
 1

 

On Forcings of Length of Day Changes: from 9-day to 18.6-year 

oscillations 

 

J.L. Le Mouël, F. Lopes, V. Courtillot and D. Gibert (Rev2-16/04/19) 

Geomagnetism and Paleomagnetism, Institut de Physique du Globe de Paris, 1 rue 

Jussieu, Paris, France 

 

Corresponding author: Vincent Courtillot (courtil@ipgp.fr) 

 

Abstract 

We analyze fluctuations in Earth’s rotation velocity (therefore also the equivalent length 

of day), using more than 50 years of IERS observations and the powerful method of Singular 

Spectral Analysis. The first 16 eigenvalues uncovered by SSA correspond to 10 components, 

all with physical sense. The first component is the trend, the second is the lunar node tide 

(18.6 yr, amplitude 1.3 ms). Next are variations with a period that implies forcing related to 

solar activity (11 years, 0.46 ms amplitude). Then, zonal oscillations linked to the solar (1 

year, 0.81 ms; 0.5 year, 0.76 ms;) and lunar (27.54 days, 0.39 ms; 13.66 days, 0.73 ms; 13.63 

days, 0.27 ms; 9.13 days, 0.14 ms) tidal potentials. The QBO at 2.36 years (0.08 ms) is 

interpreted as a Sun-related oscillation. The components at 13.63 and 13.66 days could 

contain a solar contribution. SSA is an efficient detrending algorithm and way to identify 

irregular (quasi-periodical) oscillatory components: its application to l.o.d. data yields refined 

observations, in good agreement with recent models but with some new results. There is no 

extracted component that could not be attributed to an existing periodic or quasi-periodic 

physical phenomenon. Progress in computers and signal processing have allowed us to 

resume and extend the analysis of l.o.d., and in particular to show evidence of a solar 

signature in the series. Uncovering the mechanisms through which solar activity acts on 

Earth’s rotation is an exciting project for geophysicists that deserves renewed attention. 
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1 – Introduction 

It has been known for decades that the Earth's rotation velocity (or the associated 

changes in length of the day l.o.d.) presents irregularities on different time scales (e.g. Guinot, 

1973; Lambeck, 2005). Various fluctuations, some irregular, others pseudo-periodical, with 

time constants from a few days to a few decades, are superimposed on a quasi-linear trend. 

This long-term deceleration is due to a braking of the Earth's rotation by tidal forces. Its rate is 

well-known from the study of the Earth-Moon system and is of the order of 2 ms per century. 

We focus in this paper on the l.o.d. time series from 1962 to 2018, a time span of a little 

more than a half century. In Figure 1 (top) the “l.o.d data” consist in five-day averages of 

length of the day from the International Earth Rotation Service (IERS, Paris, France), 

(Lambeck, 2005; see e.g. Jault and Le Mouël, 1991, for an illustration). 

The spectrum of the series can be split into three parts (Figure 1 bottom): lower-

frequency harmonic oscillations, oscillations linked to zonal solar (6 and 12 months) and 

lunar (27.54 days and harmonics) tides, and irregular variations in the range of a few days to a 

few decades. The lower-frequency variations have been attributed mainly to an exchange of 

angular momentum between the mantle and the core of the Earth: there is no angular 

momentum sink in the atmosphere that is large enough to account for it (e.g. Hide, 1977). In 

this paper, we focus on possible external causes (external to the solid Earth) of the variations 

of l.o.d. with time scales longer than a few days up to a few decades. 

Lambeck (1980) noted in an analysis of changes of l.o.d. and atmospheric circulation 

that  "a relation between solar activity and the Earth's rotation cannot be dismissed". Currie 

(1980) identified an 11-yr component using maximum entropy spectral analysis. In Le Mouël 

et al (2010), we studied the evolution of the amplitude of the seasonal semi-annual variation 

of l.o.d. from 1962 to 2009; we focused on the detection of the 6-month (and 12-month) 

spectral lines. The former was indeed found to be modulated in amplitude with 11-yr quasi-

periodicity. We had already found some evidence of the influence of solar activity on l.o.d. in 

Le Mouël et al (2004). With the method used in Le Mouël et al (2010), we did not conclude 

on the nature of this modulation effect. Using augmented data and the Singular Spectrum 

Analysis (SSA) method, we identify in this paper spectral components of l.o.d. that can be 

connected to lunar and solar tidal effects and also to variations in solar activity. We determine 

rather precisely the periods and also the amplitudes of these components. These new 

observations will be compared to a recent model of the long-period tidal variations in lod 

(Ray and Erofeeva, 2014). 
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2 –The SSA method of analysis 

 Singular-spectrum analysis (SSA) is a powerful method of spectral analysis that works 

well with short and noisy time series. We refer the reader to the detailed monograph by 

Golyandina et al [2001]. Useful accounts are found in Vautard and Ghil [1989], Ghil et al. 

[2002] and Vautard et al. [1992]. Some remarks that may help readers unfamiliar with SSA 

are given in Appendix 2. Many geophysical time series are “short” in a numerical sense, i.e. 

their length is not very much longer than some of the periodicities that they might contain. 

Moreover, they actually often contain pseudo-periodicities that fluctuate in both amplitude 

and pseudo-period. SSA provides at the same time a noise reduction technique, a detrending 

algorithm and a way to identify oscillatory components. SSA has been applied to the irregular 

ENSO phenomenon, to global-surface temperature, to geopotential height data, to a number of 

indicators of climate variability, to solar observations, and to cosmogenic isotopes. Lopes et 

al. [2017] isolated pseudo-periodic 11 and 5.5- year variations in a century-long series of 

rotation pole positions of the Earth’s mantle. 

In this paper, we perform singular spectrum analysis of IERS l.o.d. series that confirms 

some older results and brings out several new ones. We refer the reader to Lopes et al. [2017] 

for more information on the way in which we use the method. In Appendix 2 we briefly 

explain why our method is able to produce some original results, not noted before as far as we 

know. 

 

3 – Results of the SSA analysis 

We show the magnitude of eigenvalues of the l.o.d. time series in decreasing order of 

amplitude in Figure 2 (amplitude is peak to peak in ms). Most of the first 16 eigenvalues, 

corresponding to 10 components (6 consist in pairs of similar eigenvalues), can be assigned to 

a physically meaningful source: their frequencies or pseudo-frequencies can be found either in 

the rotation of the Moon around the Earth, of the Earth around the Sun, or in solar rotation 

and variations in solar activity. They are ranked in the order of decreasing amplitude of 

eigenvalues or pairs of eigenvalues: first the trend, then periods of 18.6 years, 1 year, 11.5 

years, 0.5 year, 13.66 days, 27.54 days, 13.63 days, 9.13 days and 2.36 years. 

Figure 3 top shows the first component (corresponding to the first eigenvalue) extracted 

by SSA, which is the trend of the series. It comprises the long-term (secular) decrease in l.o.d. 

and multi-decadal oscillations. The spectrum of SSA component 1 is almost identical to that 
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of the full series for periods longer than 5 years (Figure 3 bottom vs 1 bottom). We next 

present the results of the rest of the analysis: longer period variations with a clear solar origin, 

intermediate period zonal tidal effects of the Moon and Sun, and QBO variations. Further 

interpretation of these results is discussed in section 4. 

Let us first recall the frequencies that could be expected from astronomical and 

astrophysical forcings by the Sun and Moon. In previous papers, we have analyzed a number 

of solar proxies, including sunspot number ISSN and number of polar faculae PF, using SSA 

and Fourier analysis (e.g. Le Mouël et al. [2018]). The sunspot cycle and its harmonics are 

often the prominent components at 11, 5.5 and 3.6 years; also prominent are the solar zonal 

tidal annual and semi-annual lines. For the Moon, tidal zonal contributions are expected at the 

lunar month period (27.54 days) and its harmonics (13.77, 9.18,...). Finally, one might expect 

to find the solar synodic rotation at 27.27 days and its harmonics (13.63, 9.09,...). 

The first seven components of a recent l.o.d model (Ray and Erofeeva, 2014) are listed 

in the second column of Table 1. They are the main components of a model that comprises 80 

spectral lines and includes, in addition to the elastic responses the effects of mantle 

anelasticity and dynamic ocean tides. They range from the 18.6 lunar node tide, through the 

Sa (365.25 days), Ssa (182.62 days), Mm (27.55 days), Mf (13.66 and 13.63 days), and Mt 

(9.13 days) to 4.7 days. 

We stress that this is a model made to fit with a number of parameters the then observed 

spectral lines of l.o.d. Here we analyze with SSA an augmented set of data leading to 

improved spectral resolution. The values of the main SSA components that we calculate are 

listed in the next to last column of Table 1 and discussed briefly below. 

Following the trend, second only to it in amplitude, we find a component at the lunar 

node tide period of 18.6 years (Figure 4, component 2, amplitude 1.3 ms - note: all amplitudes 

are peak to peak). We briefly explain in Appendix 2 that this component is not extracted 

exactly in the same way as all the following ones). To our knowledge, this large nutation had 

been predicted by models (Ray and Erofeeva, 2014) but not observed before. 

 

3.1 –Longer period (solar activity) variations 

We next find the 11-yr solar cycle, the so-called Schwabe cycle, with an amplitude of 

0.46 ms (Figure 5 top; component 4). Its period is 11.5 ± 2.5 yr (we adopt as an estimate of 

uncertainty on period the “half-line” width at half ordinate value of the peak - Figure 5 

bottom). In pioneer work, Currie (1980) had identified an 11-yr oscillation in l.o.d. (with an 
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amplitude of 0.16 ms) using Maximum Entropy Spectral Analysis. We identified earlier this 

oscillation in the series of mantle rotation pole positions (Lopes et al., 2017). Note that, on the 

available time span, we have only five 11-yr oscillations, one being incomplete. The main 

period of the component is close to 12 years (Figure 5 bottom). Recall that individual solar 

cycles may last from 9 to 14 years. In solar proxies, we find significant harmonics at about 5.5 

and 3.6 years (Le Mouël et al., 2018), but not in the l.o.d. analysis (at least not among the first 

16 eigenvalues). 

 

3.2 –Zonal solar and lunar tide oscillations 

 SSA also provides us with a new estimate of components of l.o.d. variations whose 

existence has been known for long, i.e. the annual and semi-annual lines (Figures 1 bottom, 6 

and 7). Note that the method provides the singular oscillations themselves, rather than global 

spectral properties corresponding to more or less long intervals (Figures 6 and 7; components 

3 and 5; respective amplitudes of 0.81 and 0.76 ms). The stability of the seasonal amplitudes 

and phases is quite remarkable for both the annual and semi-annual variations. Nevertheless, a 

small increase of the annual oscillation amplitude from 1962 to the late 1980s is accompanied 

by a small decrease of the semi-annual one. These oscillations can logically be attributed to 

the zonal parts of the solar gravitational/tidal potential. In the shorter-period interval, SSA 

isolates quasi-sinusoidal variations with periods 13.66 days (Figure 8 bottom; component 6, 

amplitude 0.73 ms), 27.54 days (Figure 9 bottom; component 7, amplitude 0.39 ms), 13.63 

days (Figure 10 bottom; component 8, amplitude 0.27 ms) and 9.13 days (Figure 11 bottom; 

component 9, amplitude 0.14 ms). These oscillations could be due to the zonal parts of the 

lunar gravitational/tidal potential: one component is at the lunar month period of 27.54 days; 

the 13.66 and 13.63 day components (the precision of our determinations is such that these 

values can actually be considered as distinct; we will see a complementary interpretation in 

section 4) are close to its first harmonic at 27.54/2 = 13.77 days and the 9.13 day component 

to the second harmonic at 27.54/3 = 9.18 days.  

 

3.3 – A QBO (quasi biennal oscillation) 

Finally, SSA analysis provides us with a small amplitude but clear quasi-biennial 

oscillation (Figure 12 top; component 10; amplitude 0.08 ms) in l.o.d.: its period is 2.36 years 

or about 28 months. In their review paper, Baldwin et al. (2001) recall that "the QBO 

dominates the variability of the equatorial stratosphere and is easily seen as downward 
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propagating easterly and westerly wind regimes, with a variable period averaging 

approximately 28 months”. We can therefore certainly call component 10 in Figure 12 top a 

QBO. Its amplitude of 0.08 ms is modulated in the available time span by a longer 

wavelength variation whose pseudo-period (if there is one) cannot be estimated on this too-

short time-scale (but larger than 60 years). Component 10 is the only significant QBO 

oscillation that we have detected in the l.o.d. series. 

 

4 – Discussion 

We start the discussion by first giving a few elementary relationships that are useful in 

the following. Our observation (“observable”) is the length of the day. The mean lod is τ = 

86,400 s and in the calculations below, we use τ = 0.86 10� s; the corresponding mean 

rotation rate of the solid Earth is ωΜ = 7.3 × 10	� rad ⋅ s	�. The relationship between the 

change in rotation rate and the change in l.o.d. is: 

 δωM =  
	��

������
���� = − 8.5 × 10	� ����   (1) 

 

4.1 – Solar generated oscillations 

We observe variations in the length of day with periods that are characteristic of solar 

activity. We attribute them, rather naturally, to solar action on planet Earth, in the form of a 

torque ΓS with period T = 11 yr (Schwabe). The 13.63 and 13.66-day components are close to 

the first harmonic of the solar synodic rotation period 27.27/2 = 13.63 days (but see below). 

Direct influence of solar activity on the solid Earth - with its magnetic field - is generally 

considered too weak (e.g. see discussion in Currie, 1980, or references in Lopes et al., 2017). 

This leads us to consider a simple model, in which the solar torque acts on the atmosphere 

(see also e.g. Gray et al, 2010; Forbes, 2000). As for the coupling of the lower atmosphere 

and the Earth’s surface, we refer the reader to, e.g., Smith (1979). 

Let ΓS
T = γT exp(2iπt/T); the axial moment of inertia of the solid mantle is IM = 7. 1037 

kg.m2. The component of its axial angular momentum with period T due to ΓS
T is IM δωM

T 

exp(2iπt/T). The corresponding value of the atmospheric variation of angular momentum is IA 

δωA
T exp(2iπt/T); ωA

T is the equivalent angular rotation momentum of the atmosphere, that 

can in principle be calculated from the azimuthal wind field uφ .  The mantle and atmosphere 

are linked by a torque Γ = k(δωM
T- δωA

T), where k is a friction coefficient. Dropping the 

exponential factor and introducing the frequency u=2π/T, we obtain the following equations: 
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iu (IM δωM )= Γ  = k (δωM − δωΑ  )    (2) 

iu (IM δωM + IA δωA) = ΓS  

The discussion of equation (2) is simple: when k -> 0,  δωM -> 0. The mantle does not rotate 

and δωA = ΓS / iu IA. When k -> ∞ , the mantle and atmosphere rotate rigidly together. It may 

be useful to give an order of magnitude of the coupling torque Γ . For example, for the 11-yr 

oscillation, ΓM
11 = γΜ11

 exp(2iπt/T) and γΜ11= IM δωM
11 u = 7.1037 8.510-10 46.10-5 2π/11.π.107 

= 4.97 1017 kgm2s-2, using the observation δ lod11 ∼ 0.46 ms (Figure  5). 

We recall that the only data (observable) we have recourse to is ωM
T for some long-

period variations of ωM. An estimate of ωA (or the equivalent zonal velocity uφ) requires the 

knowledge of ΓS, the solar torque. For an estimate of ΓS, we could appeal to two mechanisms. 

Either the UV and extreme UV solar radiations, that have large relative variations up to 10% 

during a solar cycle (contrary to total solar irradiance that varies by only 0.1%). Or the solar 

wind, that is also known to vary significantly during a solar cycle as shown for instance by the 

variations in the count of faculae (e.g. Blanter et al, 2018). Some efforts have been devoted to 

evaluating the action of solar activity on the atmosphere, most often of the ionized 

atmosphere. But to our knowledge, there is as yet no available estimate of ΓS.  And as long as 

we do not know it better, we cannot evaluate ωA (or the equivalent zonal velocity uφ) through 

equation 2, though we could propose a range of estimates. We do not pursue this topic in the 

present paper. 

 

 4.2 – Zonal tidal oscillations 

The first idea that comes to one’s mind is that all the components in section 3.2 are due 

to zonal tides, related to the Sun for components 2 and 4, and to the Moon for components 6 

to 9. In Appendix 1, we give a simplified version of the well-known theory of these tides and 

their effect on l.o.d. This allows us to compare the main components of l.o.d. variations that 

we have detected in the l.o.d. series using SSA with the values generated by the simple model 

in Appendix 1. The results are listed in the last column of Table 1. The Love number κ that 

best fits the amplitudes we observe is 0.309. 

We find an excellent agreement (between 2% and 5%) between the observations and the 

values provided by the model for the annual Sa and semi-annual Ssa periods, as well as the 

lunar monthly period Mm (27.54 days). But there is a discrepancy of a factor five between the 

observed and the model amplitudes of the 13.66-day component. Furthermore, this amplitude 
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is twice as large as the amplitude of the fundamental lunar period of 27.54 days, which is not 

expected for an harmonic. And we must account for the component at 13.63 days. Thanks to 

the high-density sampling of the l.o.d. series, the 13.66 and 13.63 periods can be significantly 

separated. The 13.63-day period is on first analysis not a lunar harmonic (27.54/2 = 13.77), 

and 13.63 is half of the 27.27-day period of the Sun’s synodic rotation period. We propose 

that the 13.66 component with its "anomalous" amplitude, and the 13.63 component, that is 

27.27/2, could (at least in part) be solar generated. Unfortunately, no realistic model of solar 

activity action on Earth (that is torque) is available. The 9.13-day period on the other hand is 

expected to be generated by lunar zonal tides. 

In Table 1, we can also compare the amplitudes of the lines/components/eigenvalues 

that are predicted by Ray and Erofeeva's (2014) model and our observations derived directly 

from the l.o.d. data using SSA. The amplitudes of the 27.54, 13.66, 13.63 day lines are in 

excellent agreement (from 1 to 10% discrepancy). On the other hand, the lunar node tide, 

annual and semi-annual line amplitudes are respectively stronger by a factor on the order of 4, 

16 and 2. 

 

 4.3 – QBO oscillations 

Quasi-biennial oscillations have been observed in the variations of different geophysical 

parameters: e.g. near-surface temperature, SAT and NAO indices (Palus and Novotna, 2008), 

and stratospheric winds (Baldwin et al, 2001). The (pseudo) period of these oscillations is 

distributed in a rather large time interval; 1.6 to 1.9-year oscillations found by Menvielle and 

Marchodon (2007) in sudden storm commencements (ssc) for solar cycles 11 to 22, and those 

found by Valdes-Galicia et al. (1996) and Kato et al. (2003) in cosmic rays in the outer 

heliosphere have similar periods. And an approximate one-to-one correspondence is found 

between oscillations in ! ratios and cosmic rays in the 1982-1992 time span – the only one 

available (Figures 3 and 5 of Kato et al, 2003). 

A complete analysis of the ISSN data shows a component at 2.36 years, which is the 

fourth harmonic of the Schwabe cycle (2.36 x 5 = 11.8) (Figure 13). We suggest that the 2.36 

year QBO SSA component in l.o.d. could be yet another solar signature. 

Baldwin et al (2001) noted that alternating wind regimes repeat at intervals that vary 

from 22 to 34 months (1.8 to 2.8 years). At the time of their review, these authors commented 

that "whether or not decadal variability (in QBO) is caused by the 11-year solar cycle ... there 

is increasing evidence through modeling that the solar cycle has a significant influence on 
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winds and temperatures in the upper stratosphere". They concluded that "circulation changes 

introduced in the stratosphere penetrate downward, even reaching the troposphere." The QBO 

signal was first identified in the l.o.d. series by Lambeck and Cazenave (1973), as a peak in its 

Fourier transform. We confirm and improve significantly its description by our SSA 

observations (Figure 13). 

 

5 – Conclusion 

 

We have analyzed in this paper fluctuations in Earth’s rotation velocity, or equivalently 

length of day, using more than 50 years of IERS data and the powerful method of Singular 

Spectral Analysis. The first 16 eigenvalues uncovered by SSA correspond to 10 components, 

all with physical sense. The first component is simply the trend, followed by the lunar node 

tide period (18.6 yr, amplitude 1.3 ms). Next, we observe variations with a period that implies 

forcing related to solar activity (11 years, 0.46 ms amplitude; QBO at 2.36 year, 0.08 ms)); 

then, zonal oscillations linked to the solar (1 year, 0.81 ms; 0.5 year, 0.76 ms) and lunar 

(27.54 days, 0.39 ms; 9.13 days, 0.14 ms) tidal potentials. A doublet at periods 13.66 days 

(0.73 ms) and 13.63 days (0.27 ms) warrants further discussion. These periods are predicted 

by the model of Ray and Erofeeva (2014) with approximately correct amplitudes. But these 

are fits to earlier data with seven adjustable parameters; in that model this doublet which is 

close to the fortnight lunar tide Mf is considered to be lunar. We have seen that the period 

values and the line amplitudes are not what would be expected for a lunar harmonic. We 

suggest that at least part of these components could be solar related. 

Because SSA is at the same time an efficient noise reduction technique, detrending 

algorithm and way to identify irregular (quasi-periodical) oscillatory components, its 

application to l.o.d. data has yielded some updated and some new results. The trend includes 

the long term lunar tidal braking and possibly solar components with a longer time scale than 

can be identified with only a half century of observations (e.g. the Gleissberg and de Vries 

pseudo-periods). Then we identify the lunar node tidal period that was predicted but to our 

knowledge not yet observed. The 11-yr component is of course forced by the Sun and its 

changes in activity. The lunar monthly tide is clearly isolated but, more interestingly, it can be 

argued that the two prominent components at 13.66 and 13.63 days are at least in part solar 

components. And finally, we propose that the QBO at 2.36 years is actually generated by 

solar activity. In conclusion, there is no line that cannot be attributed to an existing quasi-
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periodic physical phenomenon. And again all the SSA eigenvalues we determine here are 

essentially updated, refined observations, not the results of a model.  

Careful study of the Earth’s rotation, in particular of the length of the day (the “axial” 

problem) is what geoscientists call “a secular problem”. Progress in computers and signal 

processing have allowed us to resume and extend the analysis of l.o.d., and in particular to 

show evidence of a solar effect in the series, that we had discovered in the motion of the pole 

and discussed more succinctly (the “equatorial” problem). Uncovering the mechanism 

through which solar activity acts on Earth’s rotation and on a number of climatic indices is an 

exciting project for geoscientists that deserves renewed attention (Le Mouël et al. [2018]). 

 

Appendix 1: Effect of solar and lunar zonal tides on the Earth’s 

rotation 

It is sufficient an approximation for our purpose to suppose that the Earth, when not 

submitted to the action of external forces, is a sphere of radius a. The cases of the Sun and 

Moon gravitational potentials can be treated in the same way. Let us start with the zonal part 

of the Sun’s potential at a point with latitude θ at the Earth’s surface (Jobert, 1973; Guinot, 

1973; Lambeck, 2005): 

U2 = G M a2 D-3 P2(sinθ) P2(sinδ)      (A1-1) 

where G is Newton’s constant, M the mass of the Sun, δ(t) its declination, a the Earth's radius, 

D(t) the Sun-Earth distance and P2 the Legendre polynomial of degree 2 (P2(sinδ)=(3sin2δ-

1)/2). The same applies to the Moon with the relevant values of M, D and δ. For the Sun, the 

term G M a2 D-3 contains mainly an annual period through D, and the term P2(sinδ) a semi-

annual period. For the Moon the corresponding periods are the lunar month (~ 28 days) and a 

semi-monthly period (~14 days). 

The spherical Earth is considered to be elastic and submitted to the perturbating 

potential U2. The resulting deformation of the Earth creates an additional potential V2, also of 

degree 2, and from the theory of Love at the Earth’s surface V2 = κ U2 (r=a). κ is the Love 

number (e.g. Jobert, 1973; Lambeck, 2005). Let O x1 x2 x3 be a system of axes linked to the 

Earth (Ox3 is the axial axis), x1, x2 and x3 being the coordinates of the current point of 

observation exterior to the Earth (r = √(x1
2+x2

2+x3
2) > a). In the absence of U2, the Earth's 

moments of inertia are equal. We are dealing with an axisymmetric problem, and the 

expression of V2 is easily obtained as a function of the additional moments of inertia cii 
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resulting from the perturbation (cij=0 i≠j; c22=c11): 

V2(r) = (G/2r5)(c33 – c11) (x1
2+x2

2-2x3
2)     (A1-2) 

Furthermore, if the deformation follows the Love hypothesis, Σ cii = 0 and c33 – c11 = (3/2) 

c33. The function (x1
2+x2

2-2x3
2)/ r5 is harmonic and, using spherical coordinates θ (colatitude) 

and r=a: 

V2(a,θ) = (3G/4a3) c33 (1/3 – sin2θ) = kU2(a)     (A1-3) 

U2 being given by equation (1); one obtains: 

c33 = k M a 5D-3(t) (1/3 – sin2δ(t))      (A1-4) 

One still has to relate the variation of the Earth’s axial rotation m3, with Ω(t) = Ω0 (1 + 

m3(t)), Ω0 ~ 7.26 10-5 rad/s. The third equation of the Euler system gives m3 = - c33/IM where 

IM is the axial moment of inertia of the mantle ~7. 1037 kg.m2; the variations of the Earth’s 

spin rate are m3(t)Ω0. 

D(t) and δ(t) are found in catalogs. We are especially interested in the amplitudes of the 

annual and semi-annual oscillations for the Sun, and of the lunar month and semi-lunar month 

for the Moon's oscillations. We find that a value of the Love number κ=0.309 best fits the 

theoretical amplitudes to the ones we actually observe. 

 

Appendix 2: Some remarks on the use of SSA 

We propose here some remarks that briefly describe the main features of SSA and some 

of the ways we apply it. References to several books and papers are given in the main text and 

in this appendix. Vautard and Ghil (1981) combine and generalize the theory of spectral 

decomposition, as unified by Karhunen (1946) and Loève (1946), with the embedding 

theorem of Mane (1981) and Takens (1981). 

The first theory initiated by Karl Weierstrass in 1958 consists in proving the existence 

of decomposition bases that are favored when one diagonalizes symmetric matrices that 

describe certain endomorphisms : in the case of l.o.d., can we decompose the series on a basis 

of orthogonal sub-systems that, taken independently one from the other, would allow a better 

understanding of the complexities of the problem? 

A second theory deals with the best possible way to build the symmetric matrix, 

diagonal matrices being a particular case, without losing information from the starting series. 

Once the linear system is built, one has only to extract the families of eigenvectors and 

eigenvalues needed to reconstruct the signal. For this, one uses the SVD (Singular Value 
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Decomposition; Golub and van Loan, 1980) algorithm to decompose the signal on an 

orthogonal basis. 

The main difficulty is the proper construction of the symmetrical matrix. For Vautard et 

Ghil (1981), using a Toeplitz matrix with constant sampling interval is the main characteristic 

of such a decomposition, but this is still a debated question, and other families of symmetric 

matrices are used by different scientific communities. In their chapters 1 and 6, Golyandina et 

al (2001) review this topic. Practically, this matrix is not very different from the 

autocorrelation matrix of the signal, in which each column is a segment of length L of the 

starting time series. The size L of this window constrains the periods that can be extracted. In 

the case of the l.o.d. series analyzed in this paper, we have extracted relatively short periods 

with L = 5000 points, whereas for the lunar node tide with period 18.6 years, we have had to 

use 15,000 points. We can therefore sum up all components extracted with L = 5000, but we 

cannot add the lunar node component obtained with a different L, for the reason that part of 

the energy of shorter periods can already be included in that component. The unicity of 

decompositions is valid for a given L, not for a set of different L values. 

The next question is the proper choice of L. This is not a trivial problem and the method 

remains widely discussed (Golyandina et al., 2001, chapter 6.1). In principle, perfect 

separability of components for any L requires that, in the U and V matrices of eigenvectors 

obtained by SVD of the l.o.d. diagonal matrix, the ith column of U be exactly orthogonal to 

the ith line of V. Such is of course never the case and this is why new algorithms are proposed 

such as VARIMAX for the eigenvectors or decentered SVD, in order to be as close as 

possible to the orthogonality condition (Golyandina et al., 2001). Another more practical 

method is to apply SSA to a range of close-by values of L rather than a single one and to 

check the stability of the decomposition. This method has the advantage of allowing one to 

estimate the uncertainties in our reconstructed periods and amplitudes. 

One must identify the families of eigenvectors and eigenvalues that correspond to one 

component. The autocorrelation matrix that one diagonalizes is simply giving autocorrelations 

of segments of the data; the most important or stable components (as is the case for a Fourier 

transform) or the strongest (in terms of amplitudes) have the larger eigenvalues. One only has 

to regroup eigenvectors that have equal (or very close) eigenvalues (see Figure 2). 

In the way we use SSA, we use large computer power. The Hankel matrix we calculate 

has 1000x19,470 terms. We work with 64bit computers, and double precision numerics of 

8bit each. SVD of that matrix yields two eigenvector matrices and one matrix with 
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eigenvalues that have the same dimensions. We therefore require an 8Go active memory, 

which means we must run on a computer with at least 10Go. This is what we do and one 

reason why we obtain the new results presented in this paper. This is also why we do not need 

to apply a Monte Carlo SSA algorithm, which is in a way a bootstrap method that must be 

used (implying loss of information) only when the computer that is used is not powerful 

enough. 
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Table 

 

Table 1: Amplitudes of components at given periods (1st column) as predicted by the Ray and 

Erofeeva (2014) model (column 2). Periods (column 3) and amplitudes (column 4) 

observed using SSA in this paper. Amplitudes calculated from the simple model in 

Appendix 1 of this paper (column 5). 

Note: the amplitudes from the Ray and Erofeeva model are from their Table 3 columns 13 and 

14 :  Ampl = 2 [∆Λ(cos)2+∆Λ(sin)2]1/2 

 

 
Period - model 

(Ray-Erofeeva) 

Amplitude - model 

(Ray-Erofeeva) 

Period - observed 

(this paper) 

Amplitude- observ 

(this paper) 

Amplitude- model 

(this paper) 

6798.40 days 159.86 µs 

0.320 ms  

6798.37 days 1.287 ms  

365.25 days 27.67 µs 

0.055 ms 

365.25 days 0.814 ms 0.7734 ms 

182.62 days 173.49 µs 

0.347 ms 

182.62 days 0.760 ms 0.7298 ms 

27.55 days 193.84 µs 

0.388 ms 

27.57 days 0.386 ms 0.3779 ms 

13.66 days 359.42 µs 

0.719 ms 

13.66 days 0.730 ms 0.1388 ms 

13.63 days 149.00 µs 

0.298 ms 

13.63 days 0.270 ms  

9.13 days 67.20 µs 

0.134 ms 

9.13 days 0.142 ms  
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Figure legends 

 

Figure 1: (top) Five-day averages of length of day (in ms) from Jan.1.1963 to Dec.31.2016, 

from International Earth Rotation Service. (bottom) Normalized spectrum of the time 

series above using FFT. Note the sharp 6-month and 1-year lines on the shorter period 

part of the figure. 

Figure 2: The 30 first eigenvalues of the time series of l.o.d. in Figure 1a determined by 

Singular Spectrum Analysis (SSA) in decreasing order of magnitude (normalized). The 

components discussed in the text are identified (components correspond to either single 

eigenvalues or pairs of eigenvalues). 

Figure 3: (top) The first SSA component of l.o.d. is the trend (in ms), as seen in Figure 1a. 

(bottom) Fourier transform (normalized spectrum) of the above (very similar to Figure 

1b for periods larger than 5 years). A packet of energy is seen around 22 years. 

Figure 4: (top) The second SSA component of l.o.d. at ~18.6 years (lunar node tidal period). 

(bottom) Fourier transform (normalized spectrum) of the above. 

Figure 5: (top) The fourth SSA component of l.o.d. at ~11.5 years. (bottom) Fourier transform 

(normalized spectrum) of the above. 

Figure 6: (top) The third SSA component of l.o.d. at 1 year. (bottom) Fourier transform 

(normalized spectrum) of the above. 

Figure 7: (top) The fifth SSA component of l.o.d. at 0.5 year. (bottom) Fourier transform 

(normalized spectrum) of the above. 

Figure 8: (top) The sixth SSA component of l.o.d. at 13.66 days. (bottom) Fourier transform 

(normalized spectrum) of the above. 

Figure 9: (top) The seventh SSA component of l.o.d. at 27.54 days. (bottom) Fourier 

transform (normalized spectrum) of the above. 

Figure 10: (top) The eighth SSA component of l.o.d. at 13.63 days. (bottom) Fourier 

transform (normalized spectrum) of the above. 

Figure 11: (top) The ninth SSA component of l.o.d. at 9.13 days. (bottom) Fourier transform 

(normalized spectrum) of the above. 

Figure 12: (top) The tenth SSA component of l.o.d. at 2.36 years (QBO). (bottom) Fourier 

transform (normalized spectrum) of the above. 
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Figure 13: (top) The 2.29 year component of ISSN superimposed on the tenth SSA component 

of l.o.d. at 2.36 years (QBO). (bottom) Fourier transform (normalized spectrum) of the 

above. 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 

 

 

 

 

  

lo
d

 (
m

s)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

13.4 13.5 13.6 13.7 13.8 13.9

date (years)

1964 1968 1972 1976 1980 1984 1988 1992 1996 2000 2004 2008 2012 2016

period (days)

n
o

rm
al

iz
ed

 s
p
ec

tr
u
m

0.2

0.4

0.6

0.8

1

13.66 ± 0.01 days  



 28

Figure 9 
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Figure 10 
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Figure 11 
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Figure 12 
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Figure 13 

 

 

 

 

 

 

 




