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On Forcings of Length of Day Changes: from 9-day to 18.6-year oscillations

We analyze fluctuations in Earth's rotation velocity (therefore also the equivalent length of day), using more than 50 years of IERS observations and the powerful method of Singular Spectral Analysis. The first 16 eigenvalues uncovered by SSA correspond to 10 components, all with physical sense. The first component is the trend, the second is the lunar node tide (18.6 yr, amplitude 1.3 ms). Next are variations with a period that implies forcing related to solar activity (11 years, 0.46 ms amplitude). Then, zonal oscillations linked to the solar (1 year, 0.81 ms; 0.5 year, 0.76 ms;) and lunar (27.54 days, 0.39 ms; 13.66 days, 0.73 ms; 13.63 days, 0.27 ms; 9.13 days, 0.14 ms) tidal potentials. The QBO at 2.36 years (0.08 ms) is interpreted as a Sun-related oscillation. The components at 13.63 and 13.66 days could contain a solar contribution. SSA is an efficient detrending algorithm and way to identify irregular (quasi-periodical) oscillatory components: its application to l.o.d. data yields refined observations, in good agreement with recent models but with some new results. There is no extracted component that could not be attributed to an existing periodic or quasi-periodic physical phenomenon. Progress in computers and signal processing have allowed us to resume and extend the analysis of l.o.d., and in particular to show evidence of a solar signature in the series. Uncovering the mechanisms through which solar activity acts on Earth's rotation is an exciting project for geophysicists that deserves renewed attention.

-The SSA method of analysis

Singular-spectrum analysis (SSA) is a powerful method of spectral analysis that works well with short and noisy time series. We refer the reader to the detailed monograph by [START_REF] Golyandina | Analysis of Time Series Structure: SSA and related techniques[END_REF]. Useful accounts are found in [START_REF] Vautard | Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series[END_REF], [START_REF] Ghil | and 10 co-authors, Advanced spectral methods for climatic time series[END_REF] and [START_REF] Vautard | Singular-spectrum analysis: A toolkit for short, noisy chaotic signals[END_REF]. Some remarks that may help readers unfamiliar with SSA are given in Appendix 2. Many geophysical time series are "short" in a numerical sense, i.e. their length is not very much longer than some of the periodicities that they might contain.

Moreover, they actually often contain pseudo-periodicities that fluctuate in both amplitude and pseudo-period. SSA provides at the same time a noise reduction technique, a detrending algorithm and a way to identify oscillatory components. SSA has been applied to the irregular ENSO phenomenon, to global-surface temperature, to geopotential height data, to a number of indicators of climate variability, to solar observations, and to cosmogenic isotopes. [START_REF] Lopes | The mantle rotation pole position: A solar component[END_REF] isolated pseudo-periodic 11 and 5.5-year variations in a century-long series of rotation pole positions of the Earth's mantle.

In this paper, we perform singular spectrum analysis of IERS l.o.d. series that confirms some older results and brings out several new ones. We refer the reader to [START_REF] Lopes | The mantle rotation pole position: A solar component[END_REF] for more information on the way in which we use the method. In Appendix 2 we briefly explain why our method is able to produce some original results, not noted before as far as we know.

-Results of the SSA analysis

We show the magnitude of eigenvalues of the l.o.d. time series in decreasing order of amplitude in Figure 2 (amplitude is peak to peak in ms). Most of the first 16 eigenvalues, corresponding to 10 components (6 consist in pairs of similar eigenvalues), can be assigned to a physically meaningful source: their frequencies or pseudo-frequencies can be found either in the rotation of the Moon around the Earth, of the Earth around the Sun, or in solar rotation and variations in solar activity. They are ranked in the order of decreasing amplitude of eigenvalues or pairs of eigenvalues: first the trend, then periods of 18.6 years, 1 year, 11.5 years, 0.5 year, 13.66 days, 27.54 days, 13.63 days, 9.13 days and 2.36 years. Let us first recall the frequencies that could be expected from astronomical and astrophysical forcings by the Sun and Moon. In previous papers, we have analyzed a number of solar proxies, including sunspot number ISSN and number of polar faculae PF, using SSA and Fourier analysis (e.g. Le Mouël et al. [2018]). The sunspot cycle and its harmonics are often the prominent components at 11, 5.5 and 3.6 years; also prominent are the solar zonal tidal annual and semi-annual lines. For the Moon, tidal zonal contributions are expected at the lunar month period (27.54 days) and its harmonics (13.77, 9.18,...). Finally, one might expect to find the solar synodic rotation at 27.27 days and its harmonics (13.63, 9.09,...).

The first seven components of a recent l.o.d model [START_REF] Ray | Long-period tidal variations in the length of day[END_REF] are listed in the second column of Table 1. They are the main components of a model that comprises 80 spectral lines and includes, in addition to the elastic responses the effects of mantle anelasticity and dynamic ocean tides. They range from the 18.6 lunar node tide, through the Sa (365.25 days), Ssa (182.62 days), Mm (27.55 days), Mf (13.66 and 13.63 days), and Mt (9.13 days) to 4.7 days.

We stress that this is a model made to fit with a number of parameters the then observed spectral lines of l.o.d. Here we analyze with SSA an augmented set of data leading to improved spectral resolution. The values of the main SSA components that we calculate are listed in the next to last column of Table 1 and discussed briefly below.

Following the trend, second only to it in amplitude, we find a component at the lunar node tide period of 18.6 years (Figure 4, component 2, amplitude 1.3 ms -note: all amplitudes are peak to peak). We briefly explain in Appendix 2 that this component is not extracted exactly in the same way as all the following ones). To our knowledge, this large nutation had been predicted by models [START_REF] Ray | Long-period tidal variations in the length of day[END_REF] but not observed before.

-Longer period (solar activity) variations

We next find the 11-yr solar cycle, the so-called Schwabe cycle, with an amplitude of 0.46 ms (Figure 5 top; component 4). Its period is 11.5 ± 2.5 yr (we adopt as an estimate of uncertainty on period the "half-line" width at half ordinate value of the peak -Figure 5 bottom). In pioneer work, [START_REF] Currie | Detection of the 11-yr sunspot cycle signal in Earth rotation[END_REF] had identified an 11-yr oscillation in l.o.d. (with an amplitude of 0.16 ms) using Maximum Entropy Spectral Analysis. We identified earlier this oscillation in the series of mantle rotation pole positions [START_REF] Lopes | The mantle rotation pole position: A solar component[END_REF]. Note that, on the available time span, we have only five 11-yr oscillations, one being incomplete. The main period of the component is close to 12 years (Figure 5 bottom). Recall that individual solar cycles may last from 9 to 14 years. In solar proxies, we find significant harmonics at about 5.5 and 3.6 years [START_REF] Le Mouël | A Solar signature in several climatic indices[END_REF], but not in the l.o.d. analysis (at least not among the first 16 eigenvalues).

-Zonal solar and lunar tide oscillations

SSA also provides us with a new estimate of components of l.o.d. variations whose existence has been known for long, i.e. the annual and semi-annual lines (Figures 1 bottom, 6 and7). Note that the method provides the singular oscillations themselves, rather than global spectral properties corresponding to more or less long intervals (Figures 6 and7; components 3 and 5; respective amplitudes of 0.81 and 0.76 ms). The stability of the seasonal amplitudes and phases is quite remarkable for both the annual and semi-annual variations. Nevertheless, a small increase of the annual oscillation amplitude from 1962 to the late 1980s is accompanied by a small decrease of the semi-annual one. These oscillations can logically be attributed to the zonal parts of the solar gravitational/tidal potential. In the shorter-period interval, SSA isolates quasi-sinusoidal variations with periods 13.66 days (Figure 8 component 9, amplitude 0.14 ms). These oscillations could be due to the zonal parts of the lunar gravitational/tidal potential: one component is at the lunar month period of 27.54 days; the 13.66 and 13.63 day components (the precision of our determinations is such that these values can actually be considered as distinct; we will see a complementary interpretation in section 4) are close to its first harmonic at 27.54/2 = 13.77 days and the 9.13 day component to the second harmonic at 27.54/3 = 9.18 days.

-A QBO (quasi biennal oscillation)

Finally, SSA analysis provides us with a small amplitude but clear quasi-biennial oscillation (Figure 12 top; component 10; amplitude 0.08 ms) in l.o.d.: its period is 2.36 years or about 28 months. In their review paper, [START_REF] Baldwin | and 14 co-authors, The quasi-biennal oscillation[END_REF] recall that "the QBO dominates the variability of the equatorial stratosphere and is easily seen as downward propagating easterly and westerly wind regimes, with a variable period averaging approximately 28 months". We can therefore certainly call component 10 in Figure 12 top a QBO. Its amplitude of 0.08 ms is modulated in the available time span by a longer wavelength variation whose pseudo-period (if there is one) cannot be estimated on this tooshort time-scale (but larger than 60 years). Component 10 is the only significant QBO oscillation that we have detected in the l.o.d. series.

-Discussion

We start the discussion by first giving a few elementary relationships that are useful in the following. Our observation ("observable") is the length of the day. The mean lod is τ = 86,400 s and in the calculations below, we use τ = 0.86 10 s; the corresponding mean rotation rate of the solid Earth is ωΜ = 7.3 × 10 rad ⋅ s . The relationship between the change in rotation rate and the change in l.o.d. is:

δωM = = -8.5 × 10
(1)

-Solar generated oscillations

We observe variations in the length of day with periods that are characteristic of solar activity. We attribute them, rather naturally, to solar action on planet Earth, in the form of a torque ΓS with period T = 11 yr (Schwabe). The 13.63 and 13.66-day components are close to the first harmonic of the solar synodic rotation period 27.27/2 = 13.63 days (but see below).

Direct influence of solar activity on the solid Earth -with its magnetic field -is generally considered too weak (e.g. see discussion in [START_REF] Currie | Detection of the 11-yr sunspot cycle signal in Earth rotation[END_REF], or references in Lopes et al., 2017).

This leads us to consider a simple model, in which the solar torque acts on the atmosphere (see also e.g. [START_REF] Gray | Solar influences on climate[END_REF][START_REF] Forbes | Wave coupling between the lower and upper atmosphere: case study of an ultrafast Kelvin wave[END_REF]. As for the coupling of the lower atmosphere and the Earth's surface, we refer the reader to, e.g., [START_REF] Smith | The influence of Mountains on the Atmosphere[END_REF].

Let ΓS T = γT exp(2iπt/T); the axial moment of inertia of the solid mantle is IM = 7. 10 37 kg.m 2 . The component of its axial angular momentum with period T due to ΓS T is IM δωM T exp(2iπt/T). The corresponding value of the atmospheric variation of angular momentum is IA δωA T exp(2iπt/T); ωA T is the equivalent angular rotation momentum of the atmosphere, that can in principle be calculated from the azimuthal wind field uφ . The mantle and atmosphere are linked by a torque

Γ = k(δωM T -δωA T ),
where k is a friction coefficient. Dropping the exponential factor and introducing the frequency u=2π/T, we obtain the following equations:

iu (IM δωM )= Γ = k (δωM -δωΑ ) (2) iu (IM δωM + IA δωA) = ΓS
The discussion of equation ( 2) is simple: when k -> 0, δωM -> 0. The mantle does not rotate and δωA = ΓS / iu IA. When k -> ∞ , the mantle and atmosphere rotate rigidly together. It may be useful to give an order of magnitude of the coupling torque Γ . For example, for the 11-yr oscillation, ΓM 11 = γΜ 11 exp(2iπt/T) and γΜ 11 = IM δωM 11 u = 7.10 37 8.510 -10 46.10 -5 2π/11.π.10 7 = 4.97 10 17 kgm 2 s -2 , using the observation δ lod 11 ∼ 0.46 ms (Figure 5).

We recall that the only data (observable) we have recourse to is ωM T for some longperiod variations of ωM. An estimate of ωA (or the equivalent zonal velocity uφ) requires the knowledge of ΓS, the solar torque. For an estimate of ΓS, we could appeal to two mechanisms.

Either the UV and extreme UV solar radiations, that have large relative variations up to 10% during a solar cycle (contrary to total solar irradiance that varies by only 0.1%). Or the solar wind, that is also known to vary significantly during a solar cycle as shown for instance by the variations in the count of faculae (e.g. [START_REF] Blanter | Long Term Evolution of Solar Meridional Circulation and Phase Synchronization Viewed Through a Symmetrical Kuramoto Model[END_REF]. Some efforts have been devoted to evaluating the action of solar activity on the atmosphere, most often of the ionized atmosphere. But to our knowledge, there is as yet no available estimate of ΓS. And as long as we do not know it better, we cannot evaluate ωA (or the equivalent zonal velocity uφ) through equation 2, though we could propose a range of estimates. We do not pursue this topic in the present paper.

-Zonal tidal oscillations

The first idea that comes to one's mind is that all the components in section 3.2 are due to zonal tides, related to the Sun for components 2 and 4, and to the Moon for components 6 to 9. In Appendix 1, we give a simplified version of the well-known theory of these tides and their effect on l.o.d. This allows us to compare the main components of l.o.d. variations that we have detected in the l.o.d. series using SSA with the values generated by the simple model in Appendix 1. The results are listed in the last column of Table 1. The Love number κ that best fits the amplitudes we observe is 0.309.

We find an excellent agreement (between 2% and 5%) between the observations and the values provided by the model for the annual Sa and semi-annual Ssa periods, as well as the lunar monthly period Mm (27.54 days). But there is a discrepancy of a factor five between the observed and the model amplitudes of the 13.66-day component. Furthermore, this amplitude is twice as large as the amplitude of the fundamental lunar period of 27.54 days, which is not expected for an harmonic. And we must account for the component at 13.63 days. Thanks to the high-density sampling of the l.o.d. series, the 13.66 and 13.63 periods can be significantly separated. The 13.63-day period is on first analysis not a lunar harmonic (27.54/2 = 13.77), and 13.63 is half of the 27.27-day period of the Sun's synodic rotation period. We propose that the 13.66 component with its "anomalous" amplitude, and the 13.63 component, that is 27.27/2, could (at least in part) be solar generated. Unfortunately, no realistic model of solar activity action on Earth (that is torque) is available. The 9.13-day period on the other hand is expected to be generated by lunar zonal tides.

In 

-QBO oscillations

Quasi-biennial oscillations have been observed in the variations of different geophysical parameters: e.g. near-surface temperature, SAT and NAO indices [START_REF] Palus | Detecting Oscillations Hidden in Noise: Common Cycles in Atmospheric, Geomagnetic and Solar Data[END_REF], and stratospheric winds [START_REF] Baldwin | and 14 co-authors, The quasi-biennal oscillation[END_REF]. The (pseudo) period of these oscillations is distributed in a rather large time interval; 1.6 to 1.9-year oscillations found by [START_REF] Menvielle | Geomagnetic indices in solar-terrestrial physics and space weather[END_REF] in sudden storm commencements (ssc) for solar cycles 11 to 22, and those found by Valdes-Galicia et al. (1996) and [START_REF] Kato | A 1.7-year quasiperiodicity in cosmic ray intensity variation observed in the outer heliosphere[END_REF] in cosmic rays in the outer heliosphere have similar periods. And an approximate one-to-one correspondence is found between oscillations in ! ratios and cosmic rays in the 1982-1992 time span -the only one available (Figures 3 and 5 of [START_REF] Kato | A 1.7-year quasiperiodicity in cosmic ray intensity variation observed in the outer heliosphere[END_REF].

A complete analysis of the ISSN data shows a component at 2.36 years, which is the fourth harmonic of the Schwabe cycle (2.36 x 5 = 11.8) (Figure 13). We suggest that the 2.36 year QBO SSA component in l.o.d. could be yet another solar signature. [START_REF] Baldwin | and 14 co-authors, The quasi-biennal oscillation[END_REF] noted that alternating wind regimes repeat at intervals that vary from 22 to 34 months (1.8 to 2.8 years). At the time of their review, these authors commented that "whether or not decadal variability (in QBO) is caused by the 11-year solar cycle ... there is increasing evidence through modeling that the solar cycle has a significant influence on winds and temperatures in the upper stratosphere". They concluded that "circulation changes introduced in the stratosphere penetrate downward, even reaching the troposphere." The QBO signal was first identified in the l.o.d. series by [START_REF] Lambeck | The Earth's rotation and atmospheric circulation-I Seasonal variations[END_REF], as a peak in its Fourier transform. We confirm and improve significantly its description by our SSA observations (Figure 13).

-Conclusion

We have analyzed in this paper fluctuations in Earth's rotation velocity, or equivalently length of day, using more than 50 years of IERS data and the powerful method of Singular Spectral Analysis. The first 16 eigenvalues uncovered by SSA correspond to 10 components, all with physical sense. The first component is simply the trend, followed by the lunar node tide period (18.6 yr, amplitude 1.3 ms). Next, we observe variations with a period that implies forcing related to solar activity (11 years, 0.46 ms amplitude; QBO at 2.36 year, 0.08 ms));

then, zonal oscillations linked to the solar (1 year, 0.81 ms; 0.5 year, 0.76 ms) and lunar (27.54 days, 0.39 ms; 9.13 days, 0.14 ms) tidal potentials. A doublet at periods 13.66 days (0.73 ms) and 13.63 days (0.27 ms) warrants further discussion. These periods are predicted by the model of [START_REF] Ray | Long-period tidal variations in the length of day[END_REF] with approximately correct amplitudes. But these are fits to earlier data with seven adjustable parameters; in that model this doublet which is close to the fortnight lunar tide Mf is considered to be lunar. We have seen that the period values and the line amplitudes are not what would be expected for a lunar harmonic. We suggest that at least part of these components could be solar related.

Because SSA is at the same time an efficient noise reduction technique, detrending algorithm and way to identify irregular (quasi-periodical) oscillatory components, its application to l.o.d. data has yielded some updated and some new results. The trend includes the long term lunar tidal braking and possibly solar components with a longer time scale than can be identified with only a half century of observations (e.g. the Gleissberg and de Vries pseudo-periods). Then we identify the lunar node tidal period that was predicted but to our

knowledge not yet observed. The 11-yr component is of course forced by the Sun and its changes in activity. The lunar monthly tide is clearly isolated but, more interestingly, it can be argued that the two prominent components at 13.66 and 13.63 days are at least in part solar components. And finally, we propose that the QBO at 2.36 years is actually generated by solar activity. In conclusion, there is no line that cannot be attributed to an existing quasi-Decomposition; [START_REF] Golub | An analysis of the total least squares problem[END_REF] algorithm to decompose the signal on an orthogonal basis.

The main difficulty is the proper construction of the symmetrical matrix. For Vautard et Ghil (1981), using a Toeplitz matrix with constant sampling interval is the main characteristic of such a decomposition, but this is still a debated question, and other families of symmetric matrices are used by different scientific communities. In their chapters 1 and 6, [START_REF] Golyandina | Analysis of Time Series Structure: SSA and related techniques[END_REF] review this topic. Practically, this matrix is not very different from the autocorrelation matrix of the signal, in which each column is a segment of length L of the starting time series. The size L of this window constrains the periods that can be extracted. In the case of the l.o.d. series analyzed in this paper, we have extracted relatively short periods with L = 5000 points, whereas for the lunar node tide with period 18.6 years, we have had to use 15,000 points. We can therefore sum up all components extracted with L = 5000, but we cannot add the lunar node component obtained with a different L, for the reason that part of the energy of shorter periods can already be included in that component. The unicity of decompositions is valid for a given L, not for a set of different L values.

The next question is the proper choice of L. This is not a trivial problem and the method remains widely discussed (Golyandina et al., 2001, chapter 6.1). In principle, perfect separability of components for any L requires that, in the U and V matrices of eigenvectors obtained by SVD of the l.o.d. diagonal matrix, the i th column of U be exactly orthogonal to the i th line of V. Such is of course never the case and this is why new algorithms are proposed such as VARIMAX for the eigenvectors or decentered SVD, in order to be as close as possible to the orthogonality condition [START_REF] Golyandina | Analysis of Time Series Structure: SSA and related techniques[END_REF]. Another more practical method is to apply SSA to a range of close-by values of L rather than a single one and to check the stability of the decomposition. This method has the advantage of allowing one to estimate the uncertainties in our reconstructed periods and amplitudes.

One must identify the families of eigenvectors and eigenvalues that correspond to one component. The autocorrelation matrix that one diagonalizes is simply giving autocorrelations of segments of the data; the most important or stable components (as is the case for a Fourier transform) or the strongest (in terms of amplitudes) have the larger eigenvalues. One only has to regroup eigenvectors that have equal (or very close) eigenvalues (see Figure 2).

In the way we use SSA, we use large computer power. The Hankel matrix we calculate has 1000x19,470 terms. We work with 64bit computers, and double precision numerics of 8bit each. SVD of that matrix yields two eigenvector matrices and one matrix with eigenvalues that have the same dimensions. We therefore require an 8Go active memory, which means we must run on a computer with at least 10Go. This is what we do and one reason why we obtain the new results presented in this paper. This is also why we do not need to apply a Monte Carlo SSA algorithm, which is in a way a bootstrap method that must be used (implying loss of information) only when the computer that is used is not powerful enough.

Table

Table 1: Amplitudes of components at given periods (1 st column) as predicted by the Ray and Erofeeva ( 2014) model (column 2). Periods (column 3) and amplitudes (column 4) observed using SSA in this paper. Amplitudes calculated from the simple model in Appendix 1 of this paper (column 5).

Note: the amplitudes from the Ray and Erofeeva model are from their Table 3 (bottom) Fourier transform (normalized spectrum) of the above. 1964 1968 1972 1976 1980 1984 1988 1992 1996 2000 2004 2008 2012 2016 lod (ms) Figure 13 

Figure 3

 3 Figure 3 top shows the first component (corresponding to the first eigenvalue) extracted by SSA, which is the trend of the series. It comprises the long-term (secular) decrease in l.o.d. and multi-decadal oscillations. The spectrum of SSA component 1 is almost identical to that

  bottom; component 6, amplitude 0.73 ms), 27.54 days (Figure 9 bottom; component 7, amplitude 0.39 ms), 13.63 days (Figure 10 bottom; component 8, amplitude 0.27 ms) and 9.13 days (Figure 11 bottom;

Figure 1 :

 1 Figure 1: (top) Five-day averages of length of day (in ms) from Jan.1.1963 to Dec.31.2016, from International Earth Rotation Service. (bottom) Normalized spectrum of the time series above using FFT. Note the sharp 6-month and 1-year lines on the shorter period part of the figure.

Figure 2 :

 2 Figure 2: The 30 first eigenvalues of the time series of l.o.d. in Figure 1a determined by Singular Spectrum Analysis (SSA) in decreasing order of magnitude (normalized). The components discussed in the text are identified (components correspond to either single eigenvalues or pairs of eigenvalues).

Figure 3 :

 3 Figure 3: (top) The first SSA component of l.o.d. is the trend (in ms), as seen in Figure 1a.(bottom) Fourier transform (normalized spectrum) of the above (very similar to Figure1bfor periods larger than 5 years). A packet of energy is seen around 22 years.

Figure 4 :

 4 Figure 4: (top) The second SSA component of l.o.d. at ~18.6 years (lunar node tidal period).

Figure 5 :

 5 Figure 5: (top) The fourth SSA component of l.o.d. at ~11.5 years. (bottom) Fourier transform (normalized spectrum) of the above.

Figure 6 :

 6 Figure 6: (top) The third SSA component of l.o.d. at 1 year. (bottom) Fourier transform (normalized spectrum) of the above.

Figure 7 :

 7 Figure 7: (top) The fifth SSA component of l.o.d. at 0.5 year. (bottom) Fourier transform (normalized spectrum) of the above.

Figure 8 :

 8 Figure 8: (top) The sixth SSA component of l.o.d. at 13.66 days. (bottom) Fourier transform (normalized spectrum) of the above.

Figure 9 :

 9 Figure 9: (top) The seventh SSA component of l.o.d. at 27.54 days. (bottom) Fourier transform (normalized spectrum) of the above.

Figure 10 :

 10 Figure 10: (top) The eighth SSA component of l.o.d. at 13.63 days. (bottom) Fourier transform (normalized spectrum) of the above.

Figure 11 :

 11 Figure 11: (top) The ninth SSA component of l.o.d. at 9.13 days. (bottom) Fourier transform (normalized spectrum) of the above.

Figure 12 :

 12 Figure 12: (top) The tenth SSA component of l.o.d. at 2.36 years (QBO). (bottom) Fourier transform (normalized spectrum) of the above.

Figure 13 :

 13 Figure 13: (top) The 2.29 year component of ISSN superimposed on the tenth SSA component of l.o.d. at 2.36 years (QBO). (bottom) Fourier transform (normalized spectrum) of the above.

  Table 1, we can also compare the amplitudes of the lines/components/eigenvalues that are predicted by Ray and Erofeeva's (2014) model and our observations derived directly from the l.o.d. data using SSA. The amplitudes of the 27.54, 13.66, 13.63 day lines are in

excellent agreement (from 1 to 10% discrepancy). On the other hand, the lunar node tide, annual and semi-annual line amplitudes are respectively stronger by a factor on the order of 4, 16 and 2.

periodic physical phenomenon. And again all the SSA eigenvalues we determine here are essentially updated, refined observations, not the results of a model.

Careful study of the Earth's rotation, in particular of the length of the day (the "axial" problem) is what geoscientists call "a secular problem". Progress in computers and signal processing have allowed us to resume and extend the analysis of l.o.d., and in particular to show evidence of a solar effect in the series, that we had discovered in the motion of the pole and discussed more succinctly (the "equatorial" problem). Uncovering the mechanism through which solar activity acts on Earth's rotation and on a number of climatic indices is an exciting project for geoscientists that deserves renewed attention (Le Mouël et al. [2018]).
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Appendix 1: Effect of solar and lunar zonal tides on the Earth's rotation

It is sufficient an approximation for our purpose to suppose that the Earth, when not submitted to the action of external forces, is a sphere of radius a. The cases of the Sun and Moon gravitational potentials can be treated in the same way. Let us start with the zonal part of the Sun's potential at a point with latitude θ at the Earth's surface [START_REF] Jobert | Marées terrestres, ch. 18[END_REF][START_REF] Guinot | Variation du pôle et de la vitesse de rotation de la Terre, ch. 19[END_REF][START_REF] Lambeck | The Earth's Variable Rotation: Geophysical Causes and Consequences[END_REF]:

where G is Newton's constant, M the mass of the Sun, δ(t) its declination, a the Earth's radius, D(t) the Sun-Earth distance and P2 the Legendre polynomial of degree 2 (P2(sinδ)=(3sin 2 δ-1)/2). The same applies to the Moon with the relevant values of M, D and δ. For the Sun, the term G M a 2 D -3 contains mainly an annual period through D, and the term P2(sinδ) a semiannual period. For the Moon the corresponding periods are the lunar month (~ 28 days) and a semi-monthly period (~14 days).

The spherical Earth is considered to be elastic and submitted to the perturbating potential U2. The resulting deformation of the Earth creates an additional potential V2, also of degree 2, and from the theory of Love at the Earth's surface V2 = κ U2 (r=a). κ is the Love number (e.g. [START_REF] Jobert | Marées terrestres, ch. 18[END_REF][START_REF] Lambeck | The Earth's Variable Rotation: Geophysical Causes and Consequences[END_REF]. Let O x1 x2 x3 be a system of axes linked to the Earth (Ox3 is the axial axis), x1, x2 and x3 being the coordinates of the current point of observation exterior to the Earth (r = √(x1 2 +x2 2 +x3 2 ) > a). In the absence of U2, the Earth's moments of inertia are equal. We are dealing with an axisymmetric problem, and the expression of V2 is easily obtained as a function of the additional moments of inertia cii resulting from the perturbation (cij=0 i≠j; c22=c11):

Furthermore, if the deformation follows the Love hypothesis, Σ cii = 0 and c33 -c11 = (3/2) c33. The function (x1 2 +x2 2 -2x3 2 )/ r 5 is harmonic and, using spherical coordinates θ (colatitude)

and r=a:

V2(a,θ) = (3G/4a 3 ) c33 (1/3 -sin 2 θ) = kU2(a)

U2 being given by equation (1); one obtains:

One still has to relate the variation of the Earth's axial rotation m3, with Ω(t) = Ω0 (1 + m3(t)), Ω0 ~ 7.26 10 -5 rad/s. The third equation of the Euler system gives m3 = -c33/IM where IM is the axial moment of inertia of the mantle ~7. 10 37 kg.m 2 ; the variations of the Earth's spin rate are m3(t)Ω0. D(t) and δ(t) are found in catalogs. We are especially interested in the amplitudes of the annual and semi-annual oscillations for the Sun, and of the lunar month and semi-lunar month for the Moon's oscillations. We find that a value of the Love number κ=0.309 best fits the theoretical amplitudes to the ones we actually observe.

Appendix 2: Some remarks on the use of SSA

We propose here some remarks that briefly describe the main features of SSA and some of the ways we apply it. References to several books and papers are given in the main text and in this appendix. Vautard and Ghil (1981) combine and generalize the theory of spectral decomposition, as unified by [START_REF] Karhunen | Zur spektraltheorie stochastischer prozesse[END_REF] and Loève (1946), with the embedding theorem of [START_REF] Mane | On the dimension of the compact invariant sets of certain non-linear maps[END_REF] and [START_REF] Takens | Detecting strange attractors in turbulence, Dynamical systems and turbulence[END_REF].

The first theory initiated by Karl Weierstrass in 1958 consists in proving the existence of decomposition bases that are favored when one diagonalizes symmetric matrices that describe certain endomorphisms : in the case of l.o.d., can we decompose the series on a basis of orthogonal sub-systems that, taken independently one from the other, would allow a better understanding of the complexities of the problem?

A second theory deals with the best possible way to build the symmetric matrix, diagonal matrices being a particular case, without losing information from the starting series.

Once the linear system is built, one has only to extract the families of eigenvectors and eigenvalues needed to reconstruct the signal. For this, one uses the SVD (Singular Value