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Abstract 35 

Background 36 

Multiple Sclerosis (MS) is a chronic inflammatory disease and a leading cause of progressive neurological 37 

disability among young adults. DNA methylation, which intersects genes and environment to control 38 

cellular functions on a molecular level, may provide insights into MS pathogenesis.  39 

Methods 40 

We measured DNA methylation in CD4+ T cells (n=31), CD8+ T cells (n=28), CD14+ monocytes (n=35) and 41 

CD19+ B cells (n=27) from relapsing-remitting (RRMS), secondary progressive (SPMS) patients and healthy 42 

controls (HC) using Infinium HumanMethylation450 arrays. Monocyte (n=25) and whole blood (n=275) 43 

cohorts were used for validations.  44 

Findings 45 

B cells from MS patients displayed most significant differentially methylated positions (DMPs), followed 46 

by monocytes, while only few DMPs were detected in T cells. We implemented a non-parametric 47 

combination framework (omicsNPC) to increase discovery power by combining evidence from all four cell 48 

types. Identified shared DMPs co-localized at MS risk loci and clustered into distinct groups. Functional 49 

exploration of changes discriminating RRMS and SPMS from HC implicated lymphocyte signaling, T cell 50 

activation and migration. SPMS-specific changes, on the other hand, implicated myeloid cell functions and 51 

metabolism. Interestingly, neuronal and neurodegenerative genes and pathways were also specifically 52 

enriched in the SPMS cluster.   53 

Interpretation 54 
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We utilized a statistical framework (omicsNPC) that combines multiple layers of evidence to identify DNA 55 

methylation changes that provide new insights into MS pathogenesis in general, and disease progression, 56 

in particular.  57 
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Research in Context  64 

Evidence before this study 65 

While previous studies implicated DNA methylation changes in immune cells from MS patients, there was 66 

a very limited overlap between the findings. These studies predominantly focused on the RRMS stage of 67 

disease and changes in T cells.  68 

Added value of this study 69 

We investigated DNA methylation changes in both RRMS and SPMS stages and in four immune cell types 70 

implicated in MS pathogenesis, i.e. CD4+ and CD8+ T cells, CD14+ monocytes and CD19+ B cells. We 71 

observed evidence of shared DNA methylation changes across all cell types and we implemented a non-72 

parametric combination framework (omicsNPC) to identify such differences taking advantage of increased 73 

power when multiple layers of evidence are combined. Notably, omicsNPC is applicable in any context 74 

where omics from multiple cell types (or multiple omics from the same cell type) are available. Shared 75 

disease-associated differences clustered individuals into distinct functional groups suggesting both known 76 

and novel pathways in MS pathogenesis.  77 

Implications of all the available evidence 78 

DNA methylation changes, similar to multiple other lines of evidence, implicate dysregulation of adaptive 79 

immune mechanisms in the pathogenesis of MS. Additionally, SPMS-specific DNA methylation changes 80 

suggest the involvement of myeloid cells, phagocytosis and metabolism, adding to a growing evidence of 81 

these mechanisms being important for disease progression. Finally, an intriguing ‘brain signature’ of 82 

neurodegeneration was found for the first time in peripheral immune cells during progressive disease.  83 
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Introduction 84 

Multiple Sclerosis (MS) is a leading cause of progressive disability in young adults caused by inflammation, 85 

demyelination and axonal loss in the central nervous system (CNS) (1, 2). Patients are typically diagnosed 86 

between 20-40 years of age with women being affected nearly three times as often as men (3). The 87 

immune response causes the breakdown of the blood-brain barrier, infiltration of immune cells into the 88 

CNS and subsequent development of inflammatory and demyelinating lesions in both brain and spinal cord 89 

(4). Most MS patients (85-90%) are initially diagnosed with the relapsing-remitting form of MS (RRMS), 90 

which is characterized with recurring episodes of acute neurological symptoms (relapses) followed by 91 

recovery (remission). The majority of RRMS patients eventually convert to a progressive form of MS, i.e. 92 

secondary-progressive MS (SPMS) with accumulating axonal damage and neuronal loss and persistent 93 

increase in neurological disability. Current disease modulatory treatments (DMT) are mainly effective in 94 

controlling the early inflammatory stage of the disease, while the therapeutic efficacy in progressive stages 95 

is poor, likely due to a shift from mainly adaptive immune mechanism to more complex and currently less 96 

defined processes also involving innate and local tissue reactions (2).  97 

Although the exact cause of MS remains unknown more than 200 genomic loci have been associated with 98 

the risk of developing the disease with the genes in the HLA class II locus (in particular HLA-DRB1) exerting 99 

the strongest influence (5-7). The risk loci collectively support the immune cause of MS and particularly 100 

the role of adaptive immunity and CD4+ T cell pathways in triggering the disease. While genetic and 101 

environmental factors independently confer modest effects, their combined impact conveys a dramatic 102 

increase in the risk of developing MS, suggesting interactions on a molecular level (8). Thus, studying the 103 

epigenetic mechanisms, that integrate instructions from genes and environment to control cellular 104 

function on the molecular level, represents one avenue to uncover processes of importance for diseases 105 

as complex as MS.  106 
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The most commonly studied epigenetic mechanism is DNA methylation, which is the covalent addition of 107 

a methyl group to the 5th carbon of cytosine, known as 5-methylcytosine (5mC) in a CpG dinucleotide 108 

context (9). Generally, DNA methylation within CpG rich promoters of genes is associated with 109 

transcriptional repression, while higher methylation in gene bodies has been shown to positively correlate 110 

with expression (10). We have recently demonstrated that DNA methylation mediates risk of developing 111 

MS (11). Several studies have compared DNA methylation changes between MS patients and controls in 112 

CD4+, CD8+, CD14+, CD19+ cells and bulk peripheral blood mononuclear cells using the same methodology 113 

to measure DNA methylation genome-wide, i.e. Illumina methylation arrays (11-18). While each study 114 

reports potentially interesting candidates, changes in HLA-DRB1 seem most reproducible likely owing to 115 

the strong genetic regulation of methylation in the locus. This lack of reproducibility is caused by the fact 116 

that MS is a heterogeneous disease, thus warranting larger cohorts of sorted cells, which is typically 117 

challenging, and new analytical methods.  118 

Here we analyzed DNA methylation in four cell types implicated in MS immunopathology (19-21) that were 119 

sorted from peripheral blood of RRMS and SPMS patients and healthy controls. We show that immune 120 

cells from MS patients share epigenetic changes and we demonstrate a statistical framework to identify 121 

such changes, thus increasing the power of identifying disease-associated methylation patterns in complex 122 

heterogeneous diseases.   123 
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Methods 124 

Cohorts 125 

A discovery cohort comprising persons affected with RRMS (n=16) and SPMS (n=14) and healthy controls 126 

(n=21), and an independent validation cohort, comprising persons affected with RRMS (n=14) and healthy 127 

controls (n=11), were recruited at the Neurology clinic at Karolinska University Hospital in Stockholm. The 128 

RRMS patients were primarily selected based on recent evidence of disease activity, either manifested as 129 

relapses or contrast enhancing MRI lesions, and the majority (87.5%) of the RRMS patients have not been 130 

treated at the time of sampling. Cohort details, with the exact number of RRMS, SPMS and HC individuals 131 

profiled for each cell type, are provided in Table 1, and detailed patient information, including treatment 132 

history and disease activity, is supplied in Supplementary Table 1. The Regional Ethical Review Board in 133 

Stockholm approved the study and methods were carried out in accordance with institutional guidelines 134 

for experiments with human subjects. Informed consent was obtained from all subjects.  135 

The whole blood cohort used to replicate functional pathways in SPMS, consisting of RRMS (n=119), SPMS 136 

(n=17) and healthy controls (n=139), was described in detail elsewhere (11, 22). 137 

Sample preparation 138 

Peripheral blood mononuclear cells (PBMCs) from the discovery and validation cohort were isolated 139 

directly after collection using a standard Ficoll (GE Healthcare) and sodium citrate-containing preparation 140 

tubes (Becton Dickinson) procedures, respectively. Monocytes were isolated using CD14+ positive 141 

selection on MACS microbeads magnetic separation (Miltenyi), according to manufacturer’s instructions 142 

(> 95% purity). Sorting of CD4+ and CD8+ T cells and CD19+ B cells was performed from the negative fraction 143 

obtained after sorting of monocytes by adding fluorochrome-conjugated antibodies against human CD4 144 

(clone SK3, APC-conjugated, Becton Dickinson), CD8 (clone SK1, FITC-conjugated, Becton Dickinson), CD3 145 
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(clone UCHT1, PE-conjugated, BD Bioscience) and CD19 (clone SJ25C1, APC-Cy7-conjugated, Becton 146 

Dickinson) using high-speed MoFlo™ cell sorter (Beckman Coulter, Inc, > 99% purity). Extraction of genomic 147 

DNA was performed using Gen Elute Mammalian Genomic DNA Miniprep kit (Sigma-Aldrich). The amount 148 

and quality of DNA were assessed with a NanoDrop ND-1000 Spectrophotometer (NanoDrop Technologies 149 

Inc). The four cells types were sorted from all individuals in the discovery cohort and samples with 150 

sufficient DNA amounts were used in further analysis. The numbers of RRMS, SPMS and HC used for each 151 

cell type are provided in Table 1 and details of individuals are given in Supplementary Table 1. Processing 152 

of the discovery cohort samples for Infinium HumanMethylation450 arrays (Illumina), including bisulfite 153 

conversion, was done at the Bioinformatics and Expression Analysis core facility (BEA), Karolinska Institutet 154 

(Stockholm) for CD14+ monocytes and CD4+ T cells, and at Johns Hopkins University School of Medicine 155 

(Baltimore) for CD8+ T cells and CD19+ B cells. Processing of the validation cohort samples for Infinium 156 

MethylationEPIC arrays (Illumina) was done at the SNP&SEQ Technology platform (Uppsala). Cases and 157 

controls were randomized on the arrays. 158 

DNA methylation analysis 159 

Methylation profiles for every cell type were analyzed individually in R using the Minfi (23) and ChAMP 160 

package (24)  following the pipeline according to Marabita el al (25). Briefly, type 1 and type 2 probes were 161 

normalized using quantile normalization and BMIQ. Sex of the samples was confirmed using the GetSex 162 

function from the Minfi package and the cell type identity was confirmed using the cell type deconvolution 163 

method from Minfi based on the Houseman algorithm (26). The following probes were filtered out: i) 164 

probes not passing the detection p-value cutoff of 0.01, ii) probes with known SNPs, and iii) X and Y 165 

chromosome probes. Batch effects were identified using principal component analysis (PCA) and corrected 166 

using ComBat from the SVA package (27). The loading methylation profiles was performed in this manner 167 

for each cohort used in this study. Differentially methylated positions (DMPs) were determined with linear 168 



10 

 

modeling using the limma package (28) in a model that included age and sex as covariates. The influence 169 

of treatment has been investigated using both PCA and covariate regression and potential confounding 170 

effects of the treatment status in this cohort have been excluded. Differences were calculated between 171 

RRMS and healthy controls, RRMS and SPMS, SPMS and healthy controls. In addition, eBayes was used to 172 

find differences in at least one of the comparisons.   173 

Non-parametric combination methodology (omicsNPC)  174 

In order to increase statistical power by using multiple layers of evidence, we applied the non-parametric 175 

combination (NPC)(29-31) methodology as implemented in the omicsNPC (32) function of the STATegRa R 176 

package. The omicsNPC procedure combines results from a series of statistical tests in order to produce a 177 

single global p-value that summarizes evidence from all tests. In this study, our goal was to identify probes 178 

whose differential methylation is detected in multiple cell types.  179 

In short, for each probe � the limma results from the individual cell types � = 1,… , � were combined by 180 

omicsNPC using the Liptak-Stouffer function:  �	 = ∑ Φ�
�1 − �	
��� , where Φ�
 is the normal inverse 181 

cumulative distribution function, and �	
�
 is the p-value corresponding to probe � and cell type �. The global 182 

statistic �	 is then transformed in a global p-value �	  by using a permutation approach. Notably, 183 

permutations are performed by randomly re-arranging the patients’ status information (RRMS, SPMS, 184 

healthy control) across all cell types in a coordinated way. In this way the association between each 185 

measurement and the patients’ status is disrupted, while the correlation structure across measurements 186 

from different cell types is left unaltered and accounted for. Neglecting such correlations would possibly 187 

lead to false positive associations. By using the Liptak-Stouffer function, significant global p-values are 188 

produced for probes that are differentially methylated, even mildly, in multiple cell types, thus supported 189 

by multiple evidence.  190 
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Finally, in our analysis omicsNPC was run with 10.000 permutations on all probes with a nominal p-value 191 

< 0.05 in individual cell type analyses. Statistical significance for the omicsNPC results was defined as Liptak 192 

p-value < 0.0001 and Liptak FDR < 0.2. 193 

Clustering 194 

Significant omicsNPC probes were individually transformed from beta values to cell specific Z-scores by 195 

subtracting the mean and dividing by the standard deviation. The matrix was clustered into distinct groups 196 

using MClust (33). Based on the direction of change within each cluster, the clusters were merged and 197 

assigned to one of the following groups: Unk, MS and SP. 198 

Functional annotations 199 

Genes associated with DMP probe IDs from the Illumina manifest were uploaded to Ingenuity Pathway 200 

Analysis (IPA) database (Qiagen) and core expression analysis was performed to identify affected canonical 201 

pathways and functional annotations. Immune tissues, including primary immune cells and cell lines, were 202 

used. Right-tailed Fisher’s exact test was used to calculate a p-value determining the probability that each 203 

biological function assigned to that data set is due to chance alone. Canonical pathways/functional 204 

annotations were grouped into clusters by calculating the similarity of pathways/annotations using the 205 

relative risk (RR) of each pathway appearing with each pathway based on the genes enriched within the 206 

pathway. Only pathways representing a minimum of 5 differentially methylated genes were selected for 207 

functional exploration. RR scores were clustered into groups using kmeans. Genes associated with DMPs 208 

with absolute Δβ > 5%, p-value < 0.001 were used for pathway analysis of changes identified in individual 209 

cell types. Genes associated with DMPs defined as significant in omicsNPC and clustered in specific groups 210 

were used for canonical pathways and functional annotation analysis of shared changes. Over-211 
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representation analysis (ORA) as implemented in webgestalt (34) was used to identify cluster labels. ORA 212 

was also used in the analysis of the whole blood data genes and visualized using REVIGO (35) . 213 

Meta-analysis 214 

Meta-analysis of CD14+ cells for the comparison of RRMS and healthy controls in the discovery and 215 

validation cohort on the 377 607 probes shared between 450K and EPIC platforms was conducted with a 216 

random effects model (REML) using the metap and metafor R-package (36). Directionality was determined 217 

using the Metal pipeline.  218 

Overlap with disease-associated loci and meQTLs 219 

To determine if there is an overlap of the top-ranked shared DMPs from omicsNPC with MS-associated 220 

genetic variants, we used a set of 234 recently reported MS-associated SNPs (7). The Genomic Association 221 

Test (GAT) tool (37) was applied to estimate the significance of the overlap between MS-associated SNPs 222 

and omicsNPC DMPs. The analysis was run for bins of 2 kb windows based on the average distance 223 

between SNPs and CpGs taken from GeMes (38). For a comparison, the overlap was tested for other 224 

diseases matched for the number of SNPs with MS as well as for common control SNPs which were 225 

matched in the CpG probe density for the bins run.  226 

Furthermore, omicsNPC probes were investigated for potential meQTLs using the Blueprint data (39). 227 

OmicsNPC probes were extracted from the full Blueprint dataset comprising monocytes and T cells. 228 

MeQTLs were considered significant if Bonferroni-corrected p-value < 0.05.  229 
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Results 230 

Disease-associated DNA methylation patterns in four immune cell types 231 

We have profiled DNA methylation in CD4+ T cells (n=31), CD8+ T cells (n=28), CD14+ monocytes (n=35) and 232 

CD19+ B cells (n=27) from MS patients and healthy controls (HC) (Table 1, Table S1) using Infinium 233 

HumanMethylation450 arrays (450K). All four cell types have been implicated in the pathogenesis of MS 234 

(19-21). After adjustment for confounders, we found 1 511, 666, and 30 significant differentially 235 

methylated positions (DMPs, adj. p-value < 0.05) in CD19+, CD14+ and CD8+ cells, respectively, between 236 

RRMS, SPMS and HC individuals (Fig. 1A, Table S2). B cells displayed more differences between RRMS and 237 

HC (3 904 DMPs, abs. Δβ > 5%, adj. p-value < 0.05) compared to any other cell type (0, 1, 124 in CD4+, CD8+, 238 

CD14+ cells, respectively). In total, ~70% (2 662/3 904) of DMPs between RRMS and HC in CD19+ B cells 239 

displayed hypomethylation in RRMS (Table S2), which was also reflected on the level of the most variable 240 

DMPs (Fig. 1A). The opposite pattern was observed in CD14+ monocytes (Fig. 1B), which bear the second 241 

highest number of significant differences, where ~90% (110/124) of DMPs between RRMS and HC (abs. Δβ 242 

> 5%, adj. p-value < 0.05) displayed hypermethylation in RRMS (Table S2).  The significant methylation 243 

changes identified in B cells and monocytes were particularly enriched in open sea regions and depleted 244 

from TSS1500, 5’ UTRs and shores (Fig. S1). Unlike B cells and monocytes, T cells displayed very little 245 

methylation difference between RRMS, SPMS and HC. Only one CpG was significant between RRMS and 246 

HC in CD8+ T cells (Table S2) although the most variable DMPs displayed predominant hypermethylation 247 

in RRMS, which is consistent with previous findings (13). Notably, none of the CpGs in CD4+ T cells passed 248 

the significance threshold (Fig. 1A, Table S2), despite previous reports (12, 16).   249 

In order to identify biological functions that are affected by the differences in methylation patterns, we 250 

performed functional IPA analysis on genes associated with DMPs identified in the different cell types. We 251 

focused on candidate differences between RRMS and HC (abs. Δβ > 5%, unadjusted p-value < 0.001) as 252 



14 

 

these groups had similar size in all four cell types (Table 1). IPA analysis revealed over-representation of 253 

immune-related processes, with an enrichment of genes involved in antigen presentation, OX40 signaling, 254 

T helper cell differentiation, T lymphocyte apoptosis, and B cell development, among others, and biological 255 

functions reflecting immune cell migration and inflammatory response (Table S3). Interestingly, the 256 

majority of canonical pathways and biological functions overlapped between the four cell types (Fig. 2A), 257 

implying that similar functions may be affected by methylation changes in CD4+, CD8+, CD14+ and CD19+ 258 

cells in RRMS patients compared to controls. This is further supported by the strong correlation of changes 259 

(Δβ) between cells types (Fig. 2B), i.e. a large fraction of CpGs exhibited the same direction of the change 260 

between RRMS and HC in all four cell types.  261 

These findings indicate that in addition to cell type-specific effects there is a substantial fraction of DNA 262 

methylation changes that may be shared across the immune cell types implicated in MS pathogenesis. 263 

Combining multiple immune cell types increases power to identify disease-associated DNA methylation 264 

patterns 265 

In order to increase statistical power by using multiple layers of evidence, i.e. from CD4+, CD8+, CD14+ and 266 

CD19+ cells, we applied the non-parametric combination methodology as implemented in the omicsNPC 267 

function (32) (Fig. 3A). This stepwise approach builds on permutations of the moderated F-statistics from 268 

all probes passing nominal p-value < 0.05 in any of the comparisons (clinical groups or cell types), which 269 

were combined using the Liptak-Stouffer function. This function requires support from most of the 270 

individual analyses in order to provide a significant overall p-value (i.e., probes with a low p-value only in 271 

one single cell type are unlikely to achieve a significant overall p-value). OmicsNPC analysis for different 272 

combinations of the cell types resulted in 1 976 DMPs for all four cell types, 1 273 DMPs for lymphocytes 273 

(CD4+, CD8+ and CD19+ cells), 423 DMPs for T cells (CD4+ and CD8+ cells) and 2 782 DMPs for cells with the 274 

antigen-presenting potential (CD14+ and CD19+ cells) (Fig. 3B, Table S4).   275 
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Interestingly, the directionality of the significant omicsNPC DMPs was shared across different cells types 276 

significantly more than expected by chance (χ2-test p-value < 0.05). For example, the majority of the 277 

omicsNPC hypomethylated DMPs in the CD19+ B cells were found hypomethylated in the three other cell 278 

types as well (Fig. 4A). Furthermore, the shared directionality was also seen when comparing the T-279 

statistics from Liptak significant probes, which displayed a high correlation between cell types within each 280 

comparison (Fig. 4B). Overall, omicsNPC methodology allowed robust identification of a substantial 281 

number of DMPs with evidence of a DNA methylation change across multiple cell types. 282 

To address whether omicsNPC increases the discovery power, we used a validation cohort comprising 283 

methylation data from CD14+ cells isolated from RRMS (n = 14) and HC (n = 11) generated using EPIC arrays. 284 

After selecting for the shared probes between the two Illumina platforms (n = 377 607, Table S5), we 285 

performed a random effect meta-analysis between CD14+ methylation profiles from the two cohorts. As 286 

expected, the meta-analysis resulted in the identification of a larger number of DMPs between RRMS and 287 

HC individuals (Table S5). Comparison with omicsNPC showed that most of the additional DMPs identified 288 

in CD14+ after conducting a meta-analysis of the two cohorts ranked in the top of the omicsNPC DMPs, 289 

however these probes did not rank in the top of the DMPs identified in the original 450K CD14+ cohort 290 

alone (Fig. 4C). Among top 10 000 ranked DMPs, up to 27% of the top ranking omicsNPC DMPs were also 291 

top ranking in the meta-analysis, especially when considering omicsNPC comparisons containing CD14+ 292 

cells (e.g. shared between CD14+ and CD19+, or shared across all four cells types).  293 

Collectively, these data indicate that the omicsNPC methodology combines evidence from distinct yet 294 

disease-relevant cell types to increase the discovery power.  295 

Co-localization of disease-associated omicsNPC CpGs with MS susceptibility loci 296 

We examined the possible mechanisms underlying omicsNPC DMPs with evidence in CD4+, CD8+, CD14+ 297 

and CD19+ cells. Given the overlap of individuals between the cell type cohorts, ranging from 45% to 79% 298 
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between two cell types, shared methylation changes could reflect genetically-controlled methylation 299 

changes known as meQTLs (38, 39). Thus, we compared our omicsNPC DMPs from the combination of all 300 

four cell types with meQTL data detected in naïve CD4+ T cells and CD14+ monocytes from 197 individuals. 301 

Of 1 976 omicsNPC DMPs, only 261 (13.2%) displayed significant (Bonferroni adj.p < 0.05) meQTLs with 302 

the same SNPs in both cell types.  303 

Moreover, genetic influences from the MS susceptibility loci could provide another biological explanation 304 

for the observed shared methylation changes in functionally distinct cell types. To test this hypothesis, we 305 

investigated the co-localization of omicsNPC probes and MS-associated genetic loci (7). Significant CpGs 306 

from different omicsNPC combinations were tested for being enriched in genetic regions associated with 307 

MS as well as other inflammatory and non-inflammatory diseases that have their genetic architecture 308 

similar to that of MS. In total, 234 MS-associated SNPs were taken from the most recent association study 309 

(7), while SNPs associated with other diseases were taken from the GWAS catalog 310 

(https://www.ebi.ac.uk/gwas/). There was a significant co-localization of omicsNPC CpGs with the MS 311 

associated SNPs, while no overlap could be found with the SNPs that associate with asthma, bone mineral 312 

density, major depressive disorder, psoriasis, as well as common control SNPs (Fig. 4D). 313 

These data imply that at least a fraction of methylation changes that are shared across distinct immune 314 

cell types may be driven by genetic variants that predispose for MS development. 315 

DNA methylation patterns at omicsNPC DMPs implicate functionally distinct pathways during MS 316 

progression 317 

To explore if DNA methylation patterns can inform about distinct MS features, we first performed unbiased 318 

clustering of individuals based on z-score transformed omicsNPC CpGs derived from a combination of all 319 

four cells types. The optimal clustering revealed a grouping of individuals into seven different clusters (Fig. 320 

5A, Table S6). Based on average methylation levels for each cell type, MS status and stage, these seven 321 
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clusters were further assigned to three biological groups. The first group (SP) comprised changes that 322 

primarily related to the SPMS stage, i.e. most of the differences were related to the SPMS vs HC or RRMS. 323 

This group comprised two clusters with 370 hypermethylated and 319 hypomethylated omicsNPC CpGs in 324 

SPMS compared to both HC and RRMS (Fig. 5A). The second group (MS) reflected MS-specific changes 325 

present in both RRMS and SPMS compared to HC and  comprised four clusters, one cluster of 341 326 

hypomethylated omicsNPC CpGs and three clusters with 338, 156 and 8 hypermethylated omicsNPC CpGs 327 

in RRMS, and to a lesser extent SPMS, compared to HC (Fig. 5A). The third group (Unk, from unknown) 328 

comprised one cluster of 444 omicsNPC CpGs where the differences could not be unambiguously 329 

attributed to a specific clinical group and did not always share directionality across cells types (Fig. 5A).  330 

Because the average age of SPMS patients is higher than the average age of RRMS and HC individuals, we 331 

investigated if differences in age could have resulted in the identification of changes specific for SPMS, 332 

although the age was used as a covariate in our analysis. OmicsNPC probes displayed a minimal correlation 333 

with age in different cell types with e.g. < 5% of 1 976 probes showing correlation with age (Spearman r > 334 

0.4) in at least one cell type (Fig. S2A). Similarly, there was a limited overlap of omicsNPC DMPs with known 335 

age-related DMPs identified in sorted cells (Fig. S2B) (40) and whole blood from a large longitudinal twin 336 

cohort (Fig. S2C) (41). In contrast to omicsNPC DMPs, previously reported age-related DMPs (40, 41) 337 

correlated significantly with age also in our cohort (data not shown).  338 

We then investigated the functional relevance of the changes that associated with the three biological 339 

groups using IPA. The enriched canonical pathways and functional annotations were grouped together 340 

based on the RR clustering (see Methods). The pathway analysis was based on 174 unique genes 341 

associated with differentially methylated CpGs, of which only 11 (6%) were shared between the groups, 342 

indicating that very specific functions are affected by methylation in different clinical groups. Although 343 

there was occasionally overlap between pathway labels between different groups, the RR analysis 344 
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demonstrated that the majority of the genes comprising those pathways did not overlap. We observed 345 

seven distinct clusters of canonical pathways that differed between the MS and SP groups (Fig. 5B, Table 346 

S6). The pathways related to MS in general encompass genes implicated in signaling downstream T- and 347 

B-cell receptors as well as in T cell activation. As expected, these pathways comprise many molecules 348 

involved in signaling in immune cells such as IL1RL2, GNG4/7, IRAK2, MAPK14, NCOR2, PLCB2, PTPRJ/O, 349 

PRKZC, RUNX3, SMAD9, STAT5A (Table S6, PRKCZ is shown in Fig. 5D). The canonical pathways associated 350 

to SP include genes involved in cAMP-mediated signaling, NO signaling, metabolism, respiratory burst and 351 

phagocytosis. The Unk group showed enrichment of genes related to actin cytoskeleton. Annotation of 352 

biological processes revealed three major clusters, each specific for a clinical group, supporting the 353 

functional specificity of methylation changes in clinical groups. While the SP-specific functions included 354 

development and activation of predominantly myeloid cells, more general MS functions included 355 

chemotaxis of both myeloid and lymphoid cells (Fig. 5C, Table S7). For the Unk group the functions included 356 

cell-to-cell signaling and interaction, inflammatory response, cell morphology and function of APCs.  357 

Several examples of DMPs are shown in Figure 5D.   358 

Surprisingly, many genes in the SP group, despite being detected in immune cells, have previously been 359 

involved in neurodevelopmental and/or neurodegenerative functions. They include APAF1, ASIC2, BAIAP2, 360 

CALB2, CDH23, CLDN14, CR1, CX3CR1, GAB1/2, GLI3, GNAO1, GRID2, GRIN1, GRM2, ITPR2/3, JAK2, 361 

MAPK10, NTN1/GN1, TGFBR1 and TUBB2A/6 (Table S6, GNAO1, JAK2, CALB2 and GLI3 are shown in Fig. 362 

5D). Indeed, in addition to immune-related processes and functions, the SP group displayed an enrichment 363 

of changes in genes implicated in neuronal functions, such as “Axonal Guidance Signaling”, “CREB Signaling 364 

in Neurons”, “eNOS Signaling” and “Synaptic Long Term Potentiation/Depression”. To examine this 365 

association of SP changes in blood with neurodegenerative functions, we analyzed DNA methylation data 366 

from whole blood in an independent cohort (n = 275) (11). Gene Ontology analyses revealed shared (Fig. 367 



19 

 

6A-B) and distinct (Fig. 6C) pathways and biological functions associated to RRMS and SPMS patients in 368 

comparison to healthy individuals and confirmed enrichment of neuronal processes in SPMS patients, 369 

specifically.  370 
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Discussion 371 

We investigated genome-wide DNA methylation in four immune cell types, implicated in the pathogenesis 372 

of MS (19-21), from healthy individuals and MS patients in the RRMS and SPMS stage. The most prominent 373 

changes were detected in B cells, while no significant changes could be detected in T cells. However, we 374 

observed evidence of shared DNA methylation changes across different cell types and we developed a 375 

non-parametric framework to detect such changes, thus increasing the power to identify disease-376 

associated differences that can cluster individuals into distinct functional groups and uncover known and 377 

novel pathways in MS pathogenesis. 378 

Several studies investigated DNA methylation in immune cells sorted from MS patients using the same 379 

Illumina array-based methodology, with negligible overlap between the findings (11-14, 16, 18). Likewise, 380 

our cell type-specific analyses demonstrated none and one significant DMP in CD4+ and CD8+ T cells 381 

between RRMS and controls, respectively, and no overlap with previous findings  (12-14, 16). However, 382 

we corroborated previously reported overall higher methylation in CD8+ T cells of RRMS patients (13, 42). 383 

Moreover, the top most variable positions, particularly in CD4+ T cells, segregated MS patients from 384 

controls, suggesting a lack of power to identify true underlying differences. Indeed, a recent meta-analysis 385 

in CD4+ and CD8+ T cells demonstrated two significant DMRs mapping to HLA-DRB1 and SLFN12 genes (42), 386 

the same genes that displayed changes in multiple cell types in our study (Table S8). Nevertheless, 387 

difficulties to identify methylation changes in T cells suggest that future analysis need to be carried out in 388 

a sub-population of T cells, i.e. more relevant rare pathogenic sub-types. Our analysis further suggests that 389 

most methylation changes can be detected in bulk B cells and monocytes, although their reproducibility 390 

remains to be tested in independent cohorts. 391 

Despite limited power to detect significant differences, the functional immunological pathways associated 392 

with the top candidate DMPs appeared enriched in all cell types and there was a significant correlation in 393 
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DNA methylation changes between different cell types. We, therefore, hypothesized that we can increase 394 

the power to identify disease-relevant changes by combining evidence from multiple cell types. For that 395 

purpose, we extended the application of the non-parametric combination methodology in the omicsNPC 396 

(32) and applied the Liptak-Stouffer function to combine p-values. This function produces significant DMPs 397 

supported by multiple evidence, i.e. probes that are differentially methylated, even mildly, in multiple cell 398 

types. Indeed, omicsNPC approach enabled identification of more DMPs than analyses in the individual 399 

cell types. Furthermore, the directionality of the change for the omicsNPC DMPs was also often shared 400 

among the different cell types. As the omicsNPC pipeline uses absolute values for effect size, the shared 401 

directionality was not enforced by the methodology but was a result of the analysis. This suggests that the 402 

approach increases the discovery power, which we confirmed using an independent cohort of CD14+ cells 403 

from RRMS and HC. In addition, a number of omicsNPC significant DMPs, e.g. in SAMD11 (multiple CpGs), 404 

HLA class II locus (multiple CpGs) CASZ, TMEM48 and FSCN2 genes displayed at least nominal significance 405 

with the same directionality of the change in previous independent studies of CD4+ and CD8+ T cells or 406 

CD19+ B cells (Table S8).  407 

MeQTLs could provide one explanation for the shared methylation changes in cells with distinct functions, 408 

and it was recently suggested that changes detected in case-control cohorts largely reflect meQTL effects 409 

(43). Therefore, we compared our omicsNPC DMPs with significant meQTL detected in CD4+ T cells and 410 

monocytes (39). In total, 261/1 976 (13%) omicsNPC DMPs were shown to be genetically regulated by the 411 

same SNP in both cell types, implying a potential that some of these CpGs are identified due to a varying 412 

genetic background between patients and controls, but these are only a minor fraction of the identified 413 

changes. On the other hand, we discovered significant co-localization of the omicsNPC CpGs with the loci 414 

involved in MS susceptibility (7). This suggests that shared methylation changes may be under the 415 

regulation of disease-predisposing genetic factors in immune cells involved in the pathogenesis. 416 
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Accordingly, we have recently shown that methylation in the HLA-DRB1, the major genetic risk factor, and 417 

the most reproducible methylation differences across studies, can mediate the risk of developing MS (11). 418 

Moreover, no significant co-localization with genetic factors of other tested inflammatory (psoriasis) or 419 

neuropsychiatric diseases (MDD) was observed, indicating that the identified shared changes show 420 

specificity for MS. Another explanation for shared changes could be exposure to the same environmental 421 

conditions, be it external (e.g. infections, smoking, sun exposure, vitamin D levels) or internal (e.g. chronic 422 

inflammation). However, the relative contribution of these mechanisms warrants further studies.  423 

Interestingly, only methylation changes in B cells, which displayed by far the largest number of methylation 424 

changes compared to other cell types, did not display significant co-localization with MS risk loci. As genetic 425 

studies of susceptibility typically address factors of disease initiation, this may suggest the involvement of 426 

B cells in events other than triggering MS or that the contribution of B cells to MS susceptibility might be 427 

conveyed in a non-genetic manner to a greater extent. In that regard, B cells are the primary targets of 428 

Epstein Barr virus (EBV) infection, which is one of the major environmental factors associated with 429 

susceptibility to develop MS (8). It has been shown that B cell immortalization by EBV results in 430 

hypomethylation that affects promoters of proliferative genes and a large part of the B cell genome (44, 431 

45). We have also observed that nearly 70% of DMPs in B cells of RRMS patients display hypomethylation. 432 

These findings are also of interest in context of recent experimental observations regarding the non-433 

redundant role of memory B cells in activating memory T cells in an antigen-specific manner, as well as the 434 

remarkable efficacy of B cell depleting therapies, both of which supports the notion of an important role 435 

for B cells in sustaining inflammatory activity in MS (46, 47).  436 

The omicsNPC DMPs clustered individuals into distinct groups with one group corresponding to changes 437 

occurring in MS patients in general and another group comprising changes that are more specific for the 438 

SPMS stage. Functional annotation analysis implicated signaling pathways downstream T- and B-cell 439 
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receptors and T cell activation to be affected by methylation changes in MS patients in general. These 440 

pathways agree with well-recognized role of adaptive immunity in triggering MS (4-7). SPMS patients in 441 

the MS group often showed changes that were intermediary, i.e. less pronounced than in the RRMS stage 442 

but not at the level of healthy individuals, which may also reflect age-related decline in the adaptive 443 

immunity in older individuals (48). The genes affected by methylation changes in the MS group are often 444 

involved in signaling in adaptive immune cells including transcription factors RUNX3 (Runt Related 445 

Transcription Factor 3) and STAT5A (Signal Transducer And Activator Of Transcription 5A) that are critical 446 

for differentiation of cytotoxic T cells (49), and balance between regulatory and effector functions (50), 447 

respectively. 448 

Functional annotation of the SPMS-specific group, on the other hand, suggested the involvement of 449 

myeloid cells and functions such as NO signaling, metabolism and phagocytosis, adding to the increasing 450 

evidence of the involvement of these mechanisms in the disease progression (51).  However, the most 451 

surprising finding is a significant enrichment of pathways linked to neurological processes specifically in 452 

the SP group. We confirmed these distinctive changes in the SPMS stage on the pathway level in an 453 

independent cohort. The finding is interesting in light of the MS paradigm that proposes that exhaustion 454 

of CNS reserves, caused by inflammation, likely represent a breaking point to enter progressive stage of 455 

disease (51). Several of these genes have been linked to neurodegenerative processes but also severity 456 

and progression of MS, including ASIC2 (Acid Sensing Ion Channel Subunit 2)(52), CALB2 (Calbindin 2)(53), 457 

CERK (Ceramide Kinase)(54), CR1 (Complement C3b/C4b Receptor 1)(55, 56), CX3CR1 (Fractalkine 458 

Receptor)(57), GRIN1 (Glutamate Ionotropic Receptor NMDA Type Subunit 1)(58), LRP1 (LDL Receptor 459 

Related Protein 1)(59), NTN1 (Netrin1)(60) and TNFRSF1A (TNF Receptor Superfamily Member 1A)(61). 460 

Interestingly, some of these neuronal genes have been shown to play key roles outside the CNS, 461 

particularly in immune cells. This is the case for example of the neurotransmitter glutamate signaling, 462 
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displaying DNA methylation changes at several genes encoding receptor (GluR) subunits (GRID2, GRIN1, 463 

GRM2) and downstream signaling molecules  (e.g. ITPR2/3, PRKC/A, CAMK2D, PRKAR1B) in SP cluster. 464 

Compelling evidence has demonstrated that glutamate exerts potent effects on normal immune cells and 465 

in the context of MS, e.g. affecting T cells activation, adhesion and migration, either directly through GluRs 466 

expressed at the surface of immune cells (62, 63) or indirectly via glutamate-dependent pathways (64). 467 

Similarly, axonal guidance cues such as netrins (NTN1, NTNG1 genes in our cohort), recently found altered 468 

in sera of MS patients(65), have been shown to affect crucial cellular functions of both innate and adaptive 469 

immune cells(66-68). This neuronal pattern in immune cells suggests that processes occurring in the brain 470 

might imprint an overlapping molecular signature on the peripheral immune cells. Such brain signature 471 

can occur when the immune cells infiltrate the CNS, as seen in the case of stroke (69), or via unknown 472 

mechanisms, as suggested in other CNS pathologies (70, 71). Another explanation implies external factors 473 

causing overlapping signatures between the tissues. One possibility is that chronic inflammation in MS 474 

causes age acceleration, as low-grade inflammation is one of the factors suggested to cause aging (72). 475 

This process may result in overlapping molecular signatures between the tissues and  lead to exhaustion 476 

of the CNS functions as suggested in other CNS abnormalities (73, 74) and disorders (75). While the 477 

functional relevance of DNA methylation changes remains to be studied, this is the first report of immune 478 

cells exhibiting a unique molecular signature indicative of processes in the brain during the progressive 479 

stage of disease.  480 

Conclusion 481 

We demonstrate that four distinct immune cell types from MS patients share functionally relevant DNA 482 

methylation changes compared to healthy individuals. Owing to a gain of discovery power, omicsNPC 483 

methodology allows detection of such changes in complex diseases and further enables the identification 484 
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of discrete changes in MS patients, in general, and the SPMS stage, in particular. The findings provide new 485 

insights into the putative mechanisms underlying MS pathogenesis and progression.  486 



26 

 

Abbreviations 487 

Bone mineral density (BMD) 488 

Central nervous system (CNS) 489 

Differentially methylated position (DMP) 490 

Epstein Barr virus (EBV) 491 

Genomic association testing (GAT) 492 

Healthy controls (HC)  493 

Ingenuity Pathway Analysis (IPA)  494 

Major depressive disorder (MDD) 495 

Multiple Sclerosis (MS)  496 

Non-parametric combination (NPC) 497 

Over representation analysis (ORA) 498 

Peripheral blood mononuclear cell (PBMC) 499 

Principal component analysis (PCA) 500 

Relapsing-remitting Multiple Sclerosis (RRMS) 501 

Random effects model (REML) 502 

Secondary progressive Multiple Sclerosis (SPMS) 503 

Single nucleotide polymorphism (SNP) 504 

5-methylcytosine (5mC) 505 



27 

 

Declarations 506 

Acknowledgements 507 

The authors would like to thank Dr. Y. Liu and Dr. A. Feinberg for provision of a part of the raw data and 508 

Dr. H. Morikawa for his input during data analysis. 509 

Funding  510 

This study was supported by grants from the Swedish Research Council (MJ, FP, JT), the Swedish 511 

Association for Persons with Neurological Disabilities (MJ), the Swedish Brain Foundation (MJ, JT), the 512 

Stockholm County Council - ALF project (MJ, FP), AstraZeneca - AstraZeneca-Science for Life Laboratory 513 

collaboration (MJ, FP, JT), StratNeuro (JT), STATEGRA FP7 (JT), the European Research Council (FP/2007-514 

2013) / ERC Grant Agreement n. 617393; CAUSALPATH (IT, VL) and Karolinska Institute’s funds (MJ). L. 515 

Kular is supported by a fellowship from the Margaretha af Ugglas Foundation. 516 

Availability of data and materials 517 

The Illumina 450K array data from CD4+ T cells, CD8+ T cells, CD14+ monocytes and whole blood are 518 

available in the Gene Expression Omnibus (GEO) database under accession number GSEXX (deposition 519 

pending), GSEXX (deposition pending), GSE43976 and GSE106648, respectively. The Illumina 450K array 520 

data from CD19+ B cells will be made available from the corresponding author upon request. 521 

Authors’ contributions 522 

EE, JT, DGC and MJ conceived and designed the study. EE analyzed the data. NK, VL, IT developed, provided 523 

statistical guidance and description of the original omicsNPC framework. EE, SJ and DGC further optimized 524 

the omicsNPC framework. EE developed and implemented RR analysis. EE, LK, SR, FP and MJ generated 525 

the data. FP recruited study subjects. EE, LK and MJ contributed data interpretation. EE, MJ and LK wrote 526 

the manuscript. All authors read, provided input and approved the final manuscript. 527 

 528 



28 

 

Ethics approval and consent to participate 529 

All study subjects provided written informed consent and the study was approved by the regional ethics 530 

committee. The research in this study conformed to the Declaration of Helsinki. 531 

Consent for publication 532 

Not applicable. 533 

Competing interests 534 

FP has received research grants from Biogen, Genzyme, Merck KGaA and Novartis, and fees for serving as 535 

Chair of DMC in clinical trials with Parexel. Other authors declare that they have no competing interests.  536 

  537 



29 

 

Table 1. Characteristics of Multiple Sclerosis (MS) patients and healthy controls used for 450K methylation 538 

analysis. 539 

 CD4+ CD8+ CD14+ CD19+ 

Healthy    

controls 

N (Female/Male) 11 (7/4) 14 (9/5) 13 (9/4) 10 (6/4) 

Mean age (range) 43 (28-62) 37 (20-65) 41 (28-62) 39 (28-60) 

Relapsing-

remitting MS 

N (Female/Male) 12 (9/3) 10 (5/5) 10 (7/3) 12 (7/5) 

Mean age (range) 38 (26-57) 35 (26-44) 40 (29-57) 37 (26-57) 

Secondary 

progressive MS 

N (Female/Male) 8 (4/4) 4 (0/4) 12 (7/5) 5 (2/3) 

Mean age (range) 50 (35-63) 44 (38-50) 49 (35-60) 47 (35-56) 

 540 

All four cell types were available from 11 individuals, while between any two cell types the overlap of 541 

individuals ranged from the average of 45% between CD8+ and CD14+ cells to 79% between CD4+ and CD14+ 542 

cells (details can be found in Supplementary Table 1). Patients had not been treated within 6 months prior 543 

to sample collection. 544 
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Figure 1 545 

 546 

Figure 1. Methylation changes in cells sorted from peripheral blood of Multiple Sclerosis (MS) patients 547 

and healthy controls (HC). DNA methylation was measured using Illumina 450K arrays in CD4+, CD8+, CD14+ 548 

and CD19+ cells sorted from peripheral blood of untreated relapsing-remitting (RR) and secondary 549 

progressive (SP) MS patients and HC (details are provided in Table 1 and Table S1). (A) Volcano plots 550 
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illustrate differences in DNA methylation between RRMS, SPMS and HC. Hyper- and hypo-methylated CpGs 551 

with min 5% methylation change and p-value < 0.001 are indicated in light red and light blue, respectively, 552 

while darker red and darker blue indicate CpGs with min 5% methylation change and adj. p-value < 0.05. 553 

(B) Heat maps were generated using 1 000 most significant differentially methylated CpG sites between 554 

the conditions (the scale represents Z-score).   555 
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Figure 2 556 

 557 

Figure 2. DNA methylation changes overlap between different cell types. (A) Selected canonical pathways 558 

and functional annotations from Ingenuity Pathway analysis (Fisher’s p-value < 0.05) generated using 559 

genes associated with candidate differentially methylated positions between relapsing-remitting Multiple 560 

Sclerosis (RRMS) patients and healthy controls (HC) (absolute Δβ > 5%, p-value < 0.001) in each cell type 561 

separately. In total, 54, 87, 362, 1966 genes were used in analysis in CD4+, CD8+, CD14+ and CD19+ cells, 562 

respectively. (B) Correlation of effect sizes (Δβ for the RRMS-HC comparison) between cell types was 563 
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tested for all probes that displayed p-value < 0.001 in at least one comparison using the Spearman’s rank 564 

test.  565 








