figure illustrates 412 

that the largest differences between the probabilities given by the model and the empirical 413 

estimation are observed where P(Cl|Si) is close to zero. However, the empirical probabilities 414 

P(Cl|Si) are equal to zero at the IM centroids of clusters without any IM observations. 415 
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Therefore, at such cluster IM centroids, the product P(f|Cl∩Si)·P(Cl|Si) in Equation 11 is always 416 

zero, which means that no error is introduced at these clusters due to the use of a parametric 417 

model for P(f|Cl∩Si). As shown in the following, parametric model 2 is particularly necessary 418 

when the dispersion of the lognormal optimized fragility curve is small (approximately for β < 419 

0.3). In such cases, we consider justified to impose a common dispersion on all the parametric 420 

models corresponding to the processes Si. 421 

5 APPLICATION OF THE METHODOLOGY 422 

In order to offer insight to the wider field of application of the developed methodology, 423 

which is essentially a MC procedure, we use it to compute the fragility curves in three cases:    424 

(i) inelastic oscillator without structural uncertainties and ground motions selected at random 425 

form the data set of all recorded and synthetic ground motions, (ii) inelastic oscillator without 426 

structural uncertainties and ground motions resulting from scaling of a single recorded 427 

accelerogram, (iii) inelastic oscillator with structural uncertainties. Based on the results of 428 

these three cases, we make our recommendations for practice. In the third case, the fragility 429 

curves are derived using as IM the PGA and the spectral acceleration at the frequency of the 430 

oscillator (Sa(5 Hz)). To evaluate the effectiveness of the optimized procedures, we are 431 

comparing the estimated fragility curves with the reference curve and the 95 % CI according 432 

to the different approaches. The CI are computed based on bootstrap resampling [33] with a 433 

different set of 500 samples for each case. 434 

5.1 Structural Model Without Uncertainties And Data Set Of Acceleration Records 435 

The developed PMA-based optimization is firstly applied it in the case of the inelastic 436 

oscillator employed previously in the description of the methodology (Figure 4a). The ground 437 

motion data set used consists of the 96 recorded accelerograms and the 48,000 438 

corresponding synthetic ground motions generated with the described procedure in section 2. 439 

The fragility curves are computed as a function of the PGA, for a damage state threshold 440 
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defined by a maximum oscillator displacement of 3.3·10-3 m, and according to the different 441 

approaches are shown in Figure 8 in the case of 100, 200, 500, and 10,000 analyses, 442 

respectively. The curves MC un-optimized and lognormal un-optimized are computed based 443 

on the same set of seismic response analyses, which is different from the set of analyses used 444 

for the optimized non-parametric curves. Every set of seismic response analyses is performed 445 

using a different and randomly selected set of ground motions according to the optimized or 446 

un-optimized approaches. Additionally, the reference non-parametric fragility curve, which is 447 

estimated based on 48096 analyses with all recorded and synthetic accelerograms, is included 448 

in the figures in order to observe any potential statistical error or bias in the evaluated curves. 449 

 450 

a) b)  451 

c) d)  452 

Figure 8 Fragility curves for maximum oscillator displacement (max(|uij(t)|)) threshold 453 
of 3.3·10-3 m evaluated without structural uncertainties and with the enriched ground 454 
motion data set based all considered records and based on a) 100 b) 200 c) 500 and d) 455 
10,000 analyses, and the reference non-parametric fragility curve 456 
 457 



21 
 

In the case of 100, 200 and 500 seismic response analyses (Figure 8a-c), the 458 

differences between the reference and the rest fragility curves is primarily due to error of 459 

estimation. However, in the case of 10,000 analyses, the difference is rather due to a bias in 460 

the computation, given that the fragility curves are evaluated with a very large number of 461 

analyses. As far as the MC un-optimized and PMA curves are concerned, they practically 462 

converge with the reference curve as the number of analyses increases, which means that no 463 

bias is introduced due to the assumptions in this case. In Figure 8d, we observe differences 464 

between the reference and the lognormal un-optimized curve based on 10,000 analyses. 465 

Given the number of analyses, we consider that the lognormal curve is biased. More important 466 

differences between lognormal and non-parametric curves may be observed, when –among 467 

other reasons– the studied structures are more complex than a single-degree-of-freedom 468 

oscillator, as in [15]. As a measure of the estimation error, the 95 % CI of the fragility curve 469 

based on 100 analyses and according to the different approaches are shown in Figure 9. As 470 

expected, the MC un-optimized approach gives a poor estimation (Figure 9a) due to the small 471 

amount of data and the lognormal un-optimized is more effective. The CI of the curves 472 

according to the lognormal un-optimized and the PMA – Model 1 approaches appear to be 473 

equivalent (Figure 9b). However, the median lognormal un-optimized curve may converge 474 

towards a biased estimation (e.g. Figure 8). Therefore, its confidence interval is not 475 

necessarily representative of the goodness of the estimation. This is a weakness of the 476 

parametric models and it is beforehand unknown whether there is bias in the fragility curve in 477 

complex cases. We observe that the PMA – Model 1 approach results in CI which are 478 

significantly smaller than the CI according to the MC un-optimized approach (Figure 9c). 479 

According to the curves in Figure 9d, we conclude that the two forms of the PMA optimization 480 

are equally effective in this case. 481 

  482 
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a) b)  483 

c) d)  484 

Figure 9 95 % confidence intervals of fragility curves for maximum oscillator 485 
displacement (max(|uij(t)|)) threshold of 3.3·10-3 m evaluated without structural 486 
uncertainties and with the enriched ground motion data set based all considered 487 
records and based on 100 analyses, and the reference non-parametric fragility curve 488 
 489 

5.2 Structural Model Without Uncertainties And Data Set Of A Multiply Scaled 490 

Acceleration Record 491 

Here we study a case with limited ground motion variability in order to demonstrate that 492 

the applicability of the developed procedures for non-parametric fragility curve estimation 493 

depends on the dispersion of the lognormal optimized curve, which is fitted to the data in an 494 

intermediate step of the computation. In this case, the synthetic ground motions are generated 495 

based on artificial accelerograms, which result from scaling multiple times (100 in this case) a 496 

randomly selected acceleration record from the 96 original real records. Based on each 497 

artificial accelerogram, 500 synthetic ground motions are generated with the procedure in 498 
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Section 2.2. Again, the oscillator in Figure 4a is employed. The maximum oscillator 499 

displacements as a function of the PGA based on all synthetic and artificial records, which are 500 

used for the reference non-parametric curve for this case, are shown in Figure 10. 501 

 502 

 503 

Figure 10 Maximum oscillator displacement (max(|uij(t)|)) as a function of PGA 504 
computed without structural uncertainties and with the enriched ground motion data 505 
set based on scaling of a single randomly selected recorded accelerogram 506 
 507 

The fragility curves for a damage state threshold defined by a maximum oscillator 508 

displacement of 1.0·10-2 m according to the different considered approaches using 100, 200, 509 

500, and 10,000 seismic response analyses are shown in Figure 11. In this case, all fragility 510 

curves converge to the reference with the exception of the PMA – Model 1 curve, which is 511 

based on the optimization assuming models of constant P(f|Cl∩Si) per process. It is concluded 512 

that PMA model 1 produces a biased curve contrary to PMA model 2 (Figure 11d). 513 

Nevertheless, PMA model 2 may also result in bias in other cases (not shown here), when the 514 

dispersion of the unoptimized lognormal curve is very small (β < 0.1). Indeed, in such cases, 515 

the reference fragility curve tends towards a step function, which cannot be approximated by 516 

the PMA-based procedures presented here unless a finer IM discretization is considered. It 517 

should also be taken into account that the observed difference between the reference curve 518 

and the curves according to the different approaches in the case of 100 and 200 seismic 519 

response analyses is principally an estimation error due to the limited number of seismic 520 

response analyses used. 521 
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 522 

a) b)  523 

c) d)  524 

Figure 11 Fragility curves for maximum oscillator displacement (max(|uij(t)|)) threshold 525 
of 1.0·10-2 m evaluated without structural uncertainties and with the enriched ground 526 
motion data set based on scaling of acceleration record 27 and based on a) 100 b) 200 527 
c) 500 and d) 10,000 analyses, and the reference non-parametric fragility curve 528 
 529 

Figure 12 includes the 95 % CI of the fragility curves based on 100 seismic response 530 

analyses. Also in this case, the lognormal un-optimized is more effective than the MC un-531 

optimized. The CI of the lognormal un-optimized and PMA – Model 2 curves indicate that both 532 

approaches are effective in this case, with PMA – Model 2 being slightly better. Once more, 533 

the estimation error according to the PMA – Model 2 approach is significantly less than the 534 

error in the case of the MC un-optimized computation with 100 analyses. Contrary to the CI of 535 

PMA – Model 1 curve, the CI of the PMA – model 2 curve envelopes the reference and 536 

indicates that this is the preferable approach in this case. 537 

 538 
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a) b)  539 

c) d)  540 

Figure 12 95 % confidence intervals of fragility curves for maximum oscillator 541 
displacement (max(|uij(t)|)) threshold of 1.0·10-2 m evaluated without structural 542 
uncertainties and with the enriched ground motion data set based on scaling of 543 
acceleration record 27 and based on 100 analyses, and the reference non-parametric 544 
fragility curve 545 
 546 

5.3 Structural Model With Uncertainties And Data Set Of Acceleration Records 547 

The developed optimization procedure is also applied in the case of uncertain structural 548 

parameters. In specific, the oscillator in Figure 4a is employed and uncertainty is introduced 549 

by considering the elastic frequency and the yield displacement of the oscillator as random 550 

parameters with a coefficient of variation of 0.2. To do so, in every simulation, i.e. seismic 551 

response analysis, the elastic frequency (5.0 Hz) and the yield displacement (3.3·10-3 m) are 552 

multiplied with random independent values sampled from two identical normal distributions 553 

with mean and standard deviation equal to 1.0 and 0.2, respectively. Such pairs of random 554 

values are sampled with Latin Hypercube Sampling for every 96 records and 48000 synthetic 555 
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ground motions in the data set. Figure 13 shows the damage state threshold and the computed 556 

EDPs (max(|uij(t)|)) as a function of Sa(5 Hz) and PGA as IM, respectively. 557 

 558 

a) b)  559 

Figure 13 Maximum oscillator displacement (max(|uij(t)|)) as a function of a) the spectral 560 
acceleration at 5 Hz and b) the PGA in the case of the oscillator with frequency and 561 
yield displacement uncertainty 562 
 563 

The fragility curves for a damage state threshold of 3.3·10-3 m maximum oscillator 564 

displacement as a function of Sa(5 Hz) and PGA are shown in Figure 14 and 15. As expected, 565 

(i) the introduction of uncertainties leads to increase of the dispersion of the lognormal fragility 566 

curves and (ii) the dispersion of the lognormal fragility curves is slightly larger when PGA is 567 

considered as IM. The optimized fragility curves and un-optimized non-parametric fragility 568 

curves converge with the reference fragility curves for the two cases (Figures 14d, 15d) and 569 

present small differences from the lognormal curves. It is worth noting that the lognormal 570 

optimized curve has a dispersion of 0.48 and 0.52 when using as IM the Sa(5 Hz) and the 571 

PGA, respectively. 572 

 573 
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a) b)  574 

c) d)  575 

Figure 14 Spectral acceleration (Sa(5 Hz))-based fragility curves for maximum oscillator 576 
displacement (max(|uij(t)|)) threshold of 3.3·10-3 m evaluated with structural 577 
uncertainties and with the enriched ground motion data set based all considered 578 
records and based on a) 100 b) 200 c) 500 and d) 10,000 analyses, and the reference 579 
non-parametric fragility curve 580 
  581 
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a) b)  582 

c) d)  583 

Figure 15 PGA-based fragility curves for maximum oscillator displacement (max(|uij(t)|)) 584 
threshold of 3.3·10-3 m evaluated with structural uncertainties and with the enriched 585 
ground motion data set based all considered records and based on a) 100 b) 200 c) 500 586 
and d) 10,000 analyses, and the reference non-parametric fragility curve 587 
 588 

6 CONCLUSION 589 

Here, we present a procedure for optimized derivation of non-parametric fragility curves 590 

using synthetic accelerograms. The fragility curves given by the presented procedure are 591 

intended for use for a specific structure rather than for a class of structures. A simple synthetic 592 

accelerogram generator is used, which reproduces the ground motion variability observed in 593 

a data set of ground motion records. However, the presented procedure is more general since 594 

it can use synthetic ground motions from other generators as long as they define random 595 

processes similar to those defined here. Also, note that the presented procedure is 596 
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independent of the selected IM. The optimization relies on the fact that the generated synthetic 597 

signals are realizations of a series of stochastic processes, each of which is based –in this 598 

work– on an acceleration record in the original data set. Using the EDP observations based 599 

on the synthetic ground motions, a parametric fragility curve is estimated for each process. 600 

Two alternative parametric models per process are proposed: a lognormal model and a model 601 

of constant probability of exceeding the damage state threshold. Based on the estimated 602 

models for all processes considered, a non-parametric fragility curve is estimated based on 603 

PMA, which computes the weighted average of the parametric models according to the law of 604 

total probability. 605 

For the illustrative cases herein, synthetic ground motions are generated with a “simple” 606 

generator, which uses an original set of acceleration records. The generator produces 607 

synthetic ground motions with acceleration response spectra, whose 15th, 50th and 85th 608 

percentiles match well the corresponding percentiles of the spectral values of the ground 609 

motions in the original data set. All recorded and synthetic accelerograms are used as 610 

excitations of an inelastic single degree of freedom oscillator in order to obtain EDP 611 

observations as a function of the IM and estimate a reference fragility curve. The entirety of 612 

the IM observations of the recorded and synthetic ground motions is classified to clusters with 613 

k-means clustering. The number of clusters is selected based on engineering judgment, since 614 

the effect of the number of clusters is not studied here, and may nevertheless be a factor 615 

limiting the applicability of this methodology in some cases. Subsequently, the probability of 616 

exceeding the damage state threshold is estimated empirically at the cluster IM centroids 617 

using the EDP observations corresponding to the IM observations in each cluster. The result 618 

is the MC-based empirical non-parametric fragility curve, which is used as reference, as it is 619 

considered the best estimation possible based on the IM clustering approach and the available 620 

data. In the MC un-optimized approach, the same procedure is followed, but instead of using 621 

all data, an as constant as possible number of IM observations per cluster is selected so that 622 

the total number of analyses is in accordance with the available computational time. 623 
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The PMA optimized approach builds upon the MC un-optimized estimation by introducing 624 

an additional IM observation selection criterion. The IM observations in every cluster eligible 625 

for selection are those found in clusters with maximum probability of observation given the 626 

process, which generated the corresponding synthetic ground motions. Based on the EDP 627 

observations, which correspond to the selected IM observations, the probabilities of exceeding 628 

the damage state threshold at the IM cluster centroids are empirically estimated. These 629 

probabilities are used to define the parametric fragility curve, i.e. the parametric mode, which 630 

is related to each random process. Subsequently, the parametric models are averaged with 631 

the probabilities of occurrence of each random process in the clusters which are estimated 632 

with a very large number of synthetic ground motions, with practically no computational cost, 633 

since it requires no seismic response analyses. As in [18] or [21], we observe that non-634 

parametric curves based on the proposed procedures may present differences from lognormal 635 

curves based on the same data. Here, the smallest differences between lognormal un-636 

optimized and non-parametric fragility curves are observed when the dispersion of the 637 

lognormal curves are either very small (e.g. < 0.1) or considerable (e.g. > 0.5). As far as the 638 

uncertainty of the estimated non-parametric curve is concerned, we employ non-parametric 639 

bootstrap resampling to estimate the 95 % CI of the fragility curves. Moreover, the 95 % CI of 640 

the PMA curve is reduced with respect to the CI of the MC un-optimized curve for the same 641 

number of seismic response analyses in all cases in the study. In conclusion, the developed 642 

methodology is an efficient and useful procedure for fragility curve estimation and has wider 643 

applicability than a parametric model (e.g. the lognormal), which may lead to biased 644 

estimations. 645 

Our recommendations are summarized in Table 1. The criteria that guide us are two: the 646 

dispersion of the lognormal optimized curve fitted to the selected data and the discretization 647 

of the IM observations, i.e. the number of clusters. When applying the proposed procedure, 648 

estimating a fragility curve while using a very coarse IM discretization can be considered 649 

equivalent to the estimation of a fragility curve with a very small dispersion. In the area of 100 650 

or less analyses, use of a typical un-optimized lognormal fragility curve is recommended. If 651 
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the resources for 10,000 or more analyses are available, the MC un-optimized approach can 652 

be used. In the area between 100 and 10,000 analyses, which is of practical interest, we 653 

suggest either a parametric curve, or a non-parametric optimized fragility curve computation 654 

with one of the two proposed alternatives. In this area, the dispersion of the optimized 655 

lognormal curve fitted to the selected data dictates the optimal approach. In the case of a large 656 

dispersion (0.3 ≤ β), the optimization with the constant probability of damage threshold 657 

exceedance per process is sufficient, while in the case of a limited dispersion (0.1 ≤ β < 0.3), 658 

the optimization with the lognormal model per process is recommended. When PMA – Model 659 

1 and 2 use a large number of seismic response analyses and give drastically different results 660 

(as in the case with an original data set consisting of ground motions resulting from scaling a 661 

single acceleration record), PMA – Model 2 should be preferred, unless the dispersion of the 662 

associated optimized lognormal curve is very small (β < 0.1). In such cases, the presented 663 

PMA approaches are not efficient and a lognormal model for the fragility curve is 664 

recommended. 665 

 666 

Table 1 Recommended type of fragility curve based on the number of seismic analyses 667 
(N) and the dispersion of the lognormal (un-optimized) curve fitted to the empirical non-668 
parametric curve (β) 669 
 670 

 β < 0.1 0.1 ≤ β < 0.3 0.3 ≤ β 

N < 100 
Un-optimized 
Lognormal 

Un-optimized 
Lognormal 

Un-optimized 
Lognormal 

100 ≤ N < 10,000 
Un-optimized 
Lognormal 

PMA – Model 2 PMA – Model 1 

10,000 ≤ N MC Un-optimized MC Un-optimized MC Un-optimized 
 671 

Our procedure has also been applied in the case of a realistic finite element model of a low-672 

rise reinforced concrete bare frame (modelling details may be found in [34]), not presented 673 

here for the sake of brevity. The results lead to the same conclusions. Should one attempt to 674 

apply the procedure herein in the case of complex structures, they will face a series of 675 

challenges, which are, however, not specific to our methodology. A major concern would be 676 

the selection of an efficient IM. IMs are considered efficient [35], when the seismic response 677 
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as a function of the IM has a low dispersion. However, scalar IMs are not efficient in every 678 

case. For example, the spectral acceleration at the first eigenfrequency is a common scalar 679 

IM, which is efficient in the case of structures, whose response is mostly affected by their first 680 

mode. However, it is not efficient in the case of tall buildings [36]. In the case of structures with 681 

multiple degrees of freedom the use of more adapted IMs, or even a vector of different IMs 682 

[37] may be a solution. That said, further investigations should be made to see if the 683 

procedures herein can be modified to use a vector IM. Although, the procedure herein is –in 684 

principle– independent of the selected IM and the damage state, it should be adapted to more 685 

severe damage states such as collapse. Indeed, the simulation of severe damage states may 686 

be computationally demanding and may require to take into account P-delta effects [38], to 687 

simulate brittle failure modes [39] and consider alternative IMs [40]. In addition, a validation of 688 

our methodology with a very large number of seismic response analyses in the case of 689 

complex structures has a prohibitive computational cost. To test the usefulness of our 690 

procedure in the case of complex structures, fragility curves given by our procedure based on 691 

a reasonable number of seismic response analyses (e.g. a few hundred) could be compared 692 

with curves given by other procedures, which reduce the computational cost. Such procedures 693 

may rely, amongst others, on metamodeling strategies based on neural networks [41], or 694 

support vector machines [42]. Finally, further studies of the developed procedure using 695 

realistic structural models and fragility curves conditioned on failure, instead of curves 696 

conditioned on an engineering demand parameter threshold, should provide additional 697 

insights. 698 

ACKNOWLEDGMENTS 699 

Funding: This work was supported by the research project SINAPS@ (ANR-11-RSNR-0022), 700 

a project of the SEISM Institute (https://institut-seism.fr/) funded by The French National 701 

Research Agency in the context of its program Investments for the Future. 702 



33 
 

REFERENCES 703 

[1] Fragiadakis M, Vamvatsikos D, Karlaftis MG, Lagaros ND, Papadrakakis M. Seismic 704 

assessment of structures and lifelines. J Sound Vib 2015;334:29–56. 705 

doi:10.1016/j.jsv.2013.12.031. 706 

[2] Yang TY, Moehle J, Stojadinovic B, Der Kiureghian A. Seismic Performance Evaluation 707 

of Facilities: Methodology and Implementation. J Struct Eng 2009;135:1146–54. 708 

doi:10.1061/(ASCE)0733-9445(2009)135:10(1146). 709 

[3] FEMA. Seismic Performance Assessment of Buildings – Volume 1 – Methodology. 710 

WAshington, DC: 2012. 711 

[4] Baker JW. Efficient Analytical Fragility Function Fitting Using Dynamic Structural 712 

Analysis. Earthq Spectra 2015;31:579–99. doi:10.1193/021113EQS025M. 713 

[5] Silva V, Crowley H, Bazzurro P. Exploring Risk-Targeted Hazard Maps for Europe. 714 

Earthq Spectra 2016;32:1165–86. doi:10.1193/112514EQS198M. 715 

[6] Berge-Thierry C, Svay A, Laurendeau A, Chartier T, Perron V, Guyonnet-Benaize C, 716 

et al. Toward an integrated seismic risk assessment for nuclear safety improving current 717 

French methodologies through the SINAPS@ research project. Nucl Eng Des 2017;323:185–718 

201. doi:10.1016/j.nucengdes.2016.07.004. 719 

[7] Tsionis G, Mignan D, Pinto A, Giardini D, European Commission, Joint Research 720 

Centre. Harmonized approach to stress tests for critical infrastructures against natural 721 

hazards. Luxembourg: Publications Office; 2016. 722 

[8] Zhang J, Huo Y. Evaluating effectiveness and optimum design of isolation devices for 723 

highway bridges using the fragility function method. Eng Struct 2009;31:1648–60. 724 

doi:10.1016/j.engstruct.2009.02.017. 725 

[9] Saha SK, Matsagar V, Chakraborty S. Uncertainty quantification and seismic fragility 726 

of base-isolated liquid storage tanks using response surface models. Probabilistic Eng Mech 727 

2016;43:20–35. doi:10.1016/j.probengmech.2015.10.008. 728 



34 
 

[10] Patil A, Jung S, Kwon O-S. Structural performance of a parked wind turbine tower 729 

subjected to strong ground motions. Eng Struct 2016;120:92–102. 730 

doi:10.1016/j.engstruct.2016.04.020. 731 

[11] Gidaris I, Taflanidis AA, Mavroeidis GP. Kriging metamodeling in seismic risk 732 

assessment based on stochastic ground motion models: Seismic Risk Assessment Through 733 

Kriging Metamodeling. Earthq Eng Struct Dyn 2015;44:2377–99. doi:10.1002/eqe.2586. 734 

[12] Parolai S, Haas M, Pittore M, Fleming K. Bridging the Gap Between Seismology and 735 

Engineering: Towards Real-Time Damage Assessment. In: Pitilakis K, editor. Recent Adv. 736 

Earthq. Eng. Eur., vol. 46, Cham: Springer International Publishing; 2018, p. 253–61. 737 

doi:10.1007/978-3-319-75741-4_10. 738 

[13] Quilligan A, O’Connor A, Pakrashi V. Fragility analysis of steel and concrete wind 739 

turbine towers. Eng Struct 2012;36:270–82. doi:10.1016/j.engstruct.2011.12.013. 740 

[14] D’Ayala D, Meslem A, Vamvatsikos D, Porter K, Rossetto T, Silva V. Guidelines for 741 

Analytical Vulnerability Assessment - Low/Mid-Rise. GEM; 2015. 742 

[15] Vamvatsikos D, Cornell CA. Incremental dynamic analysis. Earthq Eng Struct Dyn 743 

2002;31:491–514. doi:10.1002/eqe.141. 744 

[16] Jalayer F, Cornell CA. Alternative non-linear demand estimation methods for 745 

probability-based seismic assessments. Earthq Eng Struct Dyn 2009;38:951–72. 746 

doi:10.1002/eqe.876. 747 

[17] Zentner I. A general framework for the estimation of analytical fragility functions based 748 

on multivariate probability distributions. Struct Saf 2017;64:54–61. 749 

doi:10.1016/j.strusafe.2016.09.003. 750 

[18] Mai C, Konakli K, Sudret B. Seismic fragility curves for structures using non-parametric 751 

representations. Front Struct Civ Eng 2017;11:169–86. doi:10.1007/s11709-017-0385-y. 752 

[19] Noh HY, Lallemant D, Kiremidjian AS. Development of empirical and analytical fragility 753 

functions using kernel smoothing methods: DEVELOPMENT OF FRAGILITY FUNCTIONS 754 

USING KERNEL SMOOTHING METHODS. Earthq Eng Struct Dyn 2015;44:1163–80. 755 

doi:10.1002/eqe.2505. 756 



35 
 

[20] Lallemant D, Kiremidjian A, Burton H. Statistical procedures for developing earthquake 757 

damage fragility curves: STATISTICAL PROCEDURES FOR DAMAGE FRAGILITY 758 

CURVES. Earthq Eng Struct Dyn 2015;44:1373–89. doi:10.1002/eqe.2522. 759 

[21] Karamlou A, Bocchini P. Computation of bridge seismic fragility by large-scale 760 

simulation for probabilistic resilience analysis: BRIDGE SEISMIC FRAGILITY BY LARGE-761 

SCALE SIMULATION FOR RESILIENCE. Earthq Eng Struct Dyn 2015;44:1959–78. 762 

doi:10.1002/eqe.2567. 763 

[22] Porter K, Kennedy R, Bachman R. Creating Fragility Functions for Performance-Based 764 

Earthquake Engineering. Earthq Spectra 2007;23:471–89. doi:10.1193/1.2720892. 765 

[23] Jain AK, Murty MN, Flynn PJ. Data clustering: a review. ACM Comput Surv 766 

1999;31:264–323. doi:10.1145/331499.331504. 767 

[24] Rezaeian S, Der Kiureghian A. Simulation of synthetic ground motions for specified 768 

earthquake and site characteristics. Earthq Eng Struct Dyn 2010:n/a-n/a. 769 

doi:10.1002/eqe.997. 770 

[25] Zentner I, Poirion F. Enrichment of seismic ground motion databases using Karhunen-771 

Loève expansion. Earthq Eng Struct Dyn 2012;41:1945–57. doi:10.1002/eqe.2166. 772 

[26] Ambraseys N, Smit P, Sigbjornsson R, Suhadolc P, Margaris B. Internet-Site for 773 

European Strong-Motion Data. European Commission, Research-Directorate General, 774 

Environment and Climate Programme; 2002. 775 

[27] Ambraseys N, Smit P, Douglas J, Margaris B, Sigbjornsson R, Olafsson S, et al. 776 

Internet site for European strong-motion data. Boll Geofis Teor E Appl 2004;45:113–29. 777 

[28] Boore DM. Simulation of Ground Motion Using the Stochastic Method. Pure Appl 778 

Geophys 2003;160:635–76. doi:10.1007/PL00012553. 779 

[29] Housner G, Jennings P. Generation of Artificial Earthquakes. J Eng Mech Div 780 

1964;90:113–52. 781 

[30] Rodolfo Saragoni G, Hart GC. Simulation of artificial earthquakes. Earthq Eng Struct 782 

Dyn 1973;2:249–67. doi:10.1002/eqe.4290020305. 783 



36 
 

[31] Kostinakis K, Fontara I-K, Athanatopoulou AM. Scalar Structure-Specific Ground 784 

Motion Intensity Measures for Assessing the Seismic Performance of Structures: A Review. J 785 

Earthq Eng 2018;22:630–65. doi:10.1080/13632469.2016.1264323. 786 

[32] MATLAB. MathWorks; 2015. 787 

[33] Iervolino I. Assessing uncertainty in estimation of seismic response for PBEE. Earthq 788 

Eng Struct Dyn 2017;46:1711–23. doi:10.1002/eqe.2883. 789 

[34] Trevlopoulos K, Guéguen P. Period elongation-based framework for operative 790 

assessment of the variation of seismic vulnerability of reinforced concrete buildings during 791 

aftershock sequences. Soil Dynamics and Earthquake Engineering 2016;84:224–37. 792 

doi:10.1016/j.soildyn.2016.02.009. 793 

[35] Luco N, Cornell CA. Structure-Specific Scalar Intensity Measures for Near-Source and 794 

Ordinary Earthquake Ground Motions. Earthq Spectra 2007;23:357–92. 795 

doi:10.1193/1.2723158. 796 

[36] Jayaram N, Lin T, Baker JW. A Computationally Efficient Ground-Motion Selection 797 

Algorithm for Matching a Target Response Spectrum Mean and Variance. Earthq Spectra 798 

2011;27:797–815. doi:10.1193/1.3608002. 799 

[37] Kohrangi M, Bazzurro P, Vamvatsikos D. Vector and Scalar IMs in Structural Response 800 

Estimation, Part II: Building Demand Assessment. Earthq Spectra 2016;32:1525–43. 801 

doi:10.1193/053115EQS081M. 802 

[38] Eads L, Miranda E, Krawinkler H, Lignos DG. An efficient method for estimating the 803 

collapse risk of structures in seismic regions: AN EFFICIENT METHOD FOR ESTIMATING 804 

THE COLLAPSE RISK OF STRUCTURES. Earthq Eng Struct Dyn 2013;42:25–41. 805 

doi:10.1002/eqe.2191. 806 

[39] Kyriakides NC, Pantazopoulou SJ. Collapse Fragility Curves for RC Buildings 807 

Exhibiting Brittle Failure Modes. J Struct Eng 2018;144:04017207. 808 

doi:10.1061/(ASCE)ST.1943-541X.0001920. 809 



37 
 

[40] Eads L, Miranda E, Lignos DG. Average spectral acceleration as an intensity measure 810 

for collapse risk assessment: Average Spectral Acceleration as an IM for Collapse Risk 811 

Assessment. Earthq Eng Struct Dyn 2015;44:2057–73. doi:10.1002/eqe.2575. 812 

[41] Wang Z, Pedroni N, Zentner I, Zio E. Seismic fragility analysis with artificial neural 813 

networks: Application to nuclear power plant equipment. Eng Struct 2018;162:213–25. 814 

doi:10.1016/j.engstruct.2018.02.024. 815 

[42] Sainct R, Feau C, Martinez J, Garnier J. Efficient Seismic fragility curve estimation by 816 

Active Learning on Support Vector Machines (submitted). Struct Saf n.d. 817 

 818 




