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Abstract

Numerical simulation of two-phase flows based on the two-fluid six-equation model is the focus of this

work. This approach is widely used in thermo-hydraulics for many industrial applications, particularly

nuclear power plant safety analysis. A semi-implicit numerical method that has been successfully

adopted in several industrial thermo-hydraulic codes, because of its efficiency and robustness, has

been extended. In this paper, the governing equations are solved on unstructured grids with collocated

variables to accommodate complicated geometries, and a deferred-correction method is used to deal

with the non-orthogonality of unstructured grids. In addition, the numerical method is conservative,

meaning that it is capable of capturing a shock wave exactly in single-phase flows, and ensuring the

conservation of physically conservative quantities of a two-phase flow mixture. Numerical benchmarks

and industrial test cases are performed in order to validate the numerical method and to evaluate its

behavior with respect to different physical configurations.

Keywords: Two-phase flows, two-fluid six-equation model, pressure-based semi-implicit method,

conservative scheme, unstructured grids

1. Introduction

Two-phase flows are encountered in many industrial fields, such as transport of gas or oil, treat-

ment of waste water in chemical engineering, combustion of fuel in the automotive industry, etc.

Understanding two-phase flow phenomenon is crucial for design, optimization, performance and safety

analysis of industrial installations. This work is especially motivated by the needs of thermo-hydraulic5

calculations for nuclear reactors, including nuclear power plant safety analysis, and conception and op-

timization of nuclear thermo-hydraulic components. For example, a two-phase mixture will be ejected

from the break when an accident occurs and there is a breach of the primary coolant system. It is

thus essential to be able to predict the transient state of the fluid so that appropriate cooling of the

∗Corresponding author
Email address: lzhang@cmla.ens-cachan.fr (Lei Zhang)

Preprint submitted to Journal of Computational Physics March 30, 2019

© 2019 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0021999119302402
Manuscript_ae4811ab4cc3116f8b26de0d7d0c0134

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0021999119302402
https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0021999119302402
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0021999119302402


reactor core can be conducted.10

Numerical simulation is becoming increasingly popular in the prediction of two-phase flows for

complex industrial-type problems, due to increasing availability of computing power and resources,

as well as the significant progress made in modeling the associated physical complexity. However,

the modeling approach, that involves direct simulation of the instantaneous flow field by taking into

account appropriate jump conditions across the interface between the two phases, has not yet been15

adapted for engineering analysis of complex multi-component flow fields [1, pp. 55-57]. The complexity

of moving and deformable interfaces requires huge computing resources that exceed the computational

capacity of today’s computers. In addition, fine modeling of complex interfaces is normally not required

in engineering problems. A good representation of the macroscopic aspects of fluid motion including

accurate evaluation of the pressure is all that is needed. This leads to a second modeling approach20

called two-fluid modeling, which describes the flow at a larger scale than the interfaces and applies

averaging procedures (e.g. in time [1], in space [2] or otherwise [3]), in order to derive macroscopic

field and constitutive equations for a two-phase mixture. However, because the interface information is

lost during averaging operations, it is important to model the mass, momentum and energy exchanges

between the two phases at the interfaces. The validity and precision of two-fluid models largely25

depends on the description of these exchanges. According to various simplifying hypotheses, different

mathematical two-fluid models [4] can be derived following this approach and have been used for

industrial applications: homogeneous equilibrium model [5], drift-flux model [6], two-fluid six-equation

model [7], multi-field models [8, 9, 10], etc. Here, we choose to work with the two-fluid six-equation

model because it is the simplest model that takes into consideration both the mechanical and thermal30

disequilibrium between the two phases. In addition, this model is very close to multi-field models, thus

generalization of the present work for more elaborated multi-field models should be straightforward.

The two-fluid six-equation model adopted in this work is a single-pressure model with the two phasic

pressures taken to be equal. However, two-pressure models also exist, such as the Baer-Nunziato model

[11], which was initially developed for granular flow and was later extended to two-phase flows, e.g. in35

[12] using a pressure relaxation method and in the industrial RELAP-7 code [13].

A significant effort has been invested in the development of numerical methods for simulating fluid

flows. In general, these methods can be classified into two main categories: pressure-based methods

[6, 14] and density-based methods [15, 16, 17]. Density-based solvers experience stiffness problems as

well as a loss of accuracy when approaching the low Mach number limit. Moreover, the time step40

is limited by the most rapidly propagating wave, which becomes restrictive for low Mach number

flows. In two-phase flows, it is common to have a large range of Mach numbers due to the mixture

of liquid and gas. Therefore, pressure-based methods, which normally perform well at low Mach

numbers, are advantageous. Pressure is selected as a dependent variable in preference to density
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because changes in pressure are significant at all speeds as opposed to variations in density, which45

become very small at low Mach numbers [18]. Pressure-based methods were originally developed for

incompressible flows, such as the MAC method [19] and the SIMPLE algorithm [20]. Later these

were extended to compressible flows, which yielded the ICE method [14] and methods in the SIMPLE

family [21]. Based on the ICE method, improvements and adaptations were then made in [6] for

nuclear thermo-hydraulic applications, leading to the semi-implicit method. Exchange terms as well50

as the terms describing pressure wave propagation are determined implicitly, and the remaining terms

describing fluid convection are calculated explicitly. This allows a larger stable time step compared to

explicit methods, and the main feature of the method is the ability to reduce the discretized equations

to a linear system for pressures at the new time-step. This semi-implicit method has been adopted by

several industrial codes (e.g. the RELAP5 code [22], the TRAC code [23]) for thermo-hydraulic analysis55

in nuclear reactors because of its efficiency and robustness. In addition, to enhance numerical stability,

a fully implicit method [24] was also developed that treated all terms implicitly. Thus solution of a

non-linear system of algebraic equations is needed at each time step. Furthermore, as a compromise

between the more stable fully implicit method and the more computationally effective semi-implicit

method, some intermediary methods (e.g. the nearly implicit method [25], the SETS method [26]) were60

also developed. A general comparison between these numerical methods can be found in [27, 4, 28].

Indeed, the above-mentioned pressure-based methods are used by many industrial codes for thermo-

hydraulic analysis in nuclear reactors, such as the CATHARE code [24] and the RELAP5 code [22].

These codes are well-known for their robustness and capacity to handle a variety of flow configurations.

However, they are limited when geometries become complicated because staggered grids are employed65

in order to prevent the well-known checker-board problem [29, pp. 196-200]. The checker-board

problem occurs when a centered scheme is used for both pressure gradient and velocity at a cell face

on collocated grids. On staggered grids vector components and scalar variables are stored at different

locations that are shifted half a control volume in each coordinate direction. Implementation of a

staggered grid arrangement is thus tedious as different control volumes are used for the velocities in70

different directions and the scalar variables. Also, it becomes more complicate to treat boundary

conditions and use a multigrid approach to accelerate convergence [30]. In addition, it is difficult for

the staggered arrangement to be generalized for unstructured grids that simplify the description of

complex geometries. In order to prevent the checker-board problem and reinforce numerical stability

for collocated grids, Rhie and Chow [31] proposed an interpolation method to compute the velocity75

at a cell face, where a damping term is added to the centered scheme. This technique eliminates the

pressure-velocity decoupling and the checker-board problem in collocated arrangements. In [30], a

comparison between staggered grids and collocated grids using Rhie-Chow interpolation demonstrated

that collocated methods are equally efficient and reliable as staggered methods. Since, the interest in
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use of collocated grids has grown, and indeed the Rhie-Chow interpolation method is now widely used80

in pressure-based methods [32, 33, 30]. Later, improvements were made to eliminate some defects of

the standard Rhie-Chow interpolation and to extend its applicability. For example, the formulation

was modified in [34] to alleviate the dependence of the convergent solution on the size of the time step,

and was revised in [35] to treat discontinuous external forces. A generalized formulation can be found

in [36]. Adaptation of the interpolation method to unstructured grids was proposed in [32, 37, 38],85

where methods for the calculation of the pressure gradient at a cell face on unstructured grids were

proposed based on discretization of the diffusion term [37, 39, 40].

The objective of this work is therefore to develop a pressure-based method for unstructured grids

with collocated variables, which is capable of predicting complex two-phase flow phenomena. In

order to accommodate complex geometries using collocated grids, as in the nuclear thermo-hydraulic90

CUPID code [9, 41], the Rhie-Chow interpolation [31] method is employed to compute the velocity at

cell faces so that the checker-boarder problem can be mitigated. Use is made of a modified version

of Rhie-Chow interpolation [32, 37, 38] that is adapted for unstructured grids. This work is based

on the semi-implicit method [6] due to its robustness and successful application in different physical

configurations. Linearizations are introduced in the semi-implicit discretization in order to simplify95

system resolution, meaning that the discretized equations can be reduced to a linear system for the new

time-step pressure variables. Hence, iteration is not needed at each time step in the original scheme in

contrast to methods from the SIMPLE family [18]. However, in order to obtain more accurate results

on unstructured grids, a larger computational stencil for a cell than just that involving the nearest

neighboring cells is needed in the linear system for pressure. This affects storage requirements and100

increases the effort needed to solve the linear system. It is thus proposed that a deferred-correction

type method [29, pp. 122-124] is used, which obtains solutions using an iterative procedure with a

small computational stencil.

The semi-implicit method is not conservative for numerical convenience [6]. This is due to the

fact that non-conservative variables are used in the discretized equations and that linearization is105

introduced in order to obtain a linear system for the pressure variables. Nevertheless, conservation

is an important property for a numerical scheme, which enables exact capturing of shock waves in

single-phase flows [42, pp. 237-239][43]. Also, in two-phase flows this property ensures the exact

conservation of mass, momentum and total energy of a mixture and can avoid reduction of time step

length and numerical errors produced in transient results [44]. Therefore, in this work a conservative110

method is developed that retains the robustness of the semi-implicit method. The conservative method

involves the addition of a supplementary correction step to the semi-implicit method in order to make

it conservative. In addition, this correction step is completely explicit, and is thus computationally

effective.
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Strategies for dealing with phase appearance and disappearance in two-phase flows are also pre-115

sented in this work. These effects can be caused, for example, by direct heating of a liquid, phase

separation by gravity or geometry, etc. Numerical methods often encounter extra difficulties in cases

when a phase appears or disappears, including loss of void fraction positivity, certain terms becoming

singular, etc [45]. As in [46], a residual volume fraction is allowed for the disappearing phase, and the

void fraction is imposed in an interval predefined between 0 and 1. In addition, a formula is used to120

redefine the associated volume fraction at a cell face when a phase disappears, such that the volume

fraction ratio of the disappearing phase at a cell face and the related cell center remains defined.

The performance of these strategies is demonstrated using several numerical test cases. Regarding

the equations of state (EOS) that are used to compute the state variables of each fluid, simplistic

approaches, such as ideal or stiffened gas EOS, are limited. This is especially true in cases that are125

near saturation or where liquid compressibility is important [47]. Thus a tabulated EOS [47] based

on empirical correlations [48] is coupled with the numerical method in order to have more precise

physical representation of the fluid states, hence allowing accurate prediction of the transient behavior

of two-phase flows. Only simple models [10] for interfacial exchange terms are used here, and they

are combined with the tabulated EOS to obtain realistic results compared with experimental data.130

Elaborate models that depend on given flow regimes are used in industrial codes [49, 22].

This paper is organized as follows. Section 2 introduces the two-fluid six-equation mathematical

model, together with equations of state and constitutive relations to close the mathematical system.

Section 3 contains a detailed description of the semi-implicit method generalized for collocated variables

on unstructured grids, as well as a conservative version of the numerical scheme. Section 4 presents135

single-phase and two-phase numerical results to validate the numerical scheme and to illustrate its

properties with respect to different physical configurations.

2. Governing equations of the two-fluid six-equation model

A two-fluid six-equation model is adopted for the analysis of two-phase flows in order to take into

account both mechanical and thermal non-equilibrium [4, 1, 22]. This model can be obtained by time140

and/or space averaging of local instantaneous equations for each phase [1], which requires modeling of

interfacial transfer terms in order to close the mathematical model.

5



2.1. Conservation equations

The continuity, momentum and energy equations for phase k (k=v for vapor and k= l for liquid)

are respectively:

∂

∂t
(αkρk) +∇ · (αkρkuk) = Γk, (1)

∂

∂t
(αkρkuk) +∇ · (αkρkuk ⊗ uk) = αk∇P + αkρkg + Mik + Γku

i, (2)

∂

∂t
(αkρkhk) +∇ · (αkρkekuk) = αk

∂

∂t
P − P∇ · (αkuk) + Γkhik +Qik. (3)

where P is the thermodynamic pressure, g is the gravitational acceleration, ui is the interfacial velocity,

αk, ρk, uk, ek, hk, are respectively the volume fraction, the density, the velocity, the specific internal145

energy and the specific enthalpy for phase k; Γk, Mik, Qik, hik are respectively the interfacial mass

transfer term due to phase change, the interfacial drag force, the interfacial energy transfer term and

the specific enthalpy at the interface between the two phases. In addition, the thermodynamic relation

hk = ek + P/ρk is used, and the volume fractions of the two phases are constrained by αv + αl = 1.

Instead of using specific internal energy, as in [9], specific enthalpy is used here due to the initial stages150

of development being made with a water table that had pressure and specific enthalpy as independent

variables. This minor modification does not change the main features of the numerical method. One

can remark that the time derivative term on the right hand side is −P ∂αk
∂t in the original energy

equation involving the specific internal energy [24, 9]. This term physically represents the work that

the interfacial pressure does on the interface between the two phases, because the term ∂αk
∂t is the155

time rate of change in the volume fraction due to the movement of the interface [50, pp. 216]. The

use of ∂
∂t (αkρkhk) instead of ∂

∂t (αkρkek) on the left hand side of energy equation (3) changes the

time derivative term on the right hand side from −P ∂αk
∂t to αk

∂
∂tP using the thermodynamic relation

hk = ek + P/ρk.

It is known that the single-pressure model given above is not unconditionally hyperbolic [4]. Actu-

ally, this model is hyperbolic if and only if one of the following conditions is satisfied [51, pp. 28][52]:

uv = ul, or αvρl = 0, or αlρv = 0, or |uv − ul| ≥
√
γ2
(
(αlρv)1/3 + (αvρl)1/3

)3
, (4)

where γ2 =
c2vc

2
l

αvρlc2l+αlρvc
2
v

and ck is the phasic sound speed. The hyperbolicity boundary

√
γ2
(
(αlρv)1/3 + (αvρl)1/3

)3
is of the order of the magnitude of the mixture sound speed, and is much larger than the range of

relative velocities in common physical applications. Thus mathematically the single-pressure model

presents an ill-posed initial value problem. Several authors have proposed adding some regularizing

terms in order to make the system hyperbolic, for example adding a virtual mass term [53] to the

momentum equation, or including an interfacial pressure default term [45] in the system. The latter is

used in our studies, which involves the addition of −(P −Pinterface) · ∇αk to the right hand side of the
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momentum equation [45]. The interfacial pressure default P − Pinterface characterizes the difference

between the average bulk pressure and the interfacial pressure. For example, in the CATHARE code

[49], the interfacial pressure default is given by:

P − Pinterface = δ
αvαlρvρl
αvρl + αlρv

|uv − ul|2, (5)

where the hyperbolicity of the system is ensured when the parameter δ > 1 and |uv−ul|
2

c2 � 1, where160

c is a mean speed of sound in the mixture.

The two-fluid six-equation model (1)-(3), which takes into consideration both the mechanical and

thermal disequilibrium between the two phases, is used in this work because of its wide application

in industrial codes [24, 22]. Moreover, the present work can be directly generalized to more elaborate

multi-field models [9] thanks to the closeness of this model to multi-field models.165

2.2. Equations of state (EOS) and constitutive relations

In order to close system (1)-(3), equations of state and constitutive relations for terms on the right-

hand side of the governing equations should be specified.

As mentioned above, pressure and specific enthalpy are chosen as independent state variables, and170

all other thermodynamic variables except saturation properties are expressed as a function of these

two variables. For example, the density ρk = ρk(P, hk). The saturation properties are represented

as a function of pressure, e.g. the specific enthalpy of saturated vapor hsat
v = hsat

v (P ). Tabulated

EOS are required to calculate accurately the dynamic behavior of two-phase flows, thus a water table

named Quicksteam [47] based on IAPWS97 [48] has been developed at the Centre de Mathématiques175

et de Leurs Applications (CMLA). The independent variables in IAPWS97 are the pressure P and

the temperature T , and backward equations are available to compute the temperature T directly from

the pressure P and the specific enthalpy h for liquid and gas without need for an iterative method.

All thermodynamic variables can then be obtained using correlation formulas in IAPWS97 [48, 47]

as functions of P and T . However, for fluids in a metastable state, the backward equations used to180

calculate T from P and h are no longer valid. Thus for our application, the Newton-Raphson method

is used to obtain the temperature T by solving f(T ) = H(P, T )− h = 0, where P , h and the function

H are given. A detailed explanation of the tabulated EOS and their integration in the simulation code

is given in Appendix A.

Simple models for the interfacial exchange terms are now given. The aim of this initial work is not

to obtain accurate results comparable with experimental data, but rather to show that realistic results

can be obtained using the numerical method and to illustrate its behavior for different physical situa-

tions. Indeed, to allow for good comparison with experimental data, industrial codes use complicated
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empirical relations for different flow regimes [22]. In order to conserve mass, momentum and energy

at an interface separating the two phases, the following jump conditions should be satisfied:∑
k=v, l

Γk = 0,
∑
k=v, l

Mik + Γku
i = 0,

∑
k=v, l

Γkhik +Qik = 0. (6)

According to [54], an expression for the interfacial velocity is adopted here: ui = αvuv +αlul, and the

interfacial drag force is:

Miv = −Miv = −3

8
αvαl(αvρv + αlρl)

Cd
Rb
|ur|ur, (7)

where ur = uv − ul, Cd is the drag coefficient, and Rb is a mean particle radius. For example, Rb is

the mean radius of bubbles in a bubbly flow (i.e., gas bubbles in liquid). As in [10], the energy transfer

term is given by:

Qik =
αvαlρk(hik − hk)

τik
, for k = v, l, (8)

where τik represents the relaxation time. For water and steam τik = τ is of the order of 10−3 s. Specific

enthalpies at the interface between the two phases are saturation values: hik = hsat
k , for k = v, l. From

jump conditions (6), the following expression can be deduced:

Γv = −Γl = −Qiv +Qil
hiv − hil

= −αvαlρv(h
sat
v − hv) + αvαlρl(h

sat
l − hl)

τ(hsat
v − hsat

l )
, (9)

so that the energy transfer terms are:

Qiv + Γvhiv = −(Qil + Γlhil) = −αvαlρv(h
sat
v − hv) · hsat

l + αvαlρl(h
sat
l − hl) · hsat

v

τ(hsat
v − hsat

l )
. (10)

3. Numerical scheme185

In this section, the numerical scheme developed for this work is given in detail. The scheme is

semi-implicit in time due to a large linear system for the mean pressure being solved in each cell at

time n+ 1 . The scheme is built as follows:

(i) First (Section 3.1.1), the momentum equations (11) are used to find the mean phasic velocities

in each cell at time n+ 1 .190

(ii) Then (Section 3.1.2), using both the mass and energy equations, the scalar variables (void frac-

tion, phasic specific enthalpy) can be determined once the new time-step phasic velocity at a cell

face is obtained.

(iii) Finally (Section 3.1.4), the aforementioned linear system for pressure variables at time n + 1 is

derived using both the mass and energy equations, respectively (1) and (3), and the momentum195

equation (2).

8



Section 3.1 is devoted to the derivation of the scheme in the spirit of [6], [9] and [41]. This leads

to a non conservative scheme that does not conserve total mass, total momentum and total energy

of a two-phase mixture exactly, and as a result is not capable of correctly capturing shock waves in

single-phase flows.. However, Section 3.2 presents the final version of the scheme that is conservative,200

and therefore captures shock waves correctly in single-phase flows, by ensuring the exact conservation

of total mass, total momentum and total energy of a two-phase mixture.

3.1. Semi-implicit method

Since two-phase flow involves a wide range of Mach numbers, from supersonic to near incompress-

ible, a method is sought that is not limited by the classical Courant-Friedrichs-Lewy stability condition205

(u + c)∆t/∆x < 1, where c is the sound speed, and u > 0 is the magnitude of the velocity. Thus, a

semi-implicit method is developed in this work that is based on the method used in [6] for simulation

of two-phase flow with the drift-flux model. In the semi-implicit method the terms responsible for

pressure waves, including the pressure gradient in the momentum equation and the velocity at cell

face in mass and energy equations, are determined implicitly. In addition, source terms, which can be210

stiff, are calculated implicitly. This ensures that the stability of the numerical method is independent

of the sound speed, and the time step is limited by a CFL condition involving only the fluid velocity.

Readers can refer to [6, 9, 41] for extra information regarding the semi-implicit numerical method.

Before introducing the numerical discretization, as in [6, 55], the momentum equations (2) are rewritten

as follows:

αkρk
∂uk
∂t

+∇ · (αkρkuk ⊗ uk)− uk∇ · (αkρkuk) + Γkuk = −αk∇P + αkρkg + Mik + Γku
i. (11)

This modification is reasonable as the semi-implicit method was originally developed for nuclear

thermo-hydraulic applications. Rigorous conservation of momentum is not expected due to the exis-

tence of large sinks and sources (e.g., pumps, orifices) in nuclear hydraulic systems [6]. Nevertheless,215

a conservative scheme, which is capable of conserving exactly mass, momentum and total energy of a

mixture, is developed in Section 3.2.

c0
c1

f
f ′

eξ

eη

nf

Figure 1: Illustration for an unstructured mesh.
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Figure 1 shows a typical mesh used for the numerical method, where the control volume c0 represents

a triangle. The numerical method can also be applied to other mesh types, as long as they are conformal

(i.e. identical location of mesh nodes on the faces between cells).220

The semi-implicit scheme presented in this section is first-order in time and space, because Euler’s

method is employed for the temporal discretization and an upwind scheme is used for the spatial

discretization.

3.1.1. Momentum equation

Integration of the momentum equation (11) over a control volume c0 using the finite volume method

leads to new time-step phasic velocities (i.e., the velocity of phase k at time tn+1):

(αkρk)nc0
(uk)n+1

c0 − (uk)nc0
∆t

+
1

Vc0

∑
f

(αkρkuk)nf
[
(uk)nf · Sf

]
−

(uk)nc0
Vc0

∑
f

(αkρk)nf
[
(uk)nf · Sf

]
+ (Γkuk)nc0

= −(αk)nc0∇P
n+1
c0 + (αkρk)nc0g + (Γku

i)nc0 + (Mik)n+1
c0 ,

(12)

where subscript (.)f indicates the value at a cell face, and the area vector Sf is defined as Sf = nf ·Af ,225

i.e., the unit normal vector nf scaled by the area of the face f . The phasic velocity (uk)nf at a cell

face is determined using Rhie-Chow interpolation, which will be explained later (see equation (28)).

In the momentum discretization, additional to the pressure gradient term ∇P , the interfacial drag

force Mik is also implicitly calculated, whereas all other terms are determined explicitly. In order to

simplify the numerical method and avoid the necessity of an iterative procedure for phasic velocity

time advance, the implicit interfacial term Mn+1
ik is linearized with respect to its value at the previous

step:

Mn+1
ik 'Mn

ik +

(
∂Mik

∂uv

)n
· (un+1

v − unv ) +

(
∂Mik

∂ul

)n
· (un+1

l − unl ). (13)

Spatial links within one phase and between the two phases are considered in the linearization of Mn+1
ik

to enhance numerical stability. Thus we need to solve a linear system of dimension 2nd × 2nd for230

each cell in order to obtain a relation between the new time phasic velocity and the new time pressure,

where nd ∈ {1, 2, 3} is the spatial dimension of the physical problem considered.

Substituting the linearization of Mn+1
ik into the discretized momentum equation (12) and with some

arrangements yields

dM ·

 un+1
v − unv

un+1
l − unl


c0

=

 γ′v

γ′l

n

c0

−∆t

 ∇Pn+1

ρnv
∇Pn+1

ρnl


c0

, (14)
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where

dM =

 I nd − 1
αvρv

∂Miv

∂uv
∆t − 1

αvρv
∂Miv

∂ul
∆t

− 1
αlρl

∂Mil

∂uv
∆t I nd − 1

αlρl
∂Mil

∂ul
∆t

n

c0

, (15)

(γ′k)nc0 = ∆t

{
−
∑
f (αkρkuk)nf [(uk)nf · Sf ]

(αkρk)
n
c0
Vc0

+
(uk)nc0

(αkρk)
n
c0

∑
f (αkρk)nf [(uk)nf · Sf ]

Vc0

+ g −
(Γkuk)nc0
(αkρk)

n
c0

+
(Γku

i)nc0
(αkρk)

n
c0

+
(Mik)nc0
(αkρk)

n
c0

}
, (16)

and I nd is an identity matrix of dimension nd × nd. Multiplying both sides of equation (14) by the

inverse of matrix dM leads to a new time-step phasic velocity:

(uk)n+1
c0 = (γk)nc0 − (βk)nc0∇P

n+1
c0 , (17)

where (γk)nc0 is obtained by γv

γl

n

c0

=

 uv

ul

n

c0

+ dM−1

 γ′v

γ′l

n

c0

, (18)

and (βk)nc0 is a nd× nd matrix with elements given by (i-th row and j-th column):

(βv )ij =
∆t

ρv
(dM−1)ij +

∆t

ρl
(dM−1)ij′ , (19)

(βl )ij =
∆t

ρv
(dM−1)i′j +

∆t

ρl
(dM−1)i′j′ , (20)

where i′ = i+ nd, j′ = j + nd.

235

At this stage, the new time-step phasic velocities cannot be obtained from equation

(17) since the new time-step pressure is still unknown. In fact, this equation is only used

when the new time-step pressure is available after the pressure equation (34) is solved,

as explained in Section 3.1.4.

240

3.1.2. Mass and energy equations

Discretization of the mass and energy equations is now explained. The transported quantities are

calculated explicitly, whereas the phasic velocities at a cell face and the source terms are determined

implicitly, thus the discretized mass equation reads (adopting the notation ∆(·) = (·)n+1 − (·)n):

(ρk)nc0(∆αk)c0 + (αk)nc0(∆ρk)c0
∆t

+

∑
f (αkρk)nf

[
(uk)n+1

f · Sf
]

Vc0
= (Γk)n+1

c0 . (21)

11



Similarly, the discretized energy equation becomes:

(ρk)nc0(hk)nc0(∆αk)c0 + (αk)nc0(ρk)nc0(∆hk)c0 + (αk)nc0(hk)nc0(∆ρk)c0
∆t

+

∑
f (αkρkek)nf

[
(uk)n+1

f · Sf
]

Vc0

= (αk)nc0
∆Pc0
∆t

− Pnc0

∑
f (αk)nf

[
(uk)n+1

f · Sf
]

Vc0
+ (Qik + Γkhik)n+1

c0 .

(22)

In order to simplify the discretization, the implicit mass and energy transfers are linearized with respect

to the independent state variables P and hk:

qn+1
k − qnk =

(
∂qk
∂P

)
hv, hl

∆P +

(
∂qk
∂hv

)
P, hl

∆hv +

(
∂qk
∂hl

)
P, hv

∆hl, (23)

where qk ∈ {Γk, (Qik + Γkhik)}. In addition, the density is also linearized around the independent

state variables using the EOS:

∆ρk =

(
∂ρk
∂P

)
hk

∆P +

(
∂ρk
∂hk

)
P

∆hk. (24)

The method used to obtain partial derivatives
(
∂ρk
∂P

)
hk

and
(
∂ρk
∂hk

)
P

from the tabulated EOS Quick-

steam data is explained in Appendix A. The four discretized equations can thus be put in matrix form:

(A)nc0 · (x)c0 = (s)nc0 −
∑
f

(g)nf

[
(uv)

n+1
f · Sf

]
−
∑
f

(l)nf

[
(ul)

n+1
f · Sf

]
, (25)

where x is the vector of unknown variables, x = (∆hv, ∆hl, ∆αv, ∆P )T , and A is a 4×4 matrix. The

expressions for (A)nc0 , (g)nf , (l)nf and (s)nc0 are as follows:

(A)nc0 =


αv

∂ρv
∂hv
− ∂Γv

∂hv
∆t −∂Γv

∂hl
∆t ρv αv

∂ρv
∂P −

∂Γv
∂P ∆t

− ∂Γl
∂hv

∆t αl
∂ρl
∂hl
− ∂Γl

∂hl
∆t −ρl αl

∂ρl
∂P −

∂Γl
∂P ∆t

αv(ρv + hv
∂ρv
∂hv

)− ∂Qv
∂hv

∆t −∂Qv∂hl
∆t ρvhv αv(hv

∂ρv
∂P − 1)− ∂Qv

∂P ∆t

−∂Ql∂hv
∆t αl(ρl + hl

∂ρl
∂hl

)− ∂Ql
∂hl

∆t −ρlhl αl(hl
∂ρl
∂P − 1)− ∂Ql

∂P ∆t



n

c0

,

(g)nf =
∆t

Vc0


(αvρv)

n
f

0

(P )nc0(αv)
n
f + (αvρvev)

n
f

0

 , (l)nf =
∆t

Vc0


0

(αlρl)
n
f

0

(P )nc0(αl)
n
f + (αlρlel)

n
f

 , (s)nc0 = ∆t


Γv

Γl

Qv

Ql



n

c0

,

where Qk = Qik + Γkhik.
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Linearization of source terms. Here, detailed calculation of the linearization of source terms from

Section 2.2 is given. This choice is simple, where the physical quantities are partially derived, is

validated by numerical test cases. Using the source terms given by equations (9) and (10), we have

Γn+1
v − Γnv = −

(αvαlρv)
n dh

sat
v

dP + (αvαlρl)
n dh

sat
l

dP

τ(hsat, n
v − hsat, n

l )
∆P +

(αvαlρv)
n

τ(hsat, n
v − hsat, n

l )
∆hv +

(αvαlρl)
n

τ(hsat, n
v − hsat, n

l )
∆hl.

(26)

(Qiv + Γvhiv)
n+1 = (Qiv + Γvhiv)

n −
(αvαlρv)

n dh
sat
v

dP · h
sat, n
l + (αvαlρl)

n dh
sat
l

dP · h
sat, n
v

τ(hsat, n
v − hsat, n

l )
∆P

+
(αvαlρv)

n · hsat, n
l

τ(hsat, n
v − hsat, n

l )
∆hv +

(αvαlρl)
n · hsat, n

v

τ(hsat, n
v − hsat, n

l )
∆hl. (27)

3.1.3. Phasic velocity at a cell face

Phasic velocities at the cell faces are required in the discretized mass and energy equations (25)

in order to find the unknown variables in vector x. However, for our collocated grid arrangement the

phasic velocities are stored at the cell centers, and the centered scheme that is used to calculate the

cell face velocity using cell center velocity will produce the well-known checker-board problem [29,

pp. 198]. In this work therefore, the checker-board problem is prevented by employing Rhie-Chow

interpolation [31] to find the new time-step phasic velocity at cell face f (between cell c0 and cell c1):

(uk)n+1
f =

1

2

[
(uk)n+1

c0 + (uk)n+1
c1

]
− (βk)nf

[
(∇P )n+1

f − (∇P )n+1
f

]
, (28)

where (βk)nf = 1
2

[
(βk)nc0 + (βk)nc1

]
, (∇P )f is taken to be the average of the derivatives for two adjacent

cells. As in [32], use is made of transformation from physical coordinates (x, y) to computational

coordinates (ξ, η) as shown in Figure 1, hence

(∇P )f =
nf

nf · eξ

(
∂P

∂ξ

)
f

+ (∇P )f − (∇P )f · eξ
nf

nf · eξ
, (29)

where nf is the unit normal vector to cell face f and eξ is the unit vector pointing from the center of

cell c0 to the center of cell c1. Therefore, the new time-step phasic velocity at cell face f becomes:

(uk)n+1
f =

1

2

[
(uk)n+1

c0 + (uk)n+1
c1

]
− (βk)nf

[(
∂P

∂ξ

)n+1

f

− (∇P )n+1
f · eξ

]
nf

nf · eξ
. (30)

The same Rhie-Chow interpolation method for unstructured grids is proposed in [36, 38]. The

Rhie-Chow formula (30) is not directly used to obtain new time-step phasic velocities at245

a cell face, indeed a simpler formula (32) will be used for this purpose. An important

point regarding equation (30) is that it is to be combined with the discretized momentum

equation, the discretized mass and energy equations to finally deduce the new time-step

pressure equation (34), as presented in Section 3.1.4.

250
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Only the basic Rhie-Chow interpolation (28) involving the pressure gradient is used in this work.

However, more generalized interpolation, such as [36], should be employed in future, which includes

contributions from the time step, treatment of discontinuous external forces, etc. In [8], the authors

suggested a volume fraction gradient term be included in the Rhie-Chow formulation in order to avoid

odd-even decoupling of the velocity and volume fraction fields.255

3.1.4. System resolution

This section presents the derivation of a linear system for the pressure at time n + 1 from the

previously-described discretized equations (17) and (25), and demonstrates the solution of the overall

system.

Discretization of the mass and energy equations gives a relation between phasic velocities and

pressure at the new time-step, as can be seen by inverting matrix A in system (25). Denoting A4 as

the fourth row vector of the matrix A inverse, the last equation of the system (25) becomes:

(∆P )c0 = A4 · (s)nc0 −A4 ·
∑
f

(g)nf

[
(uv)

n+1
f · Sf

]
−A4 ·

∑
f

(l)nf

[
(ul)

n+1
f · Sf

]
. (31)

Moreover, discretization of the momentum equation (17) and Rhie-Chow interpolation (30) yield two260

equations relating respectively the cell center velocity and the cell face velocity to pressure for the new

time-step. The resolution strategy thus involves combining the three previously-mentioned equations

in order to obtain an equation in which only the pressure is the unknown variable.

The above procedure is detailed as follows. First, expression (17) is substituted, which calculates

the new time-step velocity at a cell center in Rhie-Chow formula (30), in addition assuming that

(βk)nf ≈ (βk)nc0 ≈ (βk)nc1 , we can obtain the phasic velocity at a cell face:

(uk)n+1
f =

1

2

[
(γk)nc0 + (γk)nc1

]
−

(βk)nf · nf
nf · eξ

Pn+1
c1 − Pn+1

c0

∆ξ
+ Fk(Pn+1), (32)

where ∆ξ is the distance between cells c0 and c1, and the function Fk(Pn+1) represents

Fk(Pn+1) = −(βk)nf

[
(∇P )n+1

f − (∇P )n+1
f · eξ

nf
nf · eξ

]
. (33)

The formulation Fk(Pn+1) appears due to the fact that unstructured grids are considered, and this

can be neglected for orthogonal grids [37]. By substituting equation (32), which relates the phasic

velocity (uk)n+1
f to the new time-step pressure, into equation (31), which comes from the discretized

mass and energy equations, a formula involving only the pressure can be obtained:

(∆P )c0 −A4 ·
∑
f

Cf (Pn+1
c1 − Pn+1

c0 ) + A4 ·
∑
f

[
(g)nfFv(P

n+1) + (l)nfFl(P
n+1)

]

= A4 ·

(s)nc0 −
1

2

∑
f

[
(g)nf [(γv)

n
c0 + (γv)

n
c1 ] · Sf + (l)nf [(γl)

n
c0 + (γl)

n
c1 ] · Sf

] , (34)
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where Cf = 1
∆ξnf ·eξ

{
(g)nf

[
(βv)

n
f · nf · Sf

]
+ (l)nf

[
(βl)

n
f · nf · Sf

]}
.

265

The system resolution procedure can be summarized as follows:

a) Equation (34) is applied to each computational cell in a grid containing N cells, which

generates an N ×N linear system for the pressure.

b) Once the new time-step pressure is solved using equation (32), the new time-step

phasic velocity at a cell face can be obtained, and thus the right hand side of system270

(25) is known.

c) Finally, the new time-step independent variables contained in vector x are obtained

and the new time-step velocities are updated using equation (17).

For orthogonal grids, the calculation of the phasic velocity at a cell face involves only pressures at

the center of the two cells neighboring the face (i.e. Fk(Pn+1) disappears). However, for unstructured275

grids a large stencil can become necessary to compute more accurately this term, as indicated by the

presence of the term Fk(Pn+1) in the formula (32). On the one hand, we would like to keep the stencil

as small as possible because the size of the computational stencil affects both the storage requirements

and the effort needed to solve the system of linear equations. On the other hand, more accurate results

are achieved when more cells than just the nearest neighbors are used to calculate the pressure gradient280

at a cell face (see equation (29)). In this work, it is proposed that a deferred-correction type method

is used [29, pp. 122-124]. This consists of placing the term Fk in the second member of the system

(34), and then an iterative procedure is used to approximate the solution. It should be noted that the

matrix inverse remains constant throughout the iterative procedure.

3.1.5. More details285

This section presents the calculation of several physical quantities that need to be specified in

the resolution of the above-mentioned discretized equations, including physical quantities transported

with the fluid motion at a cell face (i.e. (αkρk)nf , (αkρkuk)nf , (αk)nf and (αkρkek)nf ) and the pressure

gradient.

Transported quantities. The transported quantities, e.g., (αkρk)nf , are determined using an upwind

scheme that depends on the sign of the projected phasic velocity at a cell face [56]:

(θk)nf =

 (θk)nc0 , if (uk)nf · Sf ≥ 0,

(θk)nc1 , otherwise,
(35)

where (θk)nf ∈ {(αkρk)nf , (αk)nf , (αkρkek)nf }.290
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Transported quantity (αkρkuk)nf . We now explain how the transported quantity (αkρkuk)nf is

treated. It can be computed like other transported quantities by directly using an upwind scheme,

as explained in the last paragraph. Furthermore, its calculation can be performed by multiplying the

transported quantity (αkρk)nf by the phasic velocity at the cell face (uk)nf , where (αkρk)nf is calculated295

using an upwind scheme (see equation (35)), and the phasic velocity at the cell face (uk)nf is determined

using Rhie-Chow interpolation (see equation (28)). However, this second method leads to numerical

instability, because the numerical diffusion term containing u′′ is missing.

A one-dimensional problem with uk > 0 is considered to illustrate this point. The spatial dis-

cretization of the convective term ∇ · (αkρkuk ⊗ uk)− uk∇ · (αkρkuk) = αkρk∇uk · uk thus becomes

A =
(αkρkuk)nj+1/2(uk)nj+1/2 − (αkρkuk)nj−1/2(uk)nj−1/2

∆x
− (uk)

n
j

(αkρk)nj+1/2(uk)nj+1/2 − (αkρk)nj−1/2(uk)nj−1/2

∆x
,

(36)

where j is the cell index, j ± 1/2 indicates a cell face, ∆x is the spacial discretization length scale.

In order to simplify A, we consider the one-dimensional case Rhie-Chow formulation (30):

(uk)n+1
j+ 1

2

=
1

2

[
(uk)n+1

j+1 + (uk)n+1
j

]
− (βk)nj+ 1

2

(
Pn+1
j+1 − P

n+1
j

∆x
− 1

2

Pn+1
j+2 − P

n+1
j

2∆x
− 1

2

Pn+1
j+1 − P

n+1
j−1

2∆x

)

=
1

2

[
(uk)n+1

j+1 + (uk)n+1
j

]
− 1

4
(βk)nj+ 1

2

[
P ′′′(∆x)2

]
, (37)

where the last equality comes from Taylor expansion, and higher order terms are neglected. The

variable βk contains the coefficient ∆t (see equations (19) and (20)), and we take uk∆t/∆x = O(1)

because the CFL condition is uk∆t/∆x < 1, hence

(uk)n+1
j+ 1

2

=
1

2

[
(uk)n+1

j+1 + (uk)n+1
j

]
+O(∆x3). (38)

Therefore for transported quantity (αkρkuk)nj±1/2 = (αkρk)nj±1/2 · (uk)nj±1/2, using the upwind scheme

(35) for (αkρk)nj±1/2 and equation (38) for (uk)nj±1/2 allows simplification of the convective term A as

A =

1
2 (αkρk)nj (uk)nj+1/2[(uk)nj+1 − (uk)nj ] + 1

2 (αkρk)nj−1(uk)nj−1/2[(uk)nj − (uk)nj−1]

∆x
+O(∆x2). (39)

A Taylor expansion of the previous expression leads to

A = α0ρ0u0u
′ +O(∆x2), (40)

where (α0, ρ0, u0) is a reference state, and it can observed that the numerical diffusion term containing

u′′∆x disappears. In order to handle this problem, it is proposed that numerical viscosity is added by

modifying the calculation of (αkρkuk)n
j± 1

2

:

(αkρkuk)nl+ 1
2

= (αkρk)nl+ 1
2

{
(uk)

n
l+ 1

2
+ δ

[
(uk)nl+1 − (uk)nl

]}
, (41)
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where l ∈ {j, j − 1}, and δ is a parameter to be determined. With this modification, the spatial

discretization of the term ∇ · (αkρkuk ⊗ uk)− uk∇ · (αkρkuk) becomes

A∗ = α0ρ0u0u
′ + δα0ρ0u0u

′′∆x+O(∆x2). (42)

By choosing δ = −1/2 in this work, the numerical diffusion is the same as the case where the trans-300

ported quantity (αkρkuk)nf is calculated directly by the upwind scheme (35).

Pressure gradient. When the new time-step pressure is obtained, its gradient, that is required in

the expression (17), can be evaluated using the Green-Gauss reconstruction method [57, pp. 275]:

∇Pc0 =
1

Vc0

∑
f

PfSf , (43)

where f represents all the faces of cell c0. The pressure at a cell face can be determined by

Pf =
ω0P0 + ω1P1

ω0 + ω1
, (44)

where ω0 and ω1 are respectively the inverse distance between the center of cell c0 and the center

of face f and the distance between the center of cell c1 and the center of face f . This relation only

leads to a second-order approximation of Pf when the segment c0 → c1 and face f intersection point

coincides with the centroid of face f . This is not the case for a general unstructured grid, as shown in

Figure 1, rather segment c0 → c1 and face f intersect at point f ′, that is different from the centroid

of face f . Several methods to locate the intersection point and calculate the corresponding correction

to find Pf are introduced in [57, pp. 275-280]. However, here we adopt a simpler method [33]. When

the pressure gradient is obtained at each cell the following formula can be used to calculate Pf :

Pf =
[Pc0 +∇Pc0 · (cf − c0)] + [Pc1 +∇Pc1 · (cf − c1)]

2
. (45)

This Pf is then used again in the Green-Gauss reconstruction (43) to improve the accuracy of the

pressure gradient calculation. This suggests an iterative approach for computing successively im-

proved approximations of the gradients. However, more iterations causes an increased effective stencil

and can lead to oscillatory results. Therefore, only one or two iterations are typically used in practice.305

An alternative method for calculation of the pressure gradient is the least squares approach [58].

From this, the formula (45) is used to obtain the pressure at cell faces, as required for the conservative

method. These two approaches for calculation of the pressure gradient are used in this work, giving

equally satisfactory results.310
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3.2. Conservative semi-implicit method

In this section a conservative version of the semi-implicit method is developed. The non conservative

nature of the semi-implicit method is due to the fact that non-conservative variables are used in the

discretized equations and that linearization is introduced in order to obtain a linear system for the

pressure variables.315

However as is commonly known, conservation is essential for a method to be able to exactly capture

shock waves in single-phase flows [42, pp. 237-239]. For two-phase flows, it is desirable that the

physical conservation of mass, momentum and total energy for the mixture should be respected by the

numerical method. Indeed, non conservativeness can produce mass and energy errors for some classes

of transients during time advance, either resulting in automatic reduction of time step length, thus320

increased run time, or the growth of unacceptably large errors in transient results [44]. For example,

in RELAP5 [22], at each iteration the density calculated by the semi-implicit numerical method is

compared with a more conservative calculation, and if the difference is too large the time step length

will be reduced.

Therefore, a new additional step which renders the numerical scheme conservative is introduced325

here. This step is explicit in the sense that no linear system needs to be solved in this additional step,

thus the computational cost is negligible. It should be made clear that the whole conservative scheme

is still semi-implicit. As seen in the following presentation of the conservative scheme, the original non

conservative pressure solver, presented in Section 3.1, is still required in order to calculate the new

time-step phasic velocity at a cell face. The whole conservative scheme is actually a combination of the330

original non conservative pressure solver and the additional step represented by equations (46)-(48),

and therefore the scheme is semi-implicit.

The main idea of the conservative method is to consider the pressure solver presented above only

as a means to calculate the new time-step phasic velocity at a cell face, and not as a final solution.

Then the conservative variables are solved directly, as shown in equations (46)-(48), with starred terms

(·)∗ that are obtained by the non conservative pressure solver. Finally, the primitive variables αk, uk,

P and hk are derived from the conservative variables. By construction, this method is conservative,
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which ensures that mass, momentum, and total energy are conserved for the two-phase mixture.

(αkρk)n+1
c0 − (αkρk)nc0

∆t
+

∑
f (αkρk)nf [(uk)n+1

f · Sf ]

Vc0
= (Γk)∗c0 , (46)

(αkρkuk)n+1
c0 − (αkρkuk)nc0

∆t
+

∑
f (αkρkuk)nf [(uk)n+1

f · Sf ]

Vc0
+ (αk)nc0

∑
f P
∗
f Sf

Vc0
= (αkρk)nc0g + (Γku

i)nc0

+ (Mik)n+1
c0 , (47)

(αkρkEk)n+1
c0 − (αkρkEk)nc0

∆t
+

∑
f

[
(αkρkEk)nf + (αk)nfP

∗
f

]
[(uk)n+1

f · Sf ]

Vc0
+ (P )∗c0

(αk)∗c0 − (αk)nc0
∆t

= (αkρk)nc0g · (uk)nc0 +

[
Γk

(
hik +

|ui|2

2

)
+Qik

]∗
c0

+ (Mik)n+1
c0 · (ui)nc0 . (48)

Similar to the non conservative semi-implicit method, it is necessary to linearize the implicit term

(Mik)n+1 to avoid an iterative procedure. However, this linearization means that the numerical dis-

cretization is no longer conservative. For example, this can be seen in the momentum discretization,

as the sum of the discretized momentum equations for the two fluids is not a consistent discretization

for the two-phase mixture momentum equation in conservative form:∑
k=v, l

∂αkρkuk
∂t

+
∑
k=v, l

∇ · (αkρkuk ⊗ uk) = −∇P +
∑
k=v, l

αkρkg. (49)

A different set of equations, which are solved numerically, are used in order to preserve the con-

servativeness of the numerical method when interfacial terms are involved. The sum of the phasic

momentum equation in conservative form (49) is discretized directly. In addition, the difference of the

phasic momentum equation in the same form as the non conservative semi-implicit method is used:

∂uv
∂t
− ∂ul

∂t
+
∇ · (αvρvuv ⊗ uv)

αvρv
− ∇ · (αlρlul ⊗ ul)

αlρl
− uv∇ · (αvρvuv)

αvρv
+

ul∇ · (αlρlul)
αlρl

+
uvΓv
αvρv

− ulΓl
αlρl

= −
(

1

ρv
− 1

ρl

)
∇P +

Miv

αvρv
− Mil

αlρl
+

Γvu
i

αvρv
− Γlu

i

αlρl
. (50)

Use of the two previous equations ensures that the momentum of the two-phase mixture is conserved

numerically. A different approach is adopted for the energy equation. The new time-step energy is

calculated directly using the discretized equation (48), by initially dropping the term (Mik)n+1 · (ui)n.

The energy term calculated this way is denoted by ˜(αkρkEk)
n+1

, as it is not the final solution. Then

the new time-step energy term is finally corrected by

(αkρkEk)n+1 = ˜(αkρkEk)
n+1

+ ∆t
[
(Mik)n+1 · (ui)n

]
, (51)

where (Mik)n+1 is already available from the resolution of the mass and momentum equations.

3.3. Phase appearance and disappearance

In two-phase flows, phase appearance and disappearance can be encountered in many situations,335

e.g., phase appearance due to heating of the liquid (boiling), phase disappearance in phase separation
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due to gravity, etc. Numerical difficulties may be observed when a phase appears or disappears [45],

such as loss of void fraction positivity, convergence difficulties, etc.

Some strategies to deal with phase appearance and disappearance can be found in previous work.

In the CATHARE code [46], the interfacial mass and energy transfer terms are conditioned so that340

the calculated void fraction does not exceed a predefined valid interval. Moreover, when a phase

disappears, it is considered to have reached its saturation temperature and its velocity is assumed to

be equal to the velocity of the other phase. In the MINCS code [59], a new parameter α̂k that satisfies

α̂k/αk −→ 0 as αk −→ αmin is defined, where αmin is a volume fraction threshold. The right hand

sides of equations (1)-(3) are then expressed in terms of newly introduced α̂k. This ensures that the345

division of the right hand sides of equations (1)-(3) by αk will not cause problems when αk is very

small, as we have α̂k/αk −→ 0 in this situation. In [45], the authors presented some methods to deal

with the loss of hyperbolicity of the two-fluid system and the lack of positivity for a density-based

method.

Here, some basic ideas adopted in this work are presented to deal with phase appearance and350

disappearance. For the above numerical scheme, when void fraction αv approaches 0 or 1, several

terms in the numerical discretization will become singular. The performance of these strategies will

be demonstrated through several numerical results in the next section.

Firstly, the void fraction is defined for the interval [αmin, αmax], so if at the end of a step the

calculated void fraction is out of this predefined interval, the value is corrected by, for example,

imposing αv = αmin if αv < αmin. Then in the momentum equation, it is required to divide both

sides of equation (12) by αkρk to calculate the new time-step phasic velocity. For terms containing the

coefficient αkρk, like Mik defined by equation (7), αkρk can be directly eliminated, thus this division

does not pose problem. However, for other terms, e.g.,
∑
f (αvρvuv)

n
f [(uv)

n
f ·Sf ]/Vc0 for the vapor when

αv approaches 0, two methods can be considered, the first is to divide these terms by max(αv, αmin) · ρv
instead of αvρv to avoid division by an excessively small number; the second method is to redefine

(αv)f in a manner that the division (αv)f/αv is well defined:

1

(αv)f
=

1

2
·
(

1

(αv)K
+

1

(αv)L

)
, (52)

with K and L being the two neighboring cells of the considered face, so that (αv)f = 2(αv)K(αv)L
(αv)K+(αv)L

, for

0 < (αv)K , (αv)L < ε where ε is a small number, the division (αv)f/αv remains defined. Afterwards,

the inversion of matrix A is required in the step used to obtain the pressure equation (31). When

source terms are not considered, the determinant of this matrix is:

det(A) = αvαl

[
ρ2
vαl

(
∂ρl
∂hl

+ ρl
∂ρl
∂P

)
+ ρ2

l αv

(
∂ρv
∂hv

+ ρv
∂ρv
∂P

)]
, (53)

thus for void fraction αv approaching 0 or 1, the matrix becomes singular. One can refer to [51, pp.
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55-56] for the calculation of det(A) in the general case where source terms are included. The result is

similar to (53), with the determinant also containing the coefficient αvαl. The terms inside the square

brackets of equation (53) are evaluated for a simple case where the gas is considered to behave as an

ideal gas and the liquid is incompressible:

P = (γ − 1)ρvev,
∂ρl
∂P

= 0,
∂ρl
∂hl

= 0, (54)

where γ is a constant coefficient for the gas. In this case the determinant of matrix A is

det(A) = α2
vαlρ

2
l

γ

(γ − 1)2

P

h2
v

. (55)

In this simple case, it is noticeable that for αk 6= 0 (coexistence of the two phases) the matrix A

remains invertible even though only one of the fluids is incompressible. Matrix A needs to be inverted

in equation (25) in order to find the unknown variables (x)c0

(x)c0 =
(tC)nc0
det(A)

·

(s)nc0 −
∑
f

(g)nf [(uv)
n+1
f · Sf ]−

∑
f

(l)nf [(ul)
n+1
f · Sf ]

 , (56)

where C is the cofactor matrix of A satisfying A−1 = (tC)/det(A), and the elements of the cofactor

matrix also contain the coefficients αv and/or αl. Consequently, like for the momentum equation,

the coefficient αvαl can be eliminated from both the determinant and the cofactor matrix when using

equation (56) to solve for the unknown variables. Yet, for certain terms in the cofactor matrix only αv

or αl is present. For example, the first row and column element C11 only contains the coefficient αl (see

[51, pp.56-58] for the complete calculation of the cofactor matrix), so as in the momentum equation,

two methods can be used to calculate C11/αvαl. Either the calculation C11/max(αv, αmin)αl is made

instead of C11/αvαl, or as C11 is to be multiplied by the corresponding element inside the square

brackets of system (56), that is ∆t(Γv)
n
c0 + ∆t · (αvρv)nf [(uv)

n+1
f · Sf ]/Vc0 , so we can rewrite

C11

(αvαl)nc0
·
[
∆t(Γv)

n
c0 +

∆t

Vc0
(αvρv)

n
f [(uv)

n+1
f · Sf ]

]
=

C11

(αl)nc0
·

[
∆t(Γv)

n
c0 + ∆t

Vc0
(αvρv)

n
f [(uv)

n+1
f · Sf ]

]
(αv)nc0

,

(57)

Since C11 contains the coefficient αl, the division C11

(αl)nc0
can be made without any problem. As for the

term

[
∆t(Γv)nc0

+ ∆t
Vc0

(αvρv)nf [(uv)n+1
f ·Sf ]

]
(αv)nc0

, the source term typically contains the coefficient αvαl, and in355

addition equation (52) can be used to calculate (αv)
n
f in order to deal with the division

(αvρv)nf
(αv)nc0

. In

this way, matrix A can be inverted, even during phase disappearance. Lastly, as in [46], source terms

are conditioned such that the void fraction remains in the range [αmin, αmax]. For example, further

condensation is not possible when the void fraction is too small.
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4. Numerical results360

The numerical method presented in Section 3 is based on a two-fluid six-equation model for simu-

lating two-phase flows. It can be applied directly to simulation of single-phase flows using the Euler

equations. Here, in addition to two-phase numerical results to illustrate the behaviour of the numeri-

cal method with respect to different physical configurations, single-phase results are also presented to

show that the conservative method is capable of capturing shock waves exactly and dealing with low365

Mach number flows. Unless otherwise stated, the stiffened gas EOS is used for single-phase cases,

while tabulated EOS is used for two-phase cases.

4.1. Single-phase cases

Riemann problems

Sod’s shock tube problem [54] can be performed experimentally by a sudden breakdown of a370

diaphragm (located at x = 0.5 m) in a 1-meter long tube separating two initial gas states at different

pressures and densities (as in Table 1). An exact solution to the full system of one-dimensional Euler

equations exists for this test case, as indicated by the dashed line in Figure 2 for the density and in

Figure 3 for the velocity. The test problem is run using a uniform mesh of 800 cells. As represented in

Figures 2 and 3, the original scheme does not capture exactly the shock wave compared with the exact375

solution. Indeed, the intermediate state is not well calculated. Whereas the result obtained with the

conservative scheme agrees well with the exact solution. Another Riemann problem, called the Lax

shock tube [60], is performed with initial states given in Table 2. Again, the shock wave is captured

exactly by the conservative scheme, which is not the case for non conservative scheme (see Figure 4,

with 400 cells in the two calculations). Many test cases have been performed in order to compare the380

two schemes. They show that the conservative scheme is equally as robust as the original scheme, but

that it possesses the capacity to capture shock waves.

Table 1: Initial states for Sod’s shock tube problem.

Left state Right state

P [Pa] 1. 0.1

u [m/s] 0. 0.

h [J/kg] 3.5 2.8

Table 2: Initial states for Lax shock tube problem.

Left state Right state

P [Pa] 3.528 0.571

u [m/s] 0.698 0.

h [J/kg] 27.748 3.997

Bump in a channel

As already mentioned, pressure-based methods are intrinsically capable of dealing with low Mach

number flows. Here a benchmark test is calculated using the pressure solver to demonstrate its capa-385
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Figure 2: Sod’s shock tube: density comparison at

t = 0.2 s.
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Figure 3: Sod’s shock tube: velocity comparison at

t = 0.2 s.
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bilities and to test whether the conservative version of the numerical scheme maintains the property

of low Mach number treatment. An inviscid low Mach flow in a channel with a sinusoidal bump [61]

(see Figure 5) is considered. The initial state for the fluid in the channel is given in Table 3, which

corresponds to an initial Mach number of 0.01. Velocity and specific enthalpy are specified (values

taken equal to the initial state) as inlet boundary conditions. The outlet boundary condition is im-390

posed pressure: Pexit = 105 Pa. Slip conditions are applied to the upper and lower walls. Numerical

results obtained using a structured mesh composed of 40× 10 cells are shown in Figure 5. In contrast

to density-based methods, which normally do not respond to the geometrical disturbance [61] at low

Mach number, the pressure solver gives a symmetry of the Mach number contours with respect to the

bump. In addition, the conservative version of the solver gives similar results to the original version.395

We also evaluate the pressure variation with respect to the Mach number by imposing a varying fluid

velocity at the inlet uinlet = 1, 0.1, 0.01, 0.001, where the corresponding Mach numbers are respectively

M = 10−2, 10−3, 10−4, 10−5. The pressure variations obtained with the four Mach numbers are

respectively 9.220 × 10−5, 9.313 × 10−7, 9.428 × 10−9 and 1.106 × 10−10. As indicated in Figure 6,

the pressure variation is of order O(M2), meaning good behavior at low Mach numbers. The pressure

variation is defined by

Pvar = (Pmax − Pmin) /Pmax, (58)

where Pmax is the pressure maximum, and Pmin is the pressure minimum.

0.009

0.01

0.012

0.013

8.229e-03

1.438e-02

Mach number

Figure 5: Bump in a channel: Comparison of Mach contour between conservative solver (green line) and non-conservative

solver (blue line).

4.2. Two-phase cases

Among the two-phase test cases, only in Ransom’s water faucet test case it is the interfacial pressure

default term (5) that makes the two-fluid six-equation model (1)-(3) hyperbolic. The objective is to

illustrate the fact that with a refined mesh (less numerical diffusion), the interfacial pressure default400

term is necessary to stabilize the calculation.
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Table 3: Initial state for bump in a channel.

Physical quantity Value

P [Pa] 105

u [m/s] 1.

h [J/kg] 2.5 104

Table 4: Initial state for Ransom’s faucet.

Physical quantity Value

αv [-] 0.2

P [Pa] 105

uv [m/s] 0.

ul [m/s] 10.

hv [J/kg] 3245940.

hl [J/kg] 209283.

Relatively coarse meshes are used for other test cases, hence stability problems are eliminated

by numerical diffusion. Coarse meshes are used here because we are in the validation phase of the

numerical method, and the focus is on quick calculations to show that physically realistic results can

be obtained using the semi-implicit method.405

Ransom’s water faucet

This is a non-stationary 1D test case proposed by Ransom [54], which initially consists of a water

jet surrounded by stagnant gas contained within a cylindrical channel. The liquid is then accelerated

under gravity, and because of mass conservation, this results in a narrowing of the liquid section.

The initial state for this test case is given in Table 4. The inlet boundary condition is velocities and410

enthalpies of both phases, and void fraction, all specified equal to initial state; at the outlet, the

pressure is equal to 105 Pa.

An analytical expression for void fraction is available for this test, which consists of a discontinuity

traveling from the inlet to the outlet, as represented by the dashed line in Figure 7. The numerical
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Figure 8: Sedimentation problem: void fraction profile

at different instants.

results agree well with the exact solution, however for the refined mesh (light brown line), numerical415

instability is observed due to the non hyperbolicity of the two-fluid model. As expected, adding the

interfacial pressure default given by equation (5) with δ = 1.1 eliminates this instability (blue line).

Static sedimentation

This test case simulates the evolution of a mixture of liquid and gas in a vertical column [50, pp. 143-

145], which validates the ability of the numerical method to cover the whole range of void fractions from420

0 to 1. Initially the mixture is homogeneous and the two fluids are at rest. Wall boundary conditions

are applied at both ends of the column. Under gravity, heavy liquid moves downward and light gas

moves upward, meaning that two volume fraction waves are observed to propagate simultaneously

from the bottom and top of the domain. Eventually a sharp interface separating the gas and liquid

is established. Figure 8 shows the void fraction profile at different instants, where a uniform mesh of425

200 cells is used. The dashed line represents a theoretical result for the void fraction at t = 1 s using

the assumption that the volumetric fluxes across the two volume fraction waves are compensated, as

detailed in [50, pp. 143-145].

Boiling channel

This test case consists of two-phase flow in a uniformly heated one-dimensional channel. The430

heating along the channel results in vapor appearance. As in [45], there are two distinct cases: saturated

case and subcooled case, with initial states given in Table 5. For the inlet boundary condition, velocities

and enthalpies of both phases, and void fraction, are given equal to the initial state; at the outlet the

pressure is fixed at 68.73 105 Pa.

The difference between these two cases is that in the first case, the liquid is initially saturated,435

so vapor appears immediately at the inlet; whereas in the second test case, the liquid is initially
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Figure 9: Saturated case for the boiling channel prob-

lem: void fraction profile at steady state.
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Figure 10: Saturated case for the boiling channel prob-

lem: void fraction profile at steady state.

subcooled, so it takes a finite distance for the liquid to reach saturation. A simple model from [45]

is used for mass and energy exchanges between the two phases, which assumes that when hl < hsat
l

the heat flux applies only to the heating of the liquid and when hl ≥ hsat
l the heat flux leads only

to evaporation, where hl and hsat
l are respectively the specific enthalpy of the liquid and the specific440

enthalpy of saturated liquid. Numerical results are illustrated in Figure 9 and Figure 10 (with 200

cells), with no particular problem observed at the boiling point (where vapor creation occurs) in the

subcooled case. This boiling point can be obtained analytically by neglecting the internal energy and

pressure variations along the channel [51, pp. 136], as indicated by the dashed line in Figure 10, which

is well predicted by the numerical calculation. This test case demonstrates the ability of the numerical445

method to deal with phase appearance due to energy transfer.

Table 5: Initial states for boiling channel.

Physical quantity Saturated case Subcooled case

αv [-] 10−5 10−5

P [Pa] 68.73 105 68.73 105

uv [m/s] 0.78 0.78

ul [m/s] 0.78 0.78

hv [kJ/kg] 2774. 2774.

hl [kJ/kg] 1260. 1220.

Tee-junction

Here, we consider two-phase flow in a T-junction composed of an inlet pipe, a run pipe and a

branch pipe as illustrated in Figure 11. This test case, which is described in [17, 45], shows a dynamic
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Figure 11: Geometry of the Tee-junction

test case, dimensions in [m].

Table 6: Initial state for Tee-junction.

Physical quantity Value

αv [-] 0.45

P [Pa] 150. 105

uv [m/s] 1.

ul [m/s] 1.

hv [kJ/kg] 2650.

hl [kJ/kg] 1607.

separation between liquid and gas caused by the geometry, as phase change is not taken into account in450

the calculation. The geometry of the test case is detailed in Figure 11, a mixture of gas and liquid enters

the junction, and passes through both the run and branch pipes of the junction. The separation of

the flow is controlled by imposing a constant pressure equal to the reference pressure (i.e., 150 105 Pa)

at the outlet of the run pipe and a constant pressure that is lower than the reference pressure (i.e.,

149.998 105 Pa) at the outlet of the branch pipe. The pressure difference causes fluids to be pushed455

towards the branch pipe. The liquid is considered as incompressible with density ρl = 103 kg/m3, and

the perfect gas equation of state with γv = 1.4 is used for the gas. The initial conditions are uniform in

the domain (the velocity is in the axial direction of each tube), as presented in Table 6. The simulation

is performed on an unstructured triangular mesh of 1005 cells with characteristic cell length equal to

0.02 m.460

Due to the difference between liquid and gas density, and therefore the inertia, most of the liquid

continues in the run pipe after the junction, whereas a large part of the gas enters the branch pipe,

as shown in Figure 12a. In particular, the simulation predicts a recirculation of the flow at the inlet

of the branch pipe, as shown in Figure 12b, and the gas is trapped therein. This test case shows the

capacity of the numerical method to treat a wide range of void fractions, and also behavior on an465

unstructured mesh. Since there is no experimental data for this test case, qualitative comparison can

be made between the numerical results obtained here and those in [17, 45], where similar behavior has

been observed.
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Figure 12: Tee Junction at steady state.

Water hammer

This test case consists of a large size tank with a pipeline connected at the bottom, as illustrated in470

Figure 13. Initially, water flows in the direction of the arrow with a uniform velocity. A sudden closure

of the valve triggers a transient flow, and propagation of a pressure wave in the pipeline. Evaporation

and condensation may be observed because of the pressure variation. Water hammer phenomena can

damage nuclear installations, and thus cause problems in the primary and secondary cooling systems.

Therefore, this test case is of interest in safety studies of nuclear installations [62].475
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Figure 13: Illustration of water hammer prob-

lem.

Table 7: Initial states for water hammer.

Physical quantity Single-phase case Two-phase case

αv [-] 10−5 10−5

P [Pa] 3.369 105 10. 105

uv [m/s] 0.239 0.401

ul [m/s] 0.239 0.401

hv [kJ/kg] 2730. 2777.

hl [kJ/kg] 100.5 688.8

As in [62], two cases are calculated with initial states given in Table 7: during the simulation of

the single-phase case, pressure in the pipeline remains above the saturation pressure, and as a result

no phase change occurs; by contrast in the two-phase case, the pressure tends to drop below the

saturation pressure, so phase change is expected. Only the pipeline part of the installation is taken

into consideration in the numerical simulation. A wall boundary condition is imposed at the valve,480

and the pressure and the enthalpies of the two phases are fixed (values taken from the initial states)

at the junction between the tank and the pipeline. The numerical calculations are performed using a

uniform mesh of 100 cells.

Figure 14a shows the time evolution of pressure calculated at the valve. When the valve is closed

abruptly, the pressure at the valve increases immediately by ∆P = ρcV0 [62], with ρ, c and V0 being485

respectively liquid density, sound speed and initial liquid velocity. Thus, a pressure wave travels

towards the tank with pressure equal to P0 + ∆P and zero velocity fluid behind it. At time t = L/c

(where L is the length of the pipeline), the wave reaches the tank and is reflected back into the pipe,

and the liquid velocity is reversed. This pressure wave travels back to the valve at t = 2L/c, and

at that time the liquid velocity is equal to −V0 in the whole domain. Afterwards, the pressure is490

reflected by the valve, and a sudden pressure drop can be observed at the valve, which corresponds to

the pressure drop at about 0.05 s in Figure 14a. The physical behavior of the fluid after this can be

analyzed in a similar manner, indeed a periodic phenomenon with a period of 4L/c for the pressure at

the valve is present, as indicated in Figure 14a.

The pressure evolution at the valve for the two-phase flow case is illustrated in Figure 14b. In495

contrast to the single-phase case, at t = 2L/c, the pressure at the valve drops to Psat (saturation

pressure), which leads to evaporation, as shown in Figure 15. The peak at about t = 0.16 s is due to

an interaction between the pressure wave and the vapor cavity created by the evaporation process. A

detailed physical interpretation of the two cases can be found in [62]. The simplified exchange models

presented in Section 2.2 are used to perform this test case, and the obtained numerical results agree500
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well with those found with the CATHARE code and from experiments [62]. The numerical results

can be improved by taking into account the elasticity of the pipeline [62] and by using more elaborate

exchange terms. This test shows that the numerical method is capable of computing the fast transients

found in pressure wave propagation.
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Figure 14: Water hammer problem: pressure at the valve vs time.
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Figure 15: Water hammer problem: void fraction at the valve vs time for two-phase case.
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Fast depressurization505

This test case consists of a rapid depressurization of a horizontal tube by opening one end of the

tube[54, 17]. It aims to simulate the behavior of the two-phase flow when a breach appears in the

primary circuit in a pressurized water reactor (PWR). Prediction of the flow due to this breach is

essential so that a suitable solution to deal with this problem can be considered [7]. The geometry

for this test case is a 4.389-m long tube with an internal diameter of 0.1 m, as shown in Figure510

16. Experimental data exists for pressure at the 6 measurement points Pi, i = 1, · · · , 6, and also

for the void fraction at measurement point α, shown in Figure 16. The tube is initially filled with

degassed water (initial void fraction equal to 10−5) beneath the saturation temperature and at rest,

at a pressure of 150 bar and a temperature of 300◦C. One end of the tube opens in an estimated

time period of 0.001 s and the pressure at this end drops from 150 bar to 1 bar (atmospheric pressure).515

As a result of this opening, rapid depressurization takes place throughout the tube, which results in

almost total evaporation of the liquid (known as flashing) and the propagation of a pressure wave in

the water-vapor mixture. Liquid and steam are ejected from the tube at very high velocities.
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Figure 16: Geometry of fast depressurization test case, all dimensions in [mm].

For fluid in the metastable zones, the approach described in [54] is used to extrapolate the ther-

modynamic quantities. Figures 17 and 18 show a comparison between the numerical results (with520

100 cells) and the experimental data at measurement points P1 and P2. It can be noted that the

numerical solution reproduces the physical phenomenon well, however the accuracy of the numerical

results remains to be improved. Since we have used an extrapolation for fluids in metastable zones, the

accuracy of the numerical results can be improved if use the actual equations of state in these zones.

In addition, a better choice of drag force may also lead to results closer to the experimental data. Here525

we also compare the numerical solution with a reference solution obtained using the VFFC scheme

[16]. The VFFC scheme is a density-based method, which calculates explicitly all the characteristic

waves of the system. Indeed, the two solutions obtained using the same drag force (equation 7), and

mass and energy transfer models (equations 9 and 10) agree well.
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(b) Point P2.

Figure 17: Fast depressurization: temporal evolution of the pressure at measurement points P1 and P2.
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Figure 18: Fast depressurization: temporal evolution of the void fraction at measurement point α.

5. Conclusion530

In this paper, a two-fluid six-equation model, with the addition of an interfacial pressure default

term to make the model hyperbolic, is adopted for simulation of two-phase flows. The study extends

the semi-implicit scheme originally used on structured grids with staggered variables to unstructured

grids with collocated variables, in order to accommodate complex geometries. As in the nuclear

component CUPID code, Rhie-Chow interpolation is used to calculate the velocity at a cell face in535

order to mitigate the checker-board problem. In the resulting pressure equations, terms accounting

for the grid non-orthogonality are calculated explicitly using a deferred-correction method, which

keeps the computational stencil small and allows accurate results to be obtained. The semi-implicit

method is made conservative with a supplementary cost effective explicit correction step. Single-phase

numerical results show that the conservative scheme is equally robust and able to deal with low Mach540

number flows as the original semi-implicit scheme, and more importantly, is capable of capturing

exactly shock waves. Two-phase benchmark tests validate the numerical method for different physical
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configurations and indicate that the method is able to handle a large range of void fractions, including

phase appearance and disappearance. The numerical method is coupled with a tabulated EOS library

named Quicksteam in order to simulate industrial tests. Numerical results comparable to experimental545

data are obtained using a simplified model for mass and energy exchanges between the two phases.
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Appendix A. Tabulated EOS

Tabulated EOS are required in order to predict accurately the dynamics of two-phase flows. Thus

based on the industrial formulation IAPWS [48], a water table named Quicksteam [47] was developed555

at the Centre de Mathématiques et de Leurs Applications (CMLA), ENS Paris-Saclay. In this section,

the IAPWS formulation and its integration within our simulation code is explained.

The IAPWS formulation divides the temperature (T )-pressure (P ) plane into five regions, as shown

in Figure A.19, with the following range of validity:

273.15 K ≤ T ≤ 1073.15 K, p ≤ 100 MPa,

1073.15 K ≤ T ≤ 2273.15 K, p ≤ 50 MPa.
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Figure A.19: Regions of IAPWS.

Region 3 concerns supercritical fluids, and region 5 is for high temperature applications. The

regions of interest in our applications, as well as those used by Quicksteam [47], are region 1 (for

liquid), region 2 for gas and region 4 for the saturation state. In regions 1 and 2, a polynomial function

of temperature and pressure based on correlations of empirical data is used to correlate Gibbs free

energy. For example, in region 1 the Gibbs free energy is expressed as

g(p, T ) = RT

34∑
i=1

ni

(
7.1− p

p∗

)Ii (T ∗
T
− 1.222

)Ji
, (A.1)

where R is the specific gas constant of ordinary water, while the two reference constants p∗ and T ∗, the

coefficients ni and exponents Ii and Ji are calibrated according to experimental data [48]. A similar

polynomial function exists for region 2.560

Thus all thermodynamic properties can also be expressed as polynomial functions of temperature

and pressure, which can be obtained analytically using the following classical relations based on the
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specific Gibbs free energy (g):

Specific volume: v =

(
∂g

∂P

)
T

, (A.2)

Density: ρ =
1

v
=

[(
∂g

∂P

)
T

]−1

, (A.3)

Specific enthalpy: h = g − T
(
∂g

∂T

)
P

, (A.4)

Isobaric cubic expansion coefficient: αV =
1

v

(
∂v

∂T

)
P

=
1

v

(
∂2g

∂T∂P

)
, (A.5)

Isothermal compressibility: kT = −1

v

(
∂v

∂P

)
T

= −1

v

(
∂2g

∂2P

)
T

, (A.6)

Specific isobaric heat capacity: cp = (∂h/∂T )P = −T
(
∂2g

∂2T

)
P

, (A.7)

Moreover, as mentioned in Section 3.1.2, the derivatives ( ∂ρ∂h )P and ( ∂ρ∂P )h are required in the

discretized mass and energy equations of the numerical method. The independent variables in these

two derivatives are the pressure P and the specific enthalpy h. However, only derivatives as function of

(P, T ) are directly available using the specific Gibbs free energy (g). Therefore, one needs to express

these two derivatives ( ∂ρ∂h )P and ( ∂ρ∂P )h by other derivatives that are functions of (P, T ):

(
∂ρ

∂h

)
P

=

(
∂ρ
∂T

)
P(

∂h
∂T

)
P

, (A.8)

(
∂ρ

∂P

)
h

= −

(
∂ρ
∂T

)
P

(
∂h
∂P

)
T
−
(
∂ρ
∂P

)
T

(
∂h
∂T

)
P(

∂h
∂T

)
P

. (A.9)

The above relations can be obtained using the chain rule used for computing the derivative of the

composition of two functions [51, pp. 195-196]. Finally, using the thermodynamic properties defined

in (A.2)-(A.7) we obtain (
∂ρ

∂h

)
P

= − αV
v cp

, (A.10)(
∂ρ

∂P

)
h

=
αV (1− Tαv) + kT

v cp

cp
. (A.11)

It is now explained how the Quicksteam water table is integrated into the simulation code. Two

main issues need to be treated; firstly the choice of independent variables (P, h) in our code being

different to (P, T ) used in the IAPWS standard, and secondly the handling of fluids in a metastable

state.

Handling of the liquid phase is shown here, while the treatment for the gas phase can be obtained565

similarly. The saturation temperature Tsat can first be calculated from the pressure using the equation

Tsat(P ) for region 4, and accordingly the saturation enthalpy hsat
l (P, Tsat). Then, a determination of
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whether the liquid is in a metastable state can be made by comparing the calculated enthalpy hl to

the saturation enthalpy hsat
l . If the liquid is in a stable state, meaning that hl < hsat

l , the existing

backward equation in IAPWS can be used directly to deduce the temperature T from (p, hl) without570

using an iterative process. Once the temperature is obtained, the above-mentioned thermodynamic

relations can be applied afterwards.

However, the backward equation is no longer valid if the liquid is in a metastable state (hl > hsat
l ).

An iterative process is therefore needed to determine the temperature from the pressure and the specific

enthalpy by solving

f(Tl) = H(P, Tl)− hl = 0, (A.12)

where P , hl and the function H(P, Tl) are given. The Newton-Raphson method applied to equation

(A.12) gives

T k+1
l = T kl −

f(T kl )

f ′(T kl )

= T kl −
H(P, T kl )− hl

cp
, (A.13)

which allows the liquid temperature to be obtained iteratively, and we can use T 0
l = Tsat to initiate the

iterative process. In practice, for the test cases presented in this work using tabulated EOS, only two

or three iterations are required to find a convergent solution for temperature with a relative difference575

of 10−3 between two successive iterations. Similar to the stable case, all other thermodynamic relations

that are polynomial functions of pressure and temperature can be applied when the liquid temperature

is known.

References

[1] M. Ishii, T. Hibiki, Thermo-fluid dynamics of two-phase flow, Springer, 2011.580
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