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The hyperoctahedral group H N is known to have two natural liberations: the "good" one H + N , which is the quantum symmetry group of N segments, and the "bad" one ŌN , which is the quantum symmetry group of the N -hypercube. We study here this phenomenon, in the general "quizzy" framework, which covers the various liberations and twists of H N , O N . Our results include: (1) an interpretation of the embedding ŌN ⊂ S + 2 N , as corresponding to the antisymmetric representation of O N , (2) a study of the liberations of H N , notably with the result < H + N , ŌN >= O + N , and (3) a comparison of the k-orbitals for the inclusions H N ⊂ H + N and H N ⊂ ŌN , for k ∈ N small.

Introduction

According to the quantum algebra theory, the twisted analogue of the commutation relations ab = ba between the coordinates x 1 , . . . , x N of our ambient space R N is: ab = -ba for a = b ba otherwise At the matrix level, the twisted analogue of the commutation relations ab = ba between the standard coordinates u 11 , . . . , u N N of the matrix algebra M N (R) is: ab = -ba for a = b on the same row or column of u ba otherwise These latter relations R can be used in order to construct a twisted analogue of the orthogonal group O N , as abstract spectrum of the following universal algebra:

C( ŌN ) = C * (u ij ) i,j=1,...,N u = ū, u t = u -1 , R
Generally speaking, the structure of ŌN is quite similar to that of O N , with the correspondence O N ↔ ŌN being best understood via Schur-Weyl twisting, or via a cocycle deformation method. There are many algebraic, geometric, analytic and probabilistic results which can be obtained in this way, and all this material is quite standard.

One interesting feature of ŌN , however, which escapes the philosophy of the correspondence O N ↔ ŌN , is that this appears as quantum symmetry group of the standard hypercube in R N . This phenomenon was discovered about 10 years ago, in [START_REF] Banica | The hyperoctahedral quantum group[END_REF], and has been since the subject of various investigations, with variable degree of success.

Our purpose here is to advance on this question, with a number of new results regarding the action ŌN {1, . . . , 2 N }, and its relation with the action H N {1, . . . , 2 N }, notably by using the recent quantum orbital theory from [START_REF] Banica | Higher transitive quantum groups: theory and models[END_REF], [START_REF] Bichon | Algebraic quantum permutation groups[END_REF], [START_REF] Lupini | Nonlocal games and quantum permutation groups[END_REF].

As a general framework, we use the theory of easy quantum groups [START_REF] Banica | Liberation of orthogonal Lie groups[END_REF], [START_REF] Raum | The full classification of orthogonal easy quantum groups[END_REF], in its modified "quizzy" version, from [START_REF] Banica | Liberations and twists of real and complex spheres[END_REF], [START_REF] Banica | A duality principle for noncommutative cubes and spheres[END_REF]. The idea is that any intermediate easy quantum group H N ⊂ G ⊂ O + N can be q-deformed at q = -1, into a certain intermediate quantum group

H N ⊂ Ḡ ⊂ O + N .
The easy quantum groups and their twists H N ⊂ Ġ ⊂ O + N are q-easy in some natural sense, with q = ±1, and are called "quizzy".

The quizzy quantum groups can be fully classified, by starting with the list in [START_REF] Raum | The full classification of orthogonal easy quantum groups[END_REF], and twisting. According to [START_REF] Banica | A duality principle for noncommutative cubes and spheres[END_REF], these quantum groups are as follows:

ŌN / / Ō * N ' ' H N / / 7 7 
' '

H × N / / H + N / / O + N O N / / O * N 7 7
To be more precise, here O × N are the various versions of O N , obtained via liberation and twisting, and H × N are various versions of the hyperoctahedral group H N , which are known to be equal to their own twists. There are in fact many such quantum groups H × N , as explained in [START_REF] Raum | The full classification of orthogonal easy quantum groups[END_REF], and the dotted arrows in the middle stand for that. Now back to our questions, the above diagram, fully covering the liberations and twists of H N , O N , is precisely what we need. We will study the quantum groups appearing there, from an algebraic and probabilistic point of view, our results being as follows:

(1) We will first study the representation ŌN ⊂ S + 2 N , our main result here being that this corresponds to the antisymmetric representation of O N . We will compute as well the magic unitary matrix of this representation, and its character. [START_REF] Banica | A duality principle for noncommutative cubes and spheres[END_REF] The fact that H N has at least two liberations, namely H + N and ŌN , raises a number of theoretical questions, regarding the concept of liberation. We will advance here with a negative result, stating that we have < H N , ŌN >= O + N .

(3) The known quizzy quantum group actions on finite sets are those coming from the embeddings H + N ⊂ S + 2N and ŌN ⊂ S + 2 N . We will compare here the k-orbitals for the liberation inclusions H N ⊂ H + N and H N ⊂ ŌN , for k ∈ N small. There are of course many questions left. As an interesting algebraic question, for instance, we conjecture that the above embeddings H + N ⊂ S + 2N and ŌN ⊂ S + 2 N are the unique ones which can make a quizzy quantum group a quantum permutation one.

We refer to the body of the paper for the precise formulation of the results, which are often quite technical, and sometimes rely on some new notions, to be introduced here.

The paper is organized as follows: 1-2 contain various preliminaries and generalities, in 3-4 we study the quantum permutation representation of ŌN , in 5-6 we discuss liberation questions, in connection with the notion of quantum orbitals, and in 7-8 we present our counting results for orbitals, and we discuss some open questions.

orthogonal. Thus we have as well a quotient map C(O + N ) → C * (Z * N 2 ), the algebra C(O + N ) follows to be not commutative, and so O N = O + N , as claimed. See [START_REF] Wang | Free products of compact quantum groups[END_REF].

We are interested here in the twisted orthogonal group ŌN . In order to introduce this quantum group, we can proceed as follows:

Proposition 1.3. We have the following results:

(1) The usual orthogonal group O N ⊂ O + N is obtained by assuming that the standard coordinates u ij pairwise commute.

(2) We have a quantum group ŌN ⊂ O + N , obtained by assuming that the coordinates u ij anticommute on the rows and columns of u, and commute otherwise.

Proof. Once again, this is something standard, the proof being as follows:

(1) Consider the quantum group O N ⊂ O + N obtained by dividing C(O + N ) by its commutator ideal. We have then O N ⊂ O N . On the other hand, O N must be a classical space, and by using the coordinates u ij we obtain

O N ⊂ O N . Thus O N = O N , as claimed.
(2) This follows as in the proof of Proposition 1.2 above, the idea being that if u = (u ij ) satisfies the relation in the statement, then so do the matrices u ∆ = ( k u ik ⊗ u kj ), u ε = (δ ij ), u S = (u ji ). Thus we can indeed construct ∆, ε, S, as claimed.

Summarizing, ŌN appears as a kind of "twisted counterpart" of O N . In order to further comment on the definition of ŌN , and on the correspondence O N ↔ ŌN , best is to use quantum isometries. Let us recall that the free real sphere S N -1 R,+ is the noncommutative compact space having as coordinates self-adjoint variables x 1 , . . . , x N , subject to the relation i x 2 i = 1. We have the following definition, coming from [START_REF] Banica | A duality principle for noncommutative cubes and spheres[END_REF], [START_REF] Goswami | Existence and examples of quantum isometry groups for a class of compact metric spaces[END_REF]:

Definition 1.4. A closed subgroup G ⊂ O +
N is said to be acting affinely on an algebraic submanifold X ⊂ S N -1 R,+ when we have a morphism of algebras, as follows:

Φ : C(X) → C(G) ⊗ C(X) , x i → j u ij ⊗ x j
The biggest closed quantum group G ⊂ O + N acting affinely on X is called affine orthogonal quantum isometry group of X, and is denoted G + (X).

It is elementary to check that the usual sphere

S N -1 R ⊂ S N -1
R,+ appears by imposing to the coordinates the relations ab = ba. So, let us define a twisted sphere SN-1

R ⊂ S N -1
R,+ by assuming that the coordinates are subject to the following relations:

ab = -ba for a = b ba otherwise
We have the following result, which provides an alternative definition for ŌN :

Proposition 1.5. We have a diagram as follows,

S N -1 R,+ O + N SN-1 R : : ŌN : : O N d d S N -1 R d d
with the dotted lines standing for the quantum isometry group construction.

Proof. Here the result for S N -1 R,+ is clear from definitions, the result for S N -1 R is known since [START_REF] Bhowmick | Quantum isometry groups: examples and computations[END_REF], and follows by using some algebraic tricks, and the result for SN-1 R can be proved in a similar way, by using the same tricks. For details on all this, see [START_REF] Banica | Liberations and twists of real and complex spheres[END_REF].

Summarizing, we have a quite reasonable understanding of the definition of ŌN . There are as well some more advanced ways of understanding the correspondence O N ↔ ŌN , via cocycle twists [START_REF] Banica | The hyperoctahedral quantum group[END_REF], or via Schur-Weyl twists [START_REF] Banica | Liberations and twists of real and complex spheres[END_REF]. We will be back to this, later.

Let us review now the quantum isometry result in [START_REF] Banica | The hyperoctahedral quantum group[END_REF], which is something quite nonstandard. Consider the group Z N 2 =< g 1 , . . . , g N >. Since the standard generators

g i ∈ C * (Z N 2 ) = C( Z N 2 ) satisfy g i = g * i , g 2 i = 1, we have an embedding Z N 2 ⊂ S N -1 R,+ given by z i = g i √ N .
Moreover, the image of this embedding is the standard hypercube K N . With these notions in hand, we can review the result in [START_REF] Banica | The hyperoctahedral quantum group[END_REF], as follows:

Theorem 1.6. With Z N 2 =< g 1 , . . . , g N > we have a coaction map Φ : C * (Z N 2 ) → C( ŌN ) ⊗ C * (Z N 2 ) , g i → j u ij ⊗ g j
which makes ŌN the quantum isometry group of the hypercube K N = Z N 2 , as follows: (1) With K N viewed as an algebraic manifold,

K N ⊂ S N -1 R ⊂ S N -1 R,+ . (2 
) With K N viewed as a graph, with 2 N vertices and 2 N -1 N edges.

(3) With K N viewed as a metric space, with the distance from R N .

Proof. This result is basically from [START_REF] Banica | The hyperoctahedral quantum group[END_REF], the proof being as follows:

(1) In order for G ⊂ O + N to act affinely on K N , the variables G i = j u ij ⊗ g j must satisfy the same relations as the generators g i ∈ Z N 2 . The self-adjointness being automatic, the relations to be checked are therefore

G 2 i = 1, G i G j = G j G i . We have: G 2 i = kl u ik u il ⊗ g k g l = 1 + k<l (u ik u il + u il u ik ) ⊗ g k g l [G i , G j ] = k<l (u ik u jl -u jk u il + u il u jk -u jl u ik ) ⊗ g k g l
By working out these relations, this gives G ⊂ ŌN , as claimed.

(2) This follows from the fact that K N is the Cayley graph of Z N 2 .

(3) Indeed, the metric on K N comes from the Cayley graph structure.

The above result was, at the time of [START_REF] Banica | The hyperoctahedral quantum group[END_REF], and since then, something quite surprizing. One of our purposes in what follows will be that of answering the following question: is the above result something exceptional, or is it part of some general theory?

Representation theory

In this section we discuss the representation theory of ŌN , and its connection with the representation theory of the hyperoctahedral group H N , and with some other related quantum groups. We will heavily rely on the Tannakian techniques introduced by Woronowicz in [START_REF] Woronowicz | Tannaka-Krein duality for compact matrix pseudogroups. Twisted SU(N) groups[END_REF], further explained in [START_REF] Malacarne | Woronowicz's Tannaka-Krein duality and free orthogonal quantum groups[END_REF], [START_REF] Neshveyev | Compact quantum groups and their representation categories[END_REF], and in the lecture notes [START_REF] Banica | Quantum groups, from a functional analysis perspective[END_REF].

The general idea is that since ŌN appears as a kind of q = -1 twist of O N , in a sense close to the one of Drinfeld [START_REF] Drinfeld | Quantum groups[END_REF] and Jimbo [START_REF] Jimbo | A q-difference analog of U (g) and the Yang-Baxter equation[END_REF], its representation theory should be very similar to that of O N . As a first illustration for this principle, we have: Proof. This result is from [START_REF] Banica | The hyperoctahedral quantum group[END_REF], with the proof using a cocycle twisting interpretation of ŌN , along with a Morita equivalence type argument. See [START_REF] Banica | The hyperoctahedral quantum group[END_REF].

The above result is of course not very explicit, and in addition the fusion rules in question, meaning those for O N , are something quite complicated. In practice, better for our purposes will be to use the "easiness" philosophy from [START_REF] Banica | Liberation of orthogonal Lie groups[END_REF]. We first have: Proposition 2.2. The Tannakian category of O N is given by

Hom(u ⊗k , u ⊗l ) = span T π π ∈ P 2 (k, l)
where P 2 is the category of pairings, and where π → T π is given by

T π (e i 1 ⊗ . . . ⊗ e i k ) = j:ker( i j )≤π e j 1 ⊗ . . . ⊗ e j l
with e 1 , . . . , e N being the standard basis of C N .

Proof. This is an old theorem of Brauer [START_REF] Brauer | On algebras which are connected with the semisimple continuous groups[END_REF]. In what follows we will rely on the proof from [START_REF] Banica | Liberation of orthogonal Lie groups[END_REF] of this result, with categorical input coming from [START_REF] Malacarne | Woronowicz's Tannaka-Krein duality and free orthogonal quantum groups[END_REF]. See [START_REF] Banica | Quantum groups, from a functional analysis perspective[END_REF].

Regarding now ŌN , this quantum group is not exactly easy in the sense of [START_REF] Banica | Liberation of orthogonal Lie groups[END_REF], but we have the following result, making the link with [9]: Proposition 2.3. The Tannakian category of ŌN is given by Hom(u ⊗k , u ⊗l ) = span Tπ π ∈ P 2 (k, l) where P 2 is the category of pairings, and where π → Tπ is given by Tπ (e i 1 ⊗ . . . ⊗ e i k ) = j:ker( i j )≤π ε ker i 1 . . . i k j 1 . . . j l e j 1 ⊗ . . . ⊗ e j l with ε : P even → {±1} being the standard extension of the signature map S ∞ → {±1}.

Proof. The point here is that, after reproving the Brauer result as in [START_REF] Banica | Liberation of orthogonal Lie groups[END_REF], the extension to ŌN is straightforward, with the ± signs in the commutation relations between the coordinates of ŌN producing the ± signs from the signature, as stated. See [START_REF] Banica | Liberations and twists of real and complex spheres[END_REF].

At a more advanced level now, it is known as well from [START_REF] Banica | Liberations and twists of real and complex spheres[END_REF] that a Weingarten type integration formula for ŌN is available, in the spirit of the one in [START_REF] Collins | Integration with respect to the Haar measure on unitary, orthogonal and symplectic groups[END_REF] for O N , with both the Gram and the Weingarten matrices being invariant under twisting. See [START_REF] Banica | Liberations and twists of real and complex spheres[END_REF].

In what follows we will be rather interested in purely algebraic consequences of Proposition 2.3. Following [START_REF] Banica | Liberations and twists of real and complex spheres[END_REF], [START_REF] Banica | A duality principle for noncommutative cubes and spheres[END_REF], let us introduce the following notion:

Definition 2.4. An intermediate quantum group H N ⊂ Ġ ⊂ O +
N is called "quizzy", with deformation parameter q = ±1, when its Tannakian category appears as

Hom(u ⊗k , u ⊗l ) = span Ṫπ π ∈ D(k, l)
for a certain category of partitions D, where the correspondence π → Ṫπ is the usual π → T π correspondence at q = 1, and is the correspondence π → Tπ at q = -1.

Here the fact that we must assume H N ⊂ Ġ comes from the fact that the signature map ε is defined only on P even , and not on the whole P . Thus, in order for the twisted maps Tπ to be well-defined, we must have D ⊂ P even , which reads H N ⊂ Ġ. See [START_REF] Banica | A duality principle for noncommutative cubes and spheres[END_REF].

In order to discuss now the classification of the quizzy quantum groups, we need to introduce more some examples, coming from [START_REF] Banica | Liberations and twists of real and complex spheres[END_REF], [START_REF] Banica | Liberation of orthogonal Lie groups[END_REF], as follows: Definition 2.5. We have intermediate compact quantum groups as follows,

O N ⊂ O * N ⊂ O + N , ŌN ⊂ Ō * N ⊂ O + N
obtained by imposing to the standard coordinates of O + N the half-commutation relations abc = cba, and the twisted half-commutation relations abc = ±cba.

To be more precise, the signs in above relations abc = ±cba are by definition those producing an embedding ŌN ⊂ Ō * N . The precise formula of these signs, which is a bit complicated, can be found in [START_REF] Banica | Liberations and twists of real and complex spheres[END_REF]. As an explanation here, however, let us mention that O * N , Ō * N appear respectively as the quantum isometry groups of the half-classical spheres S N -1 R, * , SN-1 R, * , whose coordinates are subject to the following relations:

x i x j x k = x k x j x i , x i x j x k = (-1) δ ij +δ ik +δ jk x k x j x i
For more details on the structure of these quantum groups, on the half-liberation operation, and on these latter noncommutative spheres, see [START_REF] Banica | Liberations and twists of real and complex spheres[END_REF], [START_REF] Bichon | Half-liberated real spheres and their subspaces[END_REF], [START_REF] Bichon | Half-commutative orthogonal Hopf algebras[END_REF].

As examples, we have as well the hyperoctahedral group H N , its free version H + N , constructed in [START_REF] Banica | The hyperoctahedral quantum group[END_REF], and the various intermediate liberations

H N ⊂ H × N ⊂ H + N .
Following [START_REF] Raum | The full classification of orthogonal easy quantum groups[END_REF], the definition and classification of these latter quantum groups is as follows: 

H * N = H + N ∩ O * N . (2) A higher half-liberation H * N ⊂ H [∞] N ⊂ H + N ,
obtained by imposing the relations abc = 0, for any a = c on the same row or column of u.

(3) An uncountable family of intermediate quantum groups

H N ⊂ H Γ N ⊂ H [∞] N , ob- tained from the quotients Z * ∞ 2 → Γ satisfying a certain uniformity condition. (4) A series of intermediate quantum groups H [∞] N ⊂ H k N ⊂ H + N , obtained via the relations [a 1 . . . a k-2 b 2 a k-2 . . . a 1 , c 2 ] = 0.
Proof. Here the fact that H + N is indeed a quantum group, and that both H N , H + N are easy, is from [START_REF] Banica | The hyperoctahedral quantum group[END_REF]. As for the classification result, this is from [START_REF] Raum | The full classification of orthogonal easy quantum groups[END_REF].

Let us mention as well that, in analogy with the decomposition H N = S N Z 2 , we have a decomposition H + N = S + N * Z 2 , where S + N is Wang's quantum permutation group [START_REF] Wang | Quantum symmetry groups of finite spaces[END_REF], and where * is a free wreath product in the sense of Bichon [START_REF] Bichon | Free wreath product by the quantum permutation group[END_REF]. See [START_REF] Banica | The hyperoctahedral quantum group[END_REF].

We have the following classification result, from [START_REF] Banica | A duality principle for noncommutative cubes and spheres[END_REF]:

Theorem 2.7. The quizzy quantum groups

H N ⊂ Ġ ⊂ O + N are as follows, ŌN / / Ō * N ' ' H N / / 7 7 ' ' H × N / / H + N / / O + N O N / / O * N 7 7
with H × N standing for the various liberations of H N , which are all self-dual. Proof. We already know from Proposition 2.3 above that ŌN is quizzy, appearing as a Schur-Weyl twist of O N , in the sense that D remains the same, and q = ±1 changes. The same happens for Ō * N and O * N , as explained in [START_REF] Banica | A duality principle for noncommutative cubes and spheres[END_REF]. As for the converse, this follows from the classification work of Raum and Weber in [START_REF] Raum | The full classification of orthogonal easy quantum groups[END_REF], and from a case-by-case analysis of the twists. To be more precise, what happens is that for the quantum groups listed in [START_REF] Raum | The full classification of orthogonal easy quantum groups[END_REF] we have

G = Ḡ, except for G = O N , O * N .
For details here, see [START_REF] Banica | A duality principle for noncommutative cubes and spheres[END_REF]. The above abstract considerations extend to the unitary case, but the situation here is considerably more complicated, with the classification of the easy quantum groups, and therefore of the quizzy quantum groups as well, not known yet. See [START_REF] Gromada | Classification of globally colorized categories of partitions[END_REF], [START_REF] Tarrago | Unitary easy quantum groups: the free case and the group case[END_REF].

There are many interesting twisting questions too in connection with the various generalizations of the easy quantum group formalism, as those in [START_REF] Freslon | On the partition approach to Schur-Weyl duality and free quantum groups[END_REF], [START_REF] Freslon | On two-coloured noncrossing quantum groups[END_REF].

Fourier transforms

Our purpose here is to compute the magic representation of ŌN , and its character. In order to solve this question, we will need: Proposition 3.1. The Fourier transform over Z N 2 is the map

α : C(Z N 2 ) → C * (Z N 2 ) , δ g i 1 1 ...g i N N → 1 2 N j 1 ...j N (-1) <i,j> g j 1 1 . . . g j N N
with the usual convention < i, j >= k i k j k , and its inverse is the map

β : C * (Z N 2 ) → C(Z N 2 ) , g i 1 1 . . . g i N N → j 1 ...j N (-1) <i,j> δ g j 1 1 ...g j N N
with all the exponents being binary, i 1 , . . . , i N , j 1 , . . . , j N ∈ {0, 1}.

Proof. Observe first that the group Z N 2 can be written as follows:

Z N 2 = g i 1 1 . . . g i N N i 1 , .
. . , i N ∈ {0, 1} Thus both α, β are well-defined, and it is elementary to check that both are morphisms of algebras. We have as well αβ = βα = id, coming from the standard formula:

1 2 N j 1 ...j N (-1) <i,j> = N k=1 1 2 jr (-1) irjr = δ i0
Thus we have indeed a pair of inverse Fourier morphisms, as claimed.

As an illustration here, at N = 1, with the notation Z 2 = {1, g}, the map α is given by

δ 1 → 1 2 (1 + g), δ g → 1 2
(1 -g) and its inverse β is given by 1 → δ 1 + δ g , g → δ 1 -δ g . By using now these Fourier transforms, we obtain following formula: Proposition 3.2. The magic unitary for the embedding ŌN ⊂ S + 2 N is given by

w i 1 ...i N ,k 1 ...k N = 1 2 N j 1 ...j N b 1 ...b N (-1) <i+k b ,j> 1 N #(0∈j) u j 1 1b 1 . . . u j N N b N
where

k b = (k b 1 , . . . , k b N ), with respect to multi-indices i, k ∈ {0, 1} N as above.
Proof. By composing the coaction map Φ from Theorem 1.6 with the above Fourier transform isomorphisms α, β, we have a diagram as follows:

C * (Z N 2 ) Φ / / C( ŌN ) ⊗ C * (Z N 2 ) id⊗β C(Z N 2 ) α O O Ψ / / C( ŌN ) ⊗ C(Z N 2 )
In order to compute the composition on the bottom Ψ, we first recall from Theorem 1.6 above that the coaction map Φ is defined by the formula Φ(g a ) = b u ab ⊗ g b , for any a ∈ {1, . . . , N }. Now by making products of such quantities, we obtain the following global formula for Φ, valid for any exponents i 1 , . . . , i N ∈ {1, . . . , N }:

Φ(g i 1 1 . . . g i N N ) = 1 N #(0∈i) b 1 ...b N u i 1 1b 1 . . . u i N N b N ⊗ g i 1 b 1 . . . g i N b N
The term on the right can be put in "standard form" as follows:

g i 1 b 1 . . . g i N b N = g bx=1 ix 1 . . . g bx ix N
We therefore obtain the following formula for the coaction map Φ:

Φ(g i 1 1 . . . g i N N ) = 1 N #(0∈i) b 1 ...b N u i 1 1b 1 . . . u i N N b N ⊗ g bx=1 ix 1 . . . g bx=N ix N
Now by applying the Fourier transforms, we obtain the following formula:

Ψ(δ g i 1 1 ...g i N N ) = (id ⊗ β)Φ 1 2 N j 1 ...j N (-1) <i,j> g j 1 1 . . . g j N N = 1 2 N j 1 ...j N b 1 ...b N (-1) <i,j> 1 N #(0∈j) u j 1 1b 1 . . . u j N N b N ⊗ β g bx=1 jx 1 . . . g bx=N jx N
By using now the formula of β from Proposition 3.1, we obtain:

Ψ(δ g i 1 1 ...g i N N ) = 1 2 N j 1 ...j N b 1 ...b N k 1 ...k N 1 N #(0∈j) (-1) <i,j> (-1) <( bx=1 jx,..., bx=N jx),(k 1 ,...,k N )> u j 1 1b 1 . . . u j N N b N ⊗ δ g k 1 1 ...g k N N
Now observe that, with the notation k b = (k b 1 , . . . , k b N ), we have:

< ( bx=1 j x , . . . , bx=N j x ), (k 1 , . . . , k N ) >=< j, k b >
Thus, we obtain the following formula for our map Ψ:

Ψ(δ g i 1 1 ...g i N N ) = 1 2 N j 1 ...j N b 1 ...b N k 1 ...k N (-1) <i+k b ,j> 1 N #(0∈j) u j 1 1b 1 . . . u j N N b N ⊗ δ g k 1 1 ...g k N N
But this gives the formula in the statement for the corresponding magic unitary, with respect to the basis

{δ g i 1 1 ...g i N N } of the algebra C(Z N
2 ), and we are done. Let us compute now the character of w. We first have: Proof. With the formula in Proposition 3.2, the character is:

Proposition 3.3. The character of the magic representation of ŌN is given by χ = j 1 ...j N b 1 ...b N 1 N #(0∈j) δ j 1 , bx=1 jx . . . δ j N , bx=N jx u j 1 1b 1 . . . u j N N b N with binary indices j 1 , . . . , j N ∈ {0, 1},
χ = i 1 ...i N w i 1 ...i N ,i 1 ...i N = 1 2 N i 1 ...i N j 1 ...j N b 1 ...b N (-1) <i+i b ,j> 1 N #(0∈j) u j 1 1b 1 . . . u j N N b N = j 1 ...j N b 1 ...b N 1 2 N i 1 ...i N (-1) <i+i b ,j> 1 N #(0∈j) u j 1 1b 1 . . . u j N N b N
The sum in the middle S ijb is a Fourier sum, computed as follows:

S ijb = 1 2 N i 1 ...i N (-1) <i,j> (-1) i b 1 j 1 +...+i b N j N = 1 2 N i 1 ...i N (-1) <i,j> (-1) i 1 bx=1 jx+...+i N bx=N jx = 1 2 N i 1 ...i N (-1) i 1 (j 1 + bx=1 jx)+...+i N (j N + bx=N jx) = δ j 1 , bx=1 jx . . . . . . δ j N , bx=N jx
We therefore obtain the formula in the statement, and we are done.

We can fine-tune the formula found above, as follows:

Proposition 3.4. The magic character of ŌN is given by χ = N r=0 χ r , where Proof. We use the formula in Proposition 3.3. With the notation r = #(1 ∈ j) we obtain a decomposition χ = N r=0 χ r as in the statement, with:

χ r = 1 N N -r
χ r = 1 N N -r #(1∈j)=r b 1 ...b N δ j 1 , bx=1 jx . . . δ j N , bx=N jx u j 1 1b 1 . . . u j N N b N
Consider now the set A ⊂ {1, . . . , N } given by A = {a|j a = 1}. The binary multiindices j ∈ {0, 1} N satisfying #(1 ∈ j) = r being in bijection with such subsets A, satisfying |A| = r, we can replace the sum over j with a sum over such subsets A.

We therefore obtain a formula as follows, where j is the index corresponding to A: 

χ r = 1 N N -r |A|=r b 1 ...b N δ j 1 , bx=1 jx . . . δ j N ,
δ jp, bx=p jx = 1 ⇐⇒ bx=p j x = j p (mod 2) ⇐⇒ x∈b -1 (p) j x = j p (mod 2) ⇐⇒ |b -1 (p) ∩ A| = χ A (p) (mod 2)
We conclude that the multi-indices b ∈ {1, . . . , N } N which effectively contribute to the sum are those coming from the functions b : {1, . . . , N } → {1, . . . , N } satisfying the condition b < A from the statement. Thus, we obtain the formula in the statement.

The above formula for the character is still not our final one. We can indeed further study the condition b < A appearing there, and we are led to: Theorem 3.5. The magic character of ŌN is given by χ = N r=0 χ r , where

χ r = |A|=r σ∈S A N a∈A u aσ(a)
with the product being ordered, and where S A N = {σ ∈ S N |σ |A c = id}. Proof. We use the formula in Proposition 3.4. By splitting the character χ = N r=0 χ r as indicated there, and then by further splitting each χ r over the sets A ⊂ {1, . . . , N } satisfying |A| = r, we must prove that for each of these sets we have:

1

N N -r b<A a∈A u aba = σ∈S A N a∈A u aσ(a)
In order to do so, we must construct a certain correspondence b → σ, which leaves invariant the product term, and which produces the multiplicity N N -r .

We know that the condition b < A corresponds to the following condition:

|b -1 (p) ∩ A| = χ A (p) (mod 2), ∀p
Now observe that the validity of this condition, and the value of the corresponding product a∈A u aba as well, only concerns the restriction b |A . Thus, up to a multiplicity of N |A c | = N N -r , we can replace if we want the restriction b |A c by the identity.

Summarizing, we must prove that we have the following formula:

b<A,b |A c =id a∈A

u aba = σ∈S A N a∈A u aσ(a)
Our claim is that this formula holds indeed, with the correspondence being given by b = σ. In order to prove this latter fact, what we have to show is that we have:

b |A c = id, |b -1 (p) ∩ A| = χ A (p) (mod 2), ∀p ⇐⇒ b ∈ S A N
Since everything here depends on A only, we can assume if we want that we have A = {1, . . . , N }, and the statement to be proved becomes:

|b -1 (p)| = 1 (mod 2), ∀p ⇐⇒ b ∈ S N
But this is clear, because the implication =⇒ follows from |b -1 (p)| ≥ 1 for any p, and the implication ⇐= is trivial. Thus, we have proved our claim, and we are done.

Magic actions

We will be interested in what follows in further understanding the magic action of ŌN , and notably in computing the probabilistic distribution of its character, with respect to the Haar measure of ŌN . For this purpose, simplest is to make the link with O N .

In order to do so, we must further study the quantities χ r introduced in Theorem 3.5 above. As a first result here, at small or big values of r, we have: Proposition 4.1. The quantities χ r from Theorem 3.5 are as follows:

(1) χ 0 = 1.

(2) χ 1 = a u aa .

(

) χ 2 = a<c u aa u cc + u ac u ca . (4) χ N -1 = N a=1 σ∈S N ,σ(a)=a u 1σ(1) . . . u a-1σ(a-1) u a+1σ(a+1) . . . u N σ(N ) . (5) χ N = σ∈S N u 1σ(1) . . . u N σ(N ) . 3 
Also, at N = 2 we obtain χ = 1 + u 11 + u 22 + u 11 u 22 + u 12 u 21 .

Proof. We use the formula found in Theorem 3.5 above, namely:

χ r = |A|=r σ∈S A N a∈A u aσ(a)
(1) Here we must have A = ∅, and the result is clear.

(2) Here we can write A = {a}, the only permutation σ ∈ S A N is the identity, and we obtain the formula in the statement.

(3) Here we can write A = {a, c} with a < c, there are two permutations σ ∈ S A N , namely the identity and the transposition a ↔ c, and we obtain the above formula.

(4) Here we can write A = {1, . . . , N } -{a}, and we obtain the above formula.

( Observe that at N = 2 the variable χ 2 = χ -χ 0 -χ 1 , and so all the variables χ r in this case, is a virtual character in the sense of [START_REF] Woronowicz | Compact matrix pseudogroups[END_REF]. This can be checked as well directly, by applying the comultiplication to the formula χ 2 = u 11 u 22 + u 12 u 21 .

In fact, according to Theorem 1.6, the action of ŌN must leave invariant the N + 1 eigenspaces of the Laplacian of the cube, and one can prove that the above variables χ 0 , . . . , χ N are the precisely characters of the corresponding representations of ŌN . In what follows, we will be rather interested in identifying these representations with some similar representations of O N . The correspondence will come from: Proposition 4.2. Consider the r-th antisymmetric representation of O N , on the space

X r = span ξ i 1 ...ir i 1 < . . . < i r , ξ i 1 ...ir = σ∈Sr ε(σ)e i σ(1) ⊗ . . . ⊗ e i σ(r)
of antisymmetric vectors in (C N ) ⊗r . The character of this representation is given by

χ r = |A|=r σ∈S A N ε(σ) a∈A u aσ(a)
where S A N = {σ ∈ S N |σ |A c = id}, and where ε : S N → {±1} is the signature map.

Proof. The fact that X r is indeed invariant is well-known, and so we have a representation, as stated. In order to compute now the character, observe that for g ∈ O N we have:

g ⊗r ξ i 1 ...ir = σ∈Sr ε(σ)ge i σ(1) ⊗ . . . ⊗ ge i σ(r) = σ∈Sr j 1 ...jr ε(σ)g j 1 i σ(1) . . . g jri σ(r) e j 1 ⊗ . . . ⊗ e jr = j 1 ...jr σ∈Sr ε(σ)g j 1 i σ(1) . . . g jri σ(r) e j 1 ⊗ . . . ⊗ e jr
By using the properties of the signature map, we see that when the indices j 1 , . . . , j r are not distinct, the corresponding contribution is 0. Thus, we can restrict the sum over distinct indices j 1 , . . . , j r . Moreover, by arranging these indices increasingly, into a sequence k 1 < . . . < k r , we conclude that we must have, for a certain τ ∈ S r :

j 1 = k τ (1) , . . . , j r = k τ (r)
This correspondence between distinct indices j 1 , . . . , j r and pairs of increasing sequences k 1 < . . . < k r plus permutations τ ∈ S r being bijective, we conclude that we have:

g ⊗r ξ i 1 ...ir = k 1 <...<kr τ ∈Sr σ∈Sr ε(σ)g k τ (1) i σ(1) . . . g k τ (r) i σ(r) e k τ (1) ⊗ . . . ⊗ e k τ (r)
Now by taking the scalar product with ξ k 1 ...kr , we obtain from this:

< g ⊗r ξ i 1 ...ir , ξ k 1 ...kr >= σ,τ ∈Sr ε(στ )g k τ (1) i σ(1) . . . g k τ (r) i σ(r)
We can now compute the character. With respect to the basis {ξ i 1 ...ir }, we obtain:

χ(g) = i 1 <...<ir σ,τ ∈Sr ε(στ )g i τ (1) i σ(1) . . . g i τ (r) i σ(r)
By permuting the terms on the right, and in terms of the permutation ρ = στ -1 , which has the same signature as the permutation στ appearing above, we obtain:

χ(g) = i 1 <...<ir ρ∈Sr ε(ρ)g i 1 i ρ(1) . . . g iri ρ(r)
Now if we set A = {i 1 , . . . , i r }, and we replace ρ by its extension σ ∈ S A N , obtained by fixing all the points of A c , this gives the formula in the statement. Now by comparing Theorem 3.5 and Proposition 4.2, we obtain: Proof. This follows by comparing the formulae in Theorem 3.5 and Proposition 4.2. Indeed, the twisting operation O N → ŌN makes correspond the following products:

ε(σ) a∈A u aσ(a) → a∈A u aσ(a)
Now by summing over sets A and permutations σ, we conclude that the twisting operation O N → ŌN makes correspond the following quantities:

|A|=r σ∈S A N ε(σ) a∈A u aσ(a) → |A|=r σ∈S A N a∈A u aσ(a)
Thus the character χ r computed for O N corresponds to the character χ r computed for ŌN , and by making a sum over r ∈ {0, 1, . . . , N }, this gives the result.

Summarizing, we have now a good understanding of the magic representation of ŌN , that we will use later on. This representation, however, remains quite exceptional, and in relation with all this, we have the following conjecture: Conjecture 4.4. There are two types of possible actions of the quizzy quantum groups

H N ⊂ G ⊂ O +
N on finite spaces, as follows:

(1) Those coming from H N ⊂ ŌN ⊂ S + 2 N . (2) Those coming from H N ⊂ G ⊂ H + N ⊂ S + 2N .
Proving this looks like a heavy algebraic task, because there are many things to be done, which all look non-trivial. To be more precise, taking into account the classification result in Theorem 2.5 above, the precise list of results to be proved is as follows:

(1) First, we must prove that the above magic corepresentation of ŌN is the unique one. In view of the correspondence O N ↔ ŌN , we must first solve a certain categorical problem for O N , involving Young tableaux, and then look for the "magic" implementation of the solutions. This is certainly quite non-trivial. (2) Then, we must prove that Ō * N has no magic corepresentation at all. Here we can use the isomorphism P Ō * N = P ŪN , and so we are led as well to Young tableaux combinatorics, this time coming from ŪN . For the remaining representations, which are not projective, we can use the classification resuls in [START_REF] Bichon | Half-commutative orthogonal Hopf algebras[END_REF].

(3) Finally, we must deal with the actions of the quantum groups H N ⊂ G ⊂ H + N , on one hand by proving that in the non-classical case, G = H N , the only solution comes as G ⊂ H + N ⊂ S + 2N , and on the other hand by proving that in the classical case, G = H N , the only extra solution comes as

H N ⊂ S 2 N .
All this is extremely heavy. We believe however that Conjecture 4.4 is a good problem, hiding many interesting things, and definitely worth investigating.

Liberation theory

We know that the hyperoctahedral group H N has at least two natural "liberations", namely H N ⊂ H + N and H N ⊂ ŌN . Our purpose here is to systematically investigate this phenomenon. We will see that this will naturally lead us into certain questions regarding the higher orbitals of H N , H + N , ŌN , which will require using Theorem 4. N ⊂ O + N , and so O + N is universal. In general, however, the above notions are quite subtle, even for the trivial group G = {1}, and this because the condition H class = {1} is quite poorly understood.

In order to further comment on these questions, let us recall that for an inclusion of orthogonal quantum groups G ⊂ H the linear spaces F ix(u ⊗l ) must decrease, when passing from G to H, and that G ⊂ H is proper precisely when one of these spaces decreases strictly. This follows indeed from the Peter-Weyl theory from [START_REF] Woronowicz | Compact matrix pseudogroups[END_REF].

In view of this fact, let us introduce as well:

Definition 5.2. Let G ⊂ O N be a closed subgroup.
(1) The level of a liberation G ⊂ H ⊂ O + N is the smallest l ∈ N such that the space F ix(u ⊗l ) decreases, when passing from G to H.

(2) The stability level of G is the biggest k ∈ N such that the space F ix(u ⊗k ) remains fixed, for any liberation G ⊂ H ⊂ O + N . Once again, as a basic example, let us take G = O N itself. The liberations of G being the intermediate quantum groups

O N ⊂ O × N ⊂ O + N , the stability level is k = 3, coming from the fact that we have N C 2 (k) = P 2 (k) at k ≤ 3, but not at k = 4.
In fact, there are conjecturally only two proper liberations of O N , namely the free version O + N , having level 4, and the half-liberated version O * N , having level 6. These observations have a natural generalization to the easy quantum group setting, from [START_REF] Banica | Liberation of orthogonal Lie groups[END_REF]. The liberation theory for the easy groups was developed there, by using some inspiration from the Weingarten formula [START_REF] Collins | Integration with respect to the Haar measure on unitary, orthogonal and symplectic groups[END_REF], [START_REF] Weingarten | Asymptotic behavior of group integrals in the limit of infinite rank[END_REF] and from the Bercovici-Pata bijection from free probability theory [START_REF] Bercovici | Stable laws and domains of attraction in free probability theory[END_REF], [START_REF] Voiculescu | Free random variables[END_REF], the idea being that the passage G → G + simply appears by "removing the crossings" from the Tannakian category of G. See [START_REF] Banica | Liberation of orthogonal Lie groups[END_REF].

We will be interested in what follows only in the "true" liberations G → G + , which are those having the property that the laws of the main characters are related by the Bercovici-Pata bijection. As explained in [START_REF] Banica | Liberation of orthogonal Lie groups[END_REF], there are only 4 such liberations, namely those of the groups O N , B N , S N , H N . We refer as well to [START_REF] Banica | Quantum groups, from a functional analysis perspective[END_REF] for this material.

With these preliminaries in hand, we have the following result: Proposition 5.3. Consider the truly liberable orthogonal easy groups, namely the quantum groups O N , B N , S N , H N , and their easy liberations O + N , B + N , S + N , H + N . (1) These liberations are universal, in the easy setting.

(2) The stability level is k = 3, once again in the easy setting.

Proof. Here the first assertion follows from [START_REF] Banica | Liberation of orthogonal Lie groups[END_REF], or from the classification results from [START_REF] Raum | The full classification of orthogonal easy quantum groups[END_REF].

Regarding now the stability level, since in each case we have a universal liberation, this is given by k = l -1, where l is the level of the universal liberation.

The point now is that, in each of the cases under consideration, we have l = 4. Indeed, as explained above, for G = O N this follows from N C 2 (l) = P 2 (l) at l ≤ 3, but not at l = 4. As for G = B N , S N , H N , the situation here is similar, because if we denote by D the corresponding category of partitions, which is respectively D = P 12 , P, P even , we have D(l) ⊂ N C(l) at l ≤ 3, but not at l = 4, because the basic crossing belongs to D.

In the non-easy setting now, the results for G = O N still hold. However, in what concerns G = B N , S N , H N , the problems here become considerably more difficult. Regarding G = B N , S N , we believe that the easy liberations G + = B + N , S + N are universal, but we have no idea on how to approach this problem. The maximality problem, which is in principle a bit simpler, looks equally difficult. In Tannakian terms, we must prove:

C ⊂ span(N C 12 ) , | ∈< C, / \ > =⇒ | ∈ C C ⊂ span(N C) , | , ∈< C, / \ > =⇒ | , ∈ C
These questions are substantially more complicated than those usually solved in the context of the easy quantum groups, as in [START_REF] Banica | Liberation of orthogonal Lie groups[END_REF], [START_REF] Raum | The full classification of orthogonal easy quantum groups[END_REF], [START_REF] Tarrago | Unitary easy quantum groups: the free case and the group case[END_REF], and we have no results.

Let us discuss now the case G = H N , which is the one that we are interested in. As a starting point, we have the following fact, coming from [START_REF] Banica | The hyperoctahedral quantum group[END_REF]: Proposition 5.4. The hyperoctahedral group H N has at least two natural liberations, namely H N ⊂ H + N and H N ⊂ ŌN , and neither of them is universal. Proof. The fact that we have indeed liberations is known from [START_REF] Banica | The hyperoctahedral quantum group[END_REF], and follows for instance from the following formula, valid for any finite graph X:

G + (X) class = G + (X)
Indeed, with X being the graph formed by N segments we obtain (H + N ) class = H N , and with X being the N -hypercube, we obtain ( ŌN ) class = H N .

Regarding now the last assertion, this follows from the fact that we don't have inclusions H + N ⊂ ŌN or ŌN ⊂ H + N , because the coordinates of either quantum group don't satisfy the relations for the other. This is indeed clear in view of the definitions of these quantum groups. We will obtain this result as well below, as part of something more general.

In view of the above result, several natural questions appear, as follows:

(1) Are the above liberations maximal? Here we are led into difficult Tannakian questions, of the same flavor as the above-mentioned ones for B N , S N , namely:

C ⊂ span(N C even ) , ∈< C, / \ > =⇒ ∈ C C ⊂ span( P2 ) , ∈< C, / \ > =⇒ ∈ C (2)
Are there any other maximal liberations of H N ? Once again, this looks liks a quite difficult problem, which is in need of some new ideas.

( In what follows we will solve (3), and then, later on, comment on (4). Regarding ( 3), our answer is < H + N , ŌN >= O + N , coming as part of the following general result: Theorem 5.5. The diagram of the basic quizzy quantum groups, namely

) 3 
ŌN / / Ō * N ' ' H N / / 7 7 ' ' H * N 7 7 
' ' Proof. The various intersections and generation results are already known, and explained in [START_REF] Banica | Quantum groups, from a functional analysis perspective[END_REF], except for the following two results, that remain to be proved now:

/ / H + N / / O + N O N / / O * N 7 
< ŌN , H + N >= O + N , < ŌN , H * N >= O * N
In order to prove these two formulae, we use the Tannakian approach. To be more precise, we must prove that we have the following results:

span Tπ π ∈ P 2 span T π π ∈ N C even = span T π π ∈ N C 2 span Tπ π ∈ P 2 span T π π ∈ P * even = span T π π ∈ P * 2
We will only prove the first formula, the proof of the second one being similar. Let us first recall that the Möbius function of any lattice is given by:

µ(σ, π) =      1 if σ = π -σ≤τ <π µ(σ, τ ) if σ < π 0 if σ ≤ π
With this convention, we have the following formula from [START_REF] Banica | A duality principle for noncommutative cubes and spheres[END_REF], which expresses the twisted maps Tπ in terms of the untwised ones T π :

Tπ = σ≤τ ≤π ε(τ )µ(σ, τ )T σ
To be more precise, this formula is valid for any π ∈ P even , with the sum being over all partitions σ, τ ∈ P even satisfying σ ≤ τ ≤ π, and with µ being the Möbius function of P even . We refer to [START_REF] Banica | A duality principle for noncommutative cubes and spheres[END_REF] for the proof, which follows from the definition of Ṫπ , and from the Möbius inversion formula. As an illustration, we have the following computation:

T/ \ = ε(/ \)µ(/ \, / \)T / \ + ε(/ \)µ(| -|, / \)T | -| + ε(| -|)µ(| -|, | -|)T | -| = (-1) • 1 • T / \ + (-1) • (-1) • T | -| + 1 • 1 • T | -| = -T / \ + 2 T | -|
Observe that this agrees with T/ \ (e a ⊗ e b ) = -e b ⊗ e a + 2δ ab e a ⊗ e a . See [START_REF] Banica | A duality principle for noncommutative cubes and spheres[END_REF]. With this formula in hand, let us go back to our problem. By Frobenius duality we can restrict the attention to the fixed vectors, and we want to prove that we have:

span Tπ π ∈ P 2 (k) span T π π ∈ N C even (k) = span T π π ∈ N C 2 (k)
So, let us pick a vector ξ in the span on the left, as follows:

ξ = π∈P 2 (k)
α π Tπ By using the above Möbius formula, we obtain:

ξ = π∈P 2 (k) α π σ≤τ ≤π ε(τ )µ(σ, τ )T σ = σ∈Peven(k) T σ π∈P 2 (k) σ≤τ ≤π ε(τ )µ(σ, τ ) α π
Our assumption that ξ belongs to the span in the middle reads:

π∈P 2 (k) σ≤τ ≤π ε(τ )µ(σ, τ ) α π = 0 , ∀σ ∈ P even (k) -N C even (k)
In the case of pairings, σ ∈ P 2 (k) -N C 2 (k), this formula simplifies, because the condition σ ≤ τ ≤ π can only be satisfied when σ = τ = π. Thus, we obtain:

α σ = 0 , ∀σ ∈ P 2 (k) -N C 2 (k)
But this shows that ξ belongs to the span on the right, and we are done.

Summarizing, we have proved that we have < ŌN , H + N >= O + N , and this is probably quite interesting, in view of the various general questions regarding the liberations.

As already mentioned, we still have one concrete problem to be solved, namely that of computing the level of H N ⊂ ŌN . We will be back to this in section 8 below.

As a conclusion, the liberation questions look quite difficult. We believe that a good input might come from the quantum symmetry groups of the finite graphs, and as a general problem here, we have: when is G + (X) a maximal liberation of G(X)?

This does not look obvious at all, and is open even for the empty graph.

Higher orbitals

In view of the above considerations, we would like to compute the level of H N ⊂ ŌN , and of some related inclusions. The notion of level, as constructed in Definition 5.2 above, regards the fixed point spaces F ix(u ⊗k ), or rather the dimension of these spaces. This is the case in general, but in the quantum permutation group case, that we are interested in here, all this is related as well to the notions of orbits and orbitals.

In short, we would like to study the orbits and orbitals of the various quantum permutation groups that we have. We will need some general theory. First, we have: Proposition 6.1. Given a subgroup G ⊂ S N , consider its magic unitary u = (u ij ), given by u ij = χ{σ ∈ G|σ(j) = i}. The following conditions are then equivalent:

(1) σ(i 1 ) = j 1 , . . . , σ(i k ) = j k , for some σ ∈ G.

(2) u i 1 j 1 . . . u i k j k = 0. These conditions produce an equivalence relation (i 1 , . . . , i k ) ∼ (j 1 , . . . , j k ), and the corresponding equivalence classes are the k-orbitals of G.

Proof. The fact that we have indeed an equivalence as in the statement, which produces an equivalence relation, is indeed clear from definitions.

In the quantum case, the situation is more complicated. We follow the approach to the orbits and orbitals developed in [START_REF] Bichon | Algebraic quantum permutation groups[END_REF], [START_REF] Lupini | Nonlocal games and quantum permutation groups[END_REF], and in [START_REF] Musto | A compositional approach to quantum functions[END_REF] as well. We first have: Proposition 6.2. Let G ⊂ S + N be a closed subgroup, with magic unitary u = (u ij ), and let k ∈ N. The relation (i 1 , . . . , i k ) ∼ (j 1 , . . . , j k ) when u i 1 j 1 . . . u i k j k = 0 is:

(1) Reflexive.

(2) Symmetric.

(

) Transitive at k = 1, 2. 3 
Proof. This is basically known from [START_REF] Bichon | Algebraic quantum permutation groups[END_REF], [START_REF] Lupini | Nonlocal games and quantum permutation groups[END_REF], [START_REF] Musto | A compositional approach to quantum functions[END_REF], the proof being as follows:

(1) This simply follows by using the counit:

ε(u irir ) = 1, ∀r =⇒ ε(u i 1 i 1 . . . u i k i k ) = 1 =⇒ u i 1 i 1 . . . u i k i k = 0 =⇒ (i 1 , . . . , i k ) ∼ (i 1 , . . . , i k )
(2) This follows by applying the antipode, and then the involution:

(i 1 , . . . , i k ) ∼ (j 1 , . . . , j k ) =⇒ u i 1 j 1 . . . u i k j k = 0 =⇒ u j k i k . . . u j 1 i 1 = 0 =⇒ u j 1 i 1 . . . u j k i k = 0 =⇒ (j 1 , . . . , j k ) ∼ (i 1 , . . . , i k )
(3) This is something more tricky. We need to prove that we have:

u i 1 j 1 . . . u i k j k = 0 , u j 1 l 1 . . . u j k l k = 0 =⇒ u i 1 l 1 . . . u i k l k = 0
In order to do so, we use the following formula:

∆(u i 1 l 1 . . . u i k l k ) = s 1 ...s k u i 1 s 1 . . . u i k s k ⊗ u s 1 l 1 . . . u s k l k
At k = 1 the result is clear, because on the right we have a sum of projections, which is therefore strictly positive when one of these projections is nonzero.

At k = 2 now, the result follows from the following trick, from [START_REF] Lupini | Nonlocal games and quantum permutation groups[END_REF]:

(u i 1 j 1 ⊗ u j 1 l 1 )∆(u i 1 l 1 u i 2 l 2 )(u i 2 j 2 ⊗ u j 2 l 2 ) = s 1 s 2 u i 1 j 1 u i 1 s 1 u i 2 s 2 u i 2 j 2 ⊗ u j 1 l 1 u s 1 l 1 u s 2 l 2 u j 2 l 2 = u i 1 j 1 u i 2 j 2 ⊗ u j 1 l 1 u j 2 l 2
Indeed, we obtain from this that we have u i 1 l 1 u i 2 l 2 = 0, as desired.

In view of the results that we have so far, we can formulate: Definition 6.3. Given a closed subgroup G ⊂ S + N , consider the relation ∼ k defined by (i 1 , . . . , i k ) ∼ (j 1 , . . . , j k ) when u i 1 j 1 . . . u i k j k = 0.

(1) The equivalence classes with respect to ∼ 1 are called orbits of G.

(2) The equivalence classes with respect to ∼ 2 are called orbitals of G. In the case where ∼ k with k ≥ 3 happens to be transitive, and so is an equivalence relation, we call its equivalence classes the algebraic k-orbitals of G.

In order to have some non-trivial examples and counterexamples, let us study the group duals. We recall that we have an embedding Z N ⊂ S + N , constructed as follows:

Z N Z N ⊂ S N ⊂ S + N
To be more precise, if we let w = e 2πi/N and we denote by g 1 , . . . , g N the elements of Z N , the formula of the corresponding magic unitary over C * (Z N ) is as follows:

u ij = 1 N k w (i-j)k g k
Now given integers N 1 , . . . , N l , we can make a dual free product of the embeddings

Z N i ⊂ S +
N l , and we obtain an embedding as follows, with N = N 1 + . . . + N l :

Z N 1 * . . . * Z N l ⊂ S + N
Moreover, given any quotient Z N 1 * . . . * Z N l → Γ, we obtain in this way an embedding Γ ⊂ S + N . By a result of Bichon in [START_REF] Bichon | Algebraic quantum permutation groups[END_REF], any group dual Γ ⊂ S + N appears in this way. We will assume in what follows, in order to simplify a number of technical aspects, that our quotients Γ appear as intermediate subgroups, as follows:

Z N 1 * . . . * Z N l → Γ → Z N 1 × . . . × Z N l
For a number of comments on this assumption, in the context of various matrix modelling questions for the quantum permutation groups, we refer to [START_REF] Banica | Quasi-flat representations of uniform groups and quantum groups[END_REF], [START_REF] Banica | Modelling questions for quantum permutations[END_REF]. Now back to our orbital questions, we first have:

Proposition 6.4. Given an intermediate group Z N 1 * . . . * Z N l → Γ → Z N 1 × . . . × Z N l , consider the associated embedding Γ ⊂ S + N , with N = N 1 + . . . + N l . (1)
The orbits of Γ are the sets producing the partition {1, . . . , N } = A 1 . . . A l associated to the decomposition

N = N 1 + . . . + N l . (2)
The orbitals of Γ consist of N r copies of the set A r , for any r ∈ {1, . . . , l}, along with all the sets A r × A s , with r = s.

Proof. In order to prove this result, let us first discuss the case l = 1. Here the k-orbitals in question are simply those for the usual action Z N ⊂ S N , and there are N k-1 such k-orbitals, each of them having size N . In general now, the proof is as follows:

(1) This is elementary to prove, starting from the above explicit description of the associated magic unitary, and is well-known since [START_REF] Bichon | Algebraic quantum permutation groups[END_REF].

(2) In order to have u i 1 j 1 u i 2 j 2 = 0 we must have u i 1 j 1 = 0, u i 2 j 2 = 0, and so i 1 , j 1 ∈ A r , i 2 , j 2 ∈ A s , for certain r, s ∈ {1, . . . , l}. We have two cases, as follows: r = s. In this case we have i 1 , j 1 , i 2 , j 2 ∈ A r , and so we are reduced to the study of the orbitals for Z Nr ⊂ S Nr , where the answer is trivial, as explained above. Thus, we obtain as orbitals N r copies of the set A r , for any r ∈ {1, . . . , l}, as in the statement. r = s. In this case, due to the block diagonal structure of the magic matrix u = (u ij ), the conditions u i 1 j 1 = 0, u i 2 j 2 = 0 automatically imply u i 1 j 1 u i 2 j 2 = 0. Thus, we obtain as extra orbitals the sets A r × A s with r = s, as in the statement.

Regarding now the higher orbitals, observe that in order to have u i 1 j 1 u i 2 j 2 u i 3 j 3 = 0 we must have i 1 , j 1 ∈ A r , i 2 , j 2 ∈ A s , i 3 , j 3 ∈ A t for certain r, s, t ∈ {1, . . . , l}. Thus, the problem naturally splits over the partitions ker(rst) ∈ P (3), in the sense that indices coming from triples (rst) having different kernels cannot be connected by ∼ 3 .

With this observation in hand, we have the following result: Proposition 6.5. For a group dual Γ ⊂ S + N as above, ∼ 3 is an equivalence relation on the subsets of indices corresponding to the following partitions:

(1) . The classes here consist of N 2 r copies of A r , for any r.

(2) |. The classes here consist of N r copies of A r × A s , for any r = s.

(3) | . The classes here consist of N t copies of A r × A t , for any r = t. (4) | | |. The classes here consist of the sets A r × A s × A t , with r, s, t distinct. As for the remaining partition, | , here the possible classes depend on Γ.

Proof. Let us first discuss the group dual G = Z N 1 × . . . × Z N l . This is a classical group, and so its ∼ k relation is indeed transitive, as a consequence of Proposition 6.1. Regarding now its 3-orbitals, in order to have u i 1 j 1 u i 2 j 2 u i 3 j 3 = 0 we must have i 1 , j 1 ∈ A r , i 2 , j 2 ∈ A s , i 3 , j 3 ∈ A t for certain r, s, t ∈ {1, . . . , l}, and the situation is as follows:

(I) In the case r = s = t we obtain the 3-orbitals for the action Z Nr ⊂ S Nr , which consist of N 2 r copies of A r . Thus, we obtain here N 2 r copies of A r , for any r. (II) In the case r = s = t we obtain a product of an orbital at r, and an orbit at t. The cases r = t = s and s = t = r are similar.

(III) Finally, in the case where the indices r, s, t are pairwise distinct, we have only 1 orbital, namely the whole set A r × A s × A t .

In the general case now, as in the statement, the computation in case (I) is identical, and gives (1), the computation in the first two cases of (II) is also identical, and gives ( 2) and ( 3), and the computation for (III) gives [START_REF] Banica | Quantum groups, from a functional analysis perspective[END_REF].

Finally, regarding the last assertion, this follows by comparing the products and free products of cyclic groups, and this will be explained in detail below.

Regarding the partition which is left, namely | , we have results here only in the extreme cases, namely the classical and the free case. In fact, for these two groups the computations can be performed for any k, the conclusion being as follows: Proposition 6.6. Consider the following quantum permutation groups: 2), and more specifically in the situation s = t = r. Indeed, since the underlying algebra is no longer commutative, and is in fact a free product, when assuming i 1 , j 1 , i 3 , j 3 ∈ A r and i 2 , j 2 ∈ A s with r = s we have:

Z N 1 × . . . × Z N l ⊂ Z N 1 * . . . * Z N l ( 
u i 1 j 1 u i 2 j 2 u i 3 j 3 = 0 ⇐⇒ u i 1 j 1 = 0, u i 2 j 2 = 0, u i 3 j 3 = 0
Thus we have an equivalence relation, and the number of orbitals decreases.

Summing up, we are done with the case k = 3. Regarding the higher orbitals, their description for G = Z N 1 × . . . × Z N l is similar to the one at k = 1, 2, 3, basically coming by taking products of orbitals for the cyclic actions Z Nr ⊂ S Nr . Thus, we obtain in the end, as full collection of k-orbitals, a certain disjoint union of products of the sets A r .

In the free product case, G = Z N 1 * . . . * Z N l , our claim is that the situation is quite similar. Indeed, given a non-vanishing product w = u i 1 j 1 . . . u i k j k , we must have u i 1 j 1 = 0, . . . , u i k j k = 0. Thus we must have i 1 , j 1 ∈ A r 1 , . . . , i k , j k ∈ A r k for certain numbers r 1 , . . . , r k ∈ {1, . . . , l}. Now if we group the consecutive terms of w at the places where r a = r a+1 , we obtain in this way a certain decomposition of type w = w 1 . . . w s , with the i, j of the u ij components of consecutive w a terms belonging to different A r sets. Now since we are in a free product situation, we have an equivalence as follows: w = 0 ⇐⇒ w 1 = 0, . . . , w s = 0 Thus, in a way which is similar, but not identical, to the one from the classical case, we end up with an equivalence relation, and the corresponding full collection of k-orbitals appears as a certain disjoint union of products of the sets A r .

Generally speaking, we believe that ∼ 3 is not transitive, in the general group dual case, but we have no counterexample. Some interesting candidates here come from the various examples worked out in the context of matrix modelling questions in [START_REF] Banica | Quasi-flat representations of uniform groups and quantum groups[END_REF], [START_REF] Banica | Modelling questions for quantum permutations[END_REF].

Regarding now the quantum permutation group S + N itself, we have here: Theorem 6.7. For the quantum permutation group S + N , with N ≥ 4, we have

(i 1 , . . . , i k ) ∼ (j 1 , . . . , j k ) ⇐⇒          i 1 = i 2 ⇐⇒ j 1 = j 2 i 2 = i 3 ⇐⇒ j 2 = j 3 . . . i k-1 = i k ⇐⇒ j k-1 = j k
and so ∼ is an equivalence relation, at any k ∈ N. The number of orbits is 2 k-1 .

Proof. The implication =⇒ is clear, because if one of the conditions on the right does not hold, we have u i 1 j 1 . . . u i k j k = 0, due to a cancellation between consecutive terms.

Conversely now, we have to show that a vanishing formula of type u i 1 j 1 . . . u i k j k = 0 can only come from "trivial reasons", as in the statement. But this follows by using group duals, and more specifically by using an embedding as follows:

Z 2 * Z 2 ⊂ S + 4 ⊂ S + N
Finally, the last assertion is clear, because when counting the orbits for ∼, at the level of the pairs (i 1 i 2 ) we have one binary choice to be made, namely i 1 = i 2 vs. i 2 = i 2 , then for the pairs (i 2 i 3 ) we have another binary choice, and so on up to a final binary choice, for (i k-1 i k ). Thus, we have k -1 binary choices, and so 2 k-1 orbits.

Definition 7.3. Given a closed subgroup G ⊂ U + N , the integer dim F ix(u ⊗k ) = G χ k
is called number of analytic k-orbitals.

To be more precise here, in the classical case the situation is of course well understood, and this is the number of k-orbitals. The same goes for the general case, with k = 1, 2, where this is the number of k-orbitals, as constructed in section 6 above.

At k = 3 and higher, however, Proposition 7.2 (4) shows that, even in the case where the algebraic 3-orbitals are well-defined, their number is not necessarily the above one. However, we believe that the above definition is the "correct" one.

As a further illustration, let us discuss as well what happens for the group duals. With notations from Proposition 6.4 above, if we denote by g 1 Nr , . . . , g r Nr the elements of each Z Nr , or rather the images of these elements inside Γ, with the order of these elements being irrelevant, the following set satisfies 1 ∈ S = S -1 , and is generating for Γ: S = g ir Nr r = 1, . . . , l, i r = 1, . . . , N r Thus, we can consider the Cayley graph of Γ with respect to this set, and then perform random walks on this graph. With this convention, we have the following result: Proposition 7.4. For the usual products or free products of cyclic groups, the following numbers coincide:

(1) The number of algebraic k-orbitals.

(2) The number of analytic k-orbitals.

(3) The number of k-loops based at 1, on the Cayley graph of Γ.

Proof. It is well-known, as a consequence of u ∼ diag(S), that the numbers in (2) and (3) coincide. Thus, in order to prove the result, we have to compare (1) and (3). As a first observation, at k = 1, 2 this follows from Proposition 6.4, and this, without product assumptions on Γ. Indeed, at k = 1 each set A r corresponds to the loop 1 -1 Nr , and at k = 2 the N r copies of A r correspond to the N r loops of type 1 -g Nr -g Nr g -1

Nr , and the sets A r × A s correspond to the loops 1 -1 Nr -1 Nr 1 Ns .

At k ≥ 3 the proof is similar for the classical products and the free products, by using the description of the k-orbitals from Proposition 6.6 above. To be more precise, for the classical products this is routine, and follows as well from the fact that we have (1) = (2). As for the free product case, the point here is that, by using the word decomposition w = w 1 . . . w s from the proof of Proposition 6.6, each of the words w a must correspond to a certain loop on the Cayley graph, and this gives the result. Now back to the definition of the analytic k-orbitals, this has of course the advantage of being defined for any k. In the particular case k = 3, we have as well the following result, from [START_REF] Banica | Higher transitive quantum groups: theory and models[END_REF], which brings some more support for our definition:
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Reflection groups

Let us go back now to the quantum group ŌN , and the other quizzy quantum groups. As explained in sections 4 and 5 above, we have two types of actions to be investigated, namely H N ⊂ ŌN ⊂ S + 2 N and H N ⊂ H + N ⊂ S + 2N . We will compute here the small order higher orbitals of these actions, in the analytic sense explained in section 7 above.

Let us first study the actions of H N ⊂ ŌN ⊂ S + 2 N . We have here: Proposition 8.1. The orbitals for H N ⊂ ŌN ⊂ S + 2 N are as follows: (1) At k = 1 we have 1 orbit, in both cases.

(2) At k = 2 we have N + 1 orbitals, in both cases.

Proof. Indeed, the action of H N on the hypercube is transitive, and has N + 1 orbitals, corresponding to the diagonals of the cube having lengths √ 0, √ 1, √ 2, . . . , √ N . Regading now ŌN , we know from section 4 that the magic character decomposes as χ = χ 0 + . . . + χ N , and it follows that we have χ 2 ≥ N + 1. Now since for H N the corresponding integral equals N + 1, for ŌN we must obtain N + 1 as well, as stated.

Regarding now the higher k-orbitals for the action H N ⊂ S 2 N , these appear from the k-simplices having the vertices on the standard cube, and so having edges of lengths √ 0, √ 1, √ 2, . . . , √ N , which each simplex appearing with a certain multiplicity. As for the quantum group ŌN , we can use the correspondence with O N , and we are therefore led to questions regarding the antisymmetric representation of O N . Thus, we can in principle compute the number of k-orbitals by using the Weingarten formula.

Both computations are non-trivial, and as a conclusion here, we have:

Conjecture 8.2. The quantum groups H N ⊂ ŌN are distinguished by their 3-orbitals.

Some good evidence for this statement comes from the fact that at k = 3 the problem for O N looks purely combinatorial, while the problem for H N involves some analysis, coming from triangle inequalities for the edges of the triangles. Thus, the combinatorics is not the same, and so the results of the computations should be different.

Let us study now the actions H N ⊂ H + N ⊂ S + 2N , where the computations are considerably simpler. First, we have the following elementary result: Proposition 8.3. The orbitals for H N ⊂ S 2N are as follows:

(1) At k = 1 we have 1 orbit.

(2) At k = 2 we have 3 orbitals.

(3) At k = 3 we have 11 orbitals.

(4) At k = 4 we have 49 orbitals.

Proof. We recall that the action H N ⊂ S 2N comes by permuting N segments. Thus the k-orbitals for H N are obtained by decorating the 2N endpoints of these N segments with k dots, and then by counting the multiplicity of each configuration.

At small values of k, the situation is as follows:

(1) Here the action is clearly transitive, and the corresponding 1 orbital appears from the only possible configuration, namely •-, appearing once.

(2) Here the possible configurations are ••-, •-• , •-•-, with each appearing exactly once, and so we have 3 orbitals. ij -u ij )/2. In addition, the matrix p ij = u 2 ij is magic, and we have p ∈ u ⊗2 . Proof. The first assertion, which is similar with what happens in the classical case, where we have u ij ∈ {-1, 0, 1}, is explained in detail in [START_REF] Banica | The hyperoctahedral quantum group[END_REF]. Regarding now the second assertion, which follows in fact from the general results in [START_REF] Banica | Fusion rules for quantum reflection groups[END_REF], observe that we have: Thus the linear space span(e i ⊗ e i ) is left invariant by u ⊗2 , and the corresponding subrepresentation of u ⊗2 is the magic corepresentation p = (p ij ), as claimed.

By using this description, we obtain the following result: Proposition 8.5. The quantum groups H N ⊂ H + N have the same number of 1, 2, 3orbitals, when regarded as subgroups of S + 2N , namely 1, 3, 11. Proof. We use the formula in Proposition 8.4, which gives:

χ v = 2 i a ii = i u 2 ii + u ii = χ p + χ u
With this formula in hand, the proof goes as follows:

(1) k = 1. Here there is nothing to prove, because since H N is transitive, so must be H + N . Observe that this follows as well from χ p = 1, χ u = 0.

Proposition 2 . 1 .

 21 The irreducible representations of ŌN are in one-to-one correspondence with those of O N , with the fusion rules being the same.

  and plain indices b 1 , . . . , b N ∈ {1, . . . , N }.

  |A|=r b<A a∈A u aba with the first sum being by definition over sets A ⊂ {1, . . . , N } satisfying |A| = r, the second sum being over functions b : {1, . . . , N } → {1, . . . , N } satisfying the condition b < A : |b -1 (p) ∩ A| = χ A (p) (mod 2), ∀p and with the product being ordered, and written with the convention b a = b(a).

  bx=N jx a∈A u aba We must understand now which multi-indices b ∈ {1, . . . , N } N really contribute to the sum, in the sense that all the associated Kronecker symbols in the middle are 1. For this purpose, let us identify b with the corresponding function b : {1, . . . , N } → {1, . . . , N }, via b(a) = b a , as in the statement. Then for any p ∈ {1, . . . , N } we have:

  ) Here we must have A = {1, . . . , N }, and the result is clear. At N = 2 now, the various formulae that we have give χ 0 = 1, χ 1 = u 11 + u 22 , χ 2 = u 11 u 22 + u 12 u 21 , and so χ = 1 + u 11 + u 22 + u 11 u 22 + u 12 u 21 , as claimed.

Theorem 4 . 3 .

 43 The magic representation of ŌN corresponds to the antisymmetric representation of O N , via the correspondence coming from Proposition 2.1.
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 3 Let us begin with the following very general definition: Definition 5.1. A liberation of a closed subgroup G ⊂ O N is an intermediate quantum group G ⊂ H ⊂ O + N satisfying H class = G. Such a liberation is called: (1) Maximal, when there is no bigger liberation H ⊂ H . (2) Universal, when it contains any other liberation H . As a basic example, let us take G = O N itself. The liberations of G are then the intermediate quantum groups O N ⊂ O ×

7

 7 is both an intersection and generation diagram, in the sense that for any square subdiagram A ⊂ B, C ⊂ D we have A = B ∩ C and < B, C >= D.

1 ) 2 )

 12 In both cases, ∼ k is transitive, for any k. (These two quantum groups are distinguished by their 3-orbitals. Proof. Let us go back to the proof of Proposition 6.5. For G = Z N 1 * . . . * Z N l , what changes at k = 3 is what happens in the case (

( 3 )

 3 Here the possible configurations, with multiplicities, are• • •-(×1), ••-• (×3), ••-•-(×3), •-• •-(×3), •-•-•-(×1), and we have 11 orbitals.(4) Here the possible configurations, with multiplicities, are• • • •-(×1), • • •-• (×4), ••-•• (×3) , • • •-•-(×4), ••-• •-(×12), ••-••-(×3), ••-•-• (×6), •-• •-• (×3), ••-•-•-(×6), •-• •-•-(×6), •-•-•-•-(×1), and so we have a total of 49 orbitals.In order to deal now with H + N ⊂ S + 2N , we recall from[START_REF] Banica | The hyperoctahedral quantum group[END_REF] that we have: Proposition 8.4. When using the standard embeddingsS + N ⊂ H + N ⊂ O + N ,the magic matrix for the embedding H + N ⊂ S + 2N comes from the "sudoku" matrix v = a b b a the connecting formulae between u, v being u ij = a ij -b ij and a ij = (u 2 ij + u ij )/2, b ij = (u 2

u

  ⊗2 (e i ⊗ e i ) = kl u ki u li e k ⊗ e l = k u 2 ki e k ⊗ e k = k p ki e k ⊗ e k

  What is the compact quantum group < H + N , ŌN > generated by the maximal liberations of H N that we have, namely H + N and ŌN , inside O + N ? (4) What is the level of the liberation H N ⊂ ŌN ? And, what can be said about the stability level of H N , in the sense of Definition 5.2 above?

As an interesting consequence, the algebraic 3-orbitals differ for S N and S + N : Proposition 6.8. The algebraic 3-orbitals for S N and S + N are as follows: Proof. For the symmetric group S N , it follows from definitions that the k-orbitals are indexed by the partitions π ∈ P (k), as follows:

Regarding now S + N , the k-orbitals are those computed above, and at k = 3 they can be naturally indexed by the above diagrams, with the last one standing for the fact that the corresponding 3-orbital merges the | and | | | 3-orbitals from the classical case.

Analytic orbitals

Generally speaking, we believe that under suitable "uniformity" assumptions, covering the classical case, plus the examples in Proposition 6.6 and Theorem 6.7, and probably many other examples, which still remain to be found, ∼ 3 should be an equivalence relation, and that the corresponding theory of algebraic k-orbitals is worth developing.

However, the fact that the 3-orbitals for S + N do not coincide with those for S N is quite problematic for us, due to a number of reasons explained below. And, our feeling is that the same kind of phenomenon might appear for H + N , ŌN as well. So, it is perhaps better at this point to stop with the algebraic theory, and use instead an analytic approach.

Let us begin with the following standard result:

Proposition 7.1. For a subgroup G ⊂ S N , which fundamental corepresentation denoted u = (u ij ), the following numbers are equal:

(1) The number of k-orbitals.

(2) The dimension of space F ix(u ⊗k ).

(3) The number G χ k , where χ = i u ii .

Proof. This is well-known, the proof being as follows:

(1) = (2) Given σ ∈ G and vector ξ = i 1 ...i k α i 1 ...i k e i 1 ⊗ . . . ⊗ e i k , we have:

Thus σ ⊗k ξ = ξ holds for any σ ∈ G precisely when α is constant on the k-orbitals of G, and this gives the equality between the numbers in (1) and (2).

(2) = (3) This follows from the Peter-Weyl theory, because χ = i u ii is the character of the fundamental corepresentation u.

In the quantum case now, G ⊂ S + N , by the general Peter-Weyl type results established by Woronowicz in [START_REF] Woronowicz | Compact matrix pseudogroups[END_REF], we still have the following formula:

The problem is that of understanding the k-orbital interpretation of this number. We first have the following result, basically coming from [START_REF] Bichon | Algebraic quantum permutation groups[END_REF], [START_REF] Lupini | Nonlocal games and quantum permutation groups[END_REF]:

N , and a number k ∈ N, consider the following linear space:

(3) In the classical case, we have

). Proof. The tensor power u ⊗k being the corepresentation (u i 1 ,...i k ,j 1 ...j k ) i 1 ...i k ,j 1 ...j k , the corresponding fixed point space F ix(u ⊗k ) consists of the vectors ξ satisfying:

With this formula in hand, the proof goes as follows:

(1) Assuming ξ ∈ F k , the above fixed point formula holds indeed, because:

(2) This is something more tricky, coming from the following formulae:

(3) This follows indeed from Proposition 7.1 above. (4) This follows from Proposition 6.8 above, and from the representation theory of S + N with N ≥ 4, the dimensions of the two spaces involved being 4 < 5.

The above considerations suggest formulating the following definition: Proposition 7.5. For a closed subgroup G ⊂ S + N , and an integer k ≤ 3, the following conditions are equivalent:

(1) G is k-transitive, in the sense that F ix(u ⊗k ) has dimension 1, 2, 5.

(2) The k-th moment of the main character is

for distinct indices i r and distinct indices j r . (4

when ker i = ker j, and equals 0, otherwise.

Proof. Most of these implications are known since [START_REF] Banica | Higher transitive quantum groups: theory and models[END_REF], the idea being as follows:

(1) ⇐⇒ (2) This follows from the Peter-Weyl type theory from [START_REF] Woronowicz | Compact matrix pseudogroups[END_REF], because the k-th moment of the character counts the number of fixed points of u ⊗k .

(2) ⇐⇒ (3) This follows from the Schur-Weyl duality results for S N , S + N and from P (k) = N C(k) at k ≤ 3, as explained in [START_REF] Banica | Higher transitive quantum groups: theory and models[END_REF].

(3) ⇐⇒ (4) Once again this follows from P (k) = N C(k) at k ≤ 3, and from a standard integration result for S N , as explained in [START_REF] Banica | Higher transitive quantum groups: theory and models[END_REF].

As a conclusion to all these considerations, we have: Theorem 7.6. For a closed subgroup G ⊂ S + N , and an integer k ∈ N, the number dim(F ix(u ⊗k )) = G χ k of "analytic k-orbitals" has the following properties:

(1) In the classical case, this is the number of k-orbitals.

(2) In general, at k = 1, 2, this is the number of k-orbitals.

(3) For the free products of cyclic groups, this is the number of algebraic k-orbitals.

(4) At k = 3, when this number is minimal, G is 3-transitive in the above sense.

Proof. This follows indeed from the above considerations.

There are of course many questions left. A first one regards the case k = 4, where we do not know what the correct analogue of Proposition 7.5 would be. This is of course quite important, because it would bring more support for our definition at k = 4.

A second question regards the interpretation of G χ k , as "counting" certain objects, that we can call afterwards "k-orbitals". In the case G = S + N we have G χ k = #N C(k), so these k-orbitals that we are looking for can only be the elements of N C(k), in some index-theoretic formulation. However, all this heavily relies on the easiness property of S + N , and for other quantum groups it is not clear what the "candidates" should be. We believe, however, that this latter question can be subject to some further investigation. From an analytic perspective, the relevant formula is:

The problem is to understand how the integrals on the right can be naturally grouped into sums which are integers. This question can be probably investigated by using the Weingarten formula [START_REF] Banica | Integration over quantum permutation groups[END_REF], but we have no further results here.
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(2) k = 2. Here we can use once again an elementary argument. First, since H N has 3 orbitals, H + N can have 2 or 3 orbitals. Now observe that we have:

But this shows that we have (1, N + 1) ∼ (1, N + 2), and so the action of H + N is not doubly transitive, and so we must have 3 orbitals, as claimed.

Note that this follows as well from the following computation:

Here we cannot use direct algebraic arguments, because the algebraic 3-orbitals, even if they exist, are not nesessarily counted by the moments of the main character. Thus, we must integrate characters. Since p is magic, we have:

Indeed, this follows from the representation theory of S + N , because 2, 5 are Bell numbers, counting respectively the partitions in N C(2), N C(3). Now by using as well the fact that we have p ∈ u ⊗2 , from Proposition 8.4 above, we obtain that we have:

On the other hand, we know from Proposition 8.3 above that for H N , the corresponding integral is 11. Thus, by functoriality, we obtain 11, as claimed. Thus, we must use k = 4 in order to distinguish H N ⊂ H + N . We have: Theorem 8.6. The quantum groups H N ⊂ H + N ⊂ S + 2N are not distinguished by their 1, 2, 3-orbitals, but have different numbers of 4-orbitals, namely 49 > 43.

Proof. By using the character formula χ v = χ p + χ u from the proof of Proposition 8.3 above, and the trace property of the integration functional, we obtain:

Our claim is that the difference between H N , H + N comes from the quantity in the middle, which must decrease when χ p , χ u do not commute. Indeed:

(1) Regarding H N , we know from Proposition 8.3 that the result holds indeed. This can be recovered as well by using the above integral, as follows: Here we have used the fact that we have 1 ∈ p ∈ u ⊗2 , which gives:

(2) Regarding now H + N , the point is that the quantity χ 2 p χ 2 u can be computed as above, but the quantity χ u χ p χ u χ p is no longer equal to it. In order to compute this latter quantity, observe that by using p ∈ u ⊗2 , and then 1 ∈ p, we obtain:

We therefore obtain the following estimate:

On the other hand, it follows from the fusion rules computed in [START_REF] Banica | Fusion rules for quantum reflection groups[END_REF] that the reverse inequality holds as well. Thus, we have 2 × 3 = 6 orbitals missing with respect to the H N case, and so we have a total of 49 -6 = 43 orbitals for H + N , as stated.