
HAL Id: hal-03484418
https://hal.science/hal-03484418

Submitted on 20 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

A general and explicit Eshelby-type estimator for
evaluating the equivalent stiffness of multiply coated

ellipsoidal heterogeneities
Akbar Ghazavizadeh, Mohamed Haboussi, Akrum Abdul-Latif, Akbar Jafari,

Houssem Bousoura

To cite this version:
Akbar Ghazavizadeh, Mohamed Haboussi, Akrum Abdul-Latif, Akbar Jafari, Houssem Bousoura. A
general and explicit Eshelby-type estimator for evaluating the equivalent stiffness of multiply coated
ellipsoidal heterogeneities. International Journal of Solids and Structures, 2019, 171, pp.103 - 116.
�10.1016/j.ijsolstr.2019.04.023�. �hal-03484418�

https://hal.science/hal-03484418
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


0 

A general and explicit Eshelby-type estimator for evaluating the equivalent 

stiffness of multiply coated ellipsoidal heterogeneities 

 

Akbar Ghazavizadeh a,b* , Mohamed Haboussi c, Akrum Abdul-Latif b, Akbar Jafari d 

 

a LABEX SEAM - Université Paris 13, Sorbonne Paris Cité, avenue Jean-Baptiste 

Clément, 93430, Villetaneuse, France 

 

b Laboratoire Quartz, Supméca, 3, rue Fernand Hainaut, 93407 St Ouen Cedex, France 

 

c Université Paris 13, CNRS, UPR3407, LSPM, Sorbonne Paris Cité, avenue Jean-

Baptiste Clément, 93430, Villetaneuse, France 

 

d Department of Mechanical Engineering, Sirjan University of Technology, Sirjan, 

Iran, POBOX 7813733385 

 

*Corresponding author: akbar.ghazavizadeh@univ-paris13.fr- Tel: +33 (0)6 17 27 08 57 

Co-author: mohamed.haboussi@lspm.cnrs.fr - Tel: +33 (0)1 49 40 34 70 

Co-author: aabdul@iu2t.univ-paris8.fr – Tel: +33 (0)1 41 51 12 34 

Co-author: jafari@sirjantech.ac.ir – Tel: +98 (0)34 55 20 20 11 

 

  

© 2019 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0020768319301921
Manuscript_fb3c576242d08dc3f54927a759e4dfa7

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0020768319301921
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0020768319301921


1 

 

A general and explicit Eshelby-type estimator for evaluating the equivalent 

stiffness of multiply coated ellipsoidal heterogeneities 

Abstract 

The paper presents an efficient estimator for the equivalent stiffness calculation of 

multiphase ellipsoidal heterogeneities. This estimator is derived from the exact 

effective stiffness of a generic monofiller composite associated with Eshelby’s 

equivalence principle. It is originally developed for a two-phase ellipsoidal 

configuration and is subsequently generalized to multiphase heterogeneities via a 

layer-wise sweeping procedure. The developed estimator has an explicit form, which 

makes it amenable to computer programming. The performance of the proposed 

estimator is evaluated by analyzing several numerical examples of spherical 

compounds and two spheroidal ones spanning a wide range of elasticity contrasts, 

which are also examined by two other applicable Eshelby-type estimators. To assess 

the validity of our estimator in two-level homogenization problems, several 

examples of composite systems reinforced with core-shell inclusions are analyzed 

using a two-level homogenization scheme in which use is made of the estimator of 

this study. It is concluded that the presented estimator can be applied to a wide 

range of multiphase ellipsoidal heterogeneities or limit cases thereof, as well as 

heterogeneities with radially graded interphases.  

 

Keywords: Equivalent inhomogeneity/effective particle; multicoating inclusion; 

Eshelby-type estimators; radially graded interphase; two-level homogenization; 

spherical core/shell compounds. 

 

1. Introduction  

EQUIVALENT INHOMOGENEITY, also referred to as effective particle in the literature on 

the homogenization of heterogeneous solids, is understood as a homogeneous 

replacement for a locally inhomogeneous domain [1–8]. This concept is particularly 
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applicable to particulate and fiber composites containing singly or multiply coated 

reinforcements. A coating might be simply the interfacial transition zone, also known 

as the interphase layer, which is formed around fillers and possesses properties most 

likely different from the host matrix. In this case, the interphase layer serves as an 

intermediate between the matrix and fillers through which load transfer (mechanical, 

thermal, etc.) takes place. For the overall properties homogenization of such 

composite systems where multiphase particles are suspended in a homogeneous 

continuum, a two-level homogenization scheme is usually implemented as a 

judicious practice [3,9–11] in order to simplify to a great extent the usually 

complicated original problem of effective properties calculation to a small detriment 

of the exact results.  

In two-level homogenization practices, the first estimation of effective 

properties is conducted at the level of multiphase heterogeneities, where appropriate 

estimators are employed to characterize the equivalent homogeneous replacement 

for the original compound filler. For the second level of homogenization, one will 

have homogeneous reinforcements already characterized at the first level, which are 

suspended in a continuous matrix identical with the original problem. This second 

homogenization part looks like a conventional overall properties calculation for 

which quite a few approaches are available from micromechanics of heterogeneous 

materials, such as [12,13]. Hence, breaking the homogenization analysis into two (or 

multiple) levels significantly reduces the complexity of the problem at the expense of 

losing some accuracy.  

Equivalent properties of multiphase fillers are a function of the geometry and 

properties of the constituents as well as their relative position. In the present study, 

we propose a general estimator that enables the direct and efficient evaluation of the 

effective properties of multi-layered fillers of any material symmetry and any 

ellipsoidal geometry. The proposed estimator, called GEEE (General Explicit 

Eshelby-type Estimator), is in fact a mean-field, analytical, Eshelby-type estimator 
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that is derived from the seminal work of Eshelby [14]. For performance evaluation 

and comparison purposes, two other Eshelby-type estimators of Hori & Nemat-

Nasser’s Model (HNNM) [15] and modified HNNM [16], are also implemented and 

discussed. The versatility of the ellipsoidal configuration adopted in these methods 

allows covering a wide range of geometries often seen in practical and theoretical 

applications such as spheres, long cylinders and thin platelets. This quality gives 

Eshelby-type approaches an absolute advantage over non Eshelby-type ones. This 

latter class of analytical, mean-field homogenization estimators is indeed less general 

than Eshelby-type ones in terms of geometry and material symmetry as they are 

developed for specific configurations (i.e. combination of geometry & material 

symmetry of phases). Examples of this second class of approaches developed for 

spherical core/shell heterogeneities are Hashin’s CSA (composite spheres 

assemblage) [17], Hervé & Zaoui’s composite spheres model [18], Maxwell’s 

estimator [19], polarization approximation [3] and annular coated inclusion (ACI) 

[20]. It is worth mentioning that in the terminology of this work and its sequels, the 

term “estimator” is reserved for referring to micromechanical methods that have 

been specifically developed for (such as GEEE) or can also be used for (such as 

HNNM) estimating the equivalent stiffness of multiphase heterogeneities. 

In this study, we focus on the detailed presentation of a newly developed 

efficient estimator, namely GEEE. As will be shown subsequently, it has the 

advantage of possessing an explicit and easy-to-use expression, as opposed to the 

implicit and nonlinear equations of HNNM and modified HNNM. The easy-to-use 

estimator of this study, is an answer to the need recognized by Shen and Li [8], 

among others, that ‘analytical results are limited for inhomogeneous interphases’ and that 

‘numerical procedures are usually utilized to solve governing differential equations’. While 

being free from any kind of differential equation or complicated numerical 

procedures, GEEE is expressed as a tensor equation of explicit form that can be 
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directly and efficiently applied to multiphase core/shell ellipsoidal heterogeneities, 

including the ones with radially graded (inhomogeneous) interphases.  

In studying the numerical examples, we confine our attention mainly to the 

case of spherical heterogeneities with a small digression to spheroidal ones, and in 

the future publications we will address long cylindrical and thin platelet compounds. 

Spherical geometry, as a limit case of an ellipsoid with identical axes, is a simple but 

not less important configuration, which is commonly used in theoretical and 

practical applications for approximating nearly isodimensional micro/nanoparticles. 

For example, Li, Zhao, Pang, & Li [21] used a three-component spherical core/shell 

model to build the “basic element” of concrete and study its overall elastic response. 

The core of their model corresponds to an aggregate in which the first shell copies the 

interphase around the aggregate and the second shell represents the cement paste. 

Odegard, Clancy, & Gates [22] used a spherical core/shell model to study the impact 

of the interphase layer around silica nanoparticles immersed in polyimide on the 

effective elastic properties. An identical model was employed in [23] to investigate 

the overall properties of particulate composites containing spherical heterogeneities 

with graded properties in their coating. Diani, Gilormini, Merckel, & Vion-Loisel [24] 

also used spherical core/shell arrays to model carbon black filled rubbers and studied 

the impact of the interphase layers around carbon black particles. Similar 

configurations have been adopted to study syntactic foams [25,26], the impact of 

inhomogeneous interfacial transition zone in concrete [27], the effective thermal 

properties of aluminum matrix composites loaded with coated diamonds [28], and 

microencapsulated phase change materials [29], to mention a few. 

To assess the performance of our proposed estimator, GEEE, and compare it 

with other Eshelby-type estimators cited above, namely HNNM (Hori & Nemat-

Nasser’s Model [15]) and modified HNNM [16], several numerical examples of 

multiphase spherical heterogeneities composed of isotropic core/shell components of 

various stiffness contrasts are examined. In this regard, the estimators HNNM and 
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modified HNNM are specialized to multilayer spherical particles. To keep the 

manuscript sufficiently self-contained, the mathematical manipulations required to 

obtain the expressions of HNNM and modified HNNM are provided in Appendix A 

and Appendix B, respectively. The performance of the proposed GEEE in two-level 

homogenization problems is also evaluated by studying several composite systems 

reinforced with coated fillers.   

Throughout this work, hollow, uppercase Roman letters denote fourth-order 

tensors. The inverse of the fourth-order tensor A , for example, is indicated by 1−A . 

Second-order tensors are represented in bold, lowercase, Greek letters. Italicized 

letters are reserved for scalar quantities. In tensor equations, the commonly used 

symbol ‘:’ denoting the double contraction over the last two indices of the first tensor 

(multiplier) and the first two indices of the second tensor (multiplicand), is dropped 

for brevity. Finally, when required, numeral superscripts are placed between 

parentheses to avoid confusion with exponents. 

The present investigation is organized as follows. Section 2 provides the 

details of the proposed estimator, GEEE by starting from the exact effective stiffness 

of a monofiller composite. Section 3 is devoted to the examination of relevant 

numerical examples of multiphase spherical particles whose results allow for 

evaluating the performance of each estimator. Concluding remarks are given in the 

last section. A brief derivation of more general bounds of Hashin-Shtrikman for the 

equivalent shear and bulk moduli of multiphase spherical particles is given in 

Appendix C. 

 

2. GEEE: from 2-phase formulation to n-phase generalization  

The General Explicit Eshelby-type Estimator (GEEE), which is derived in this 

section, is an efficient and easy-to-use Eshelby-type estimator that possesses an 

explicit equation in eqC , the equivalent stiffness of the composite heterogeneity. The 

derivation is split into two steps: formulation of GEEE for a generic two-phase 
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ellipsoidal heterogeneity, and then the generalization of 2-phase formulation to n-

phase one through a recursive algorithm, which is subsequently mathematically 

demonstrated.  

The 2-phase formulation of GEEE constitutes its back-bone and is directly 

derived from Eshelby’s equivalence principle [30]. According to this principle, which 

is illustrated in Figure 1, an ellipsoidal heterogeneity in a homogeneous medium of 

large dimensions can be equally replaced by an inclusion of the same shape but of 

host medium material. To compensate for the material change between the 

heterogeneity and inclusion, a uniform transformation (free-stress) strain, denoted by 

*
ε , is attributed to the inclusion. 

*
ε  is determined such that under remote uniform 

loading on both systems, the elastic fields of the ellipsoidal regions are identical, 

thereby establishing the equivalence between both systems.  

 

Figure 1. Monofiller composite illustration of Eshelby’s equivalence principle: an ellipsoidal heterogeneity is 

suspended in a homogeneous matrix of large dimensions, which is subjected to uniform loading boundary 

conditions. In the equivalent system, the heterogeneity is replaced by an inclusion of matrix material in addition 

to an unknown transformation strain. 

 

From the second system, the superposition of uniform remote strain, 
∞
ε , and the 

perturbation strain induced in the inclusion, p
ε , due to 

*
ε  corresponds the inclusion’s 

strain, I
ε .    

 I p *∞ ∞= + = +ε ε ε ε εS   (1) 
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The equation p *=ε εS  is one of the results of Eshelby’s problem. Another result is the 

expression of perturbation stress, ( )p (2) *= −σ εC S I , induced in the inclusion due to 

*
ε . Hence, the total stress of the inclusion is obtained from the superposition of p

σ  

and uniform remote stress, 
(2)∞ ∞=σ εC . 

 ( )I p (2) *∞ ∞ = + = + − σ σ σ ε εC S I   (2) 

Identity of the strains in the heterogeneity and inclusion allows for calculating H
σ , 

the stress inside the heterogeneity. 

 ( )
H I *

H (1) H (1) *

∞

∞

= = +

= = +

ε ε ε ε

σ ε ε ε

S

C C S
  (3) 

Equality of stresses in both ellipsoidal regions, i.e. H I=σ σ , gives the sough-for unique 

*
ε  that establishes the equivalence between both systems.  

 ( )
1

1
I H * (1) (2) (2)

−− ∞ = ⇒ = − − +  
σ σ ε εC C C S   (4) 

Substitution of the above expression into relation (3), results in the following 

equation.  

 ( ) ( )
1

1
I H (2) (1) (2)

−− ∞ = = + −  
ε ε εI S C C C   (5) 

For ease of reference the concentration tensor behind 
∞
ε  in the above equation is 

hereafter denoted by A . Thus far, no approximation has been made in deriving 

expression (5) that correlates the uniform strain of the heterogeneity to remote 

uniform strain imposed on the monofiller composite system. This implies that under 

the assumptions of Eshelby’s problem and for the monofiller composite under study, 

A  is exact.  

Now, the average theorems are invoked to calculate mean overall strain and 

stress of the monofiller composite system from which its effective stiffness is 

determined. Denoting the average stress and strain of the matrix by the superscript M, 

the average theorems give 
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( )
( )

[ ]

( )
( )

MH M
HH H

Heff H M
eff (1) H (2) MH H

H H

eff (2) (1) (2)

H

1
1

1
1

1

ff f
f

f f
f f

f

∞∞  = − = = + − ⇒  − = = + − ⇒  = + −

⇒ = + −

ε εε ε ε ε

σ ε σ σ
ε ε ε

I A

C
C C C

C C C C A

  (6) 

Here, H H totf V V=  is the volume fraction of the heterogeneity with respect to the 

entire monofiller composite. The expression of effC  is the result of Eshelby’s 

equivalence principle and average theorems for the monofiller composite under 

consideration. This expression contains no approximate assumptions for the 

composite system made of a host matrix of large dimensions encapsulating a single 

ellipsoidal filler. Hence, for such a composite system, the above effC  is the exact 

description of its effective stiffness. In the following, we rely on two equivalent 

monofiller composites that are differently represented and then equate their exact 

effC  to obtain the expression of GEEE for a two-phase ellipsoidal inhomogeneity. 

This expression corresponds to the first part of GEEE, which is completed once it is 

generalized to n-phase heterogeneity.  

 

2.1 Two-phase formulation of GEEE 

Let an arbitrary ellipsoidal heterogeneity of stiffness (1)C  be embedded in a 

large host medium of elasticity ( )2
C  with perfect bonding conditions, as illustrated 

schematically in Figure 2. Complying with the conditions of monofiller composite of 

Eshelby’s equivalence principle, its effective stiffness, eff

AC , is given by Eq.(6). 

 ( ){ } ( ) ( )( ) 1
1

eff (2) (1) (2) (1) (1) (1) (2) (1) (2)

A 1 wheref
−−

= + − = + −C C C C A A I S C C C   (7) 

In the same problem, any imaginary ellipsoidal region from the matrix material 

around the reinforcement can be treated as a coating with perfect bonding to both 

reinforcement and the rest of the matrix. Accordingly, in connection with Figure 2A, 

the heterogeneous system composed of a coated ellipsoidal heterogeneity embedded 

in a host matrix that shares the same elasticity with the coating, has an effective 
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stiffness that is expressed by Eq.(7). Now, the reinforcement plus its coating in 

problem (A) is replaced by an equivalent inhomogeneity of the same shape and 

orientation, as schematically illustrated in Figure 2B. In this new problem (B), the 

properties and dimensions of the host matrix beyond the coating remain unchanged. 

The configuration of problem (B) obviously fits the monofiller composite of Eshelby’s 

equivalence principle in the same way that problem (A) does. Therefore, its effective 

stiffness is calculable similar to Eq.(7).  

 ( ){ } ( ) ( )( ) 1
1

eff (2) eq (2) eq eq eq (2) eq (2)

B eq wheref
−−

= + − = + −C C C C A A I S C C C   (8) 

  

Figure 2. Schematic of (A) an ellipsoidal heterogeneity embedded in a host medium of large dimensions. An 

ellipsoidal region from the host material is assumed encapsulating the heterogeneity; (B) The ellipsoidal 

heterogeneity together with its coating is replaced with a homogeneous inhomogeneity such that the overall 

elasticity of the original problem remains unchanged.  

 

In problem (B), the elasticity of the equivalent inhomogeneity, eqC , is unknown 

whereas its volume fraction, eq
f , and Eshelby’s tensor, eqS , are known because its 

dimensions and orientation are known beforehand. Equivalence between both 

configurations requires that 
eff eff

B A=C C  from which, eqC  is calculated as follows.  

 ( )( ) ( )1
eq (2) (2) (2) (1) (2) (1) eq (1) (2)

1 1
ν ν

−
 = + + − − − C C C C C C S S C C   (9) 

Here, 1 1 eq 1 eqf f V Vν = =  denotes the volume fraction of the core inclusion relative to 

the entire two-phase heterogeneity composed of the inclusion plus its coating. It is 

worth noting that although 1 1 tot 0f V V= →  and eq eq tot 0f V V= → , because the 

dimensions of the monofiller composites are sufficiently large, their ratio does not, 



10 

 

1 eq 1 eq 0f f V V= → . Also note that when eq (1)=S S , one retrieves Mori-Tanaka 

estimate of the effective stiffness of a two-phase composite consisting of aligned 

ellipsoidal heterogeneities of stiffness (1)C  and volume fraction 1v  dispersed in a 

matrix of stiffness (2)C .           

The expression (9) is directly obtained from the exact solutions of the effective 

stiffnesses of two equivalent composite systems compatible with dilute configuration 

of Eshelby problem, hence eqC  of (9) is exact too for the configuration considered. 

Given that the terms on the right-hand side of (9) are not functions of eqC , this 

equation is explicit and no sophisticated numerical method is required for its 

solution. To exploit this equation, one has to calculate the associated Eshelby’s 

tensors of ellipsoidal regions in advance. A major assumption is made here that this 

expression is equally valid when the two-phase heterogeneity is embedded in a 

different matrix. As will be discussed further below, with this simplifying 

assumption, the results of many estimators turn out to either coincide or be close to 

GEEE outputs. Besides, for several numerical examples we analyzed using GEEE in a 

two-level homogenization, a satisfactory agreement is observed between thus-

calculated effective properties and the corresponding reference values from finite 

element analysis or the ACI model predictions.   

For later reference, the definition of eqC  based on the average strains in the 

core and coating are also given below.  

 ( ) ( )(1) (1) (2) (2) eq (1) (2)

1 1 1 11 1ν ν ν ν + − = + − ε ε ε εC C C   (10) 

The above definition of eqC  is invoked in the following subsection when generalizing 

GEEE to multiphase ellipsoidal heterogeneities. Although average strains appear in 

the above expression, eqC  defined as a property, is independent of the elastic fields 

of the ellipsoidal regions. 

Remarks:  
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• A quick check reveals that the effective stiffness equation derived in (6) is 

essentially identical with Eshelby’s dilute homogenization formulation. It has 

been discussed that Eq.(6) is an exact description of the effective stiffness of 

the monofiller composite explained earlier. However, in the literature when it 

is stated that Eshelby’s dilute homogenization scheme is suitable for 

composites of dilute concentration, the volume fraction Hf  is split over several 

fillers that are dispersed in a large host matrix. In this case, Eq.(6) gives only 

an approximation to the effective stiffness of multifiller composite, in that the 

filler-filler interactions are neglected. Naturally, the higher the volume fraction 

of fillers in the composite, the more pronounced the impact of inter-filler 

interactions will be, hence the more inaccurate the effective stiffness of the 

whole composite is identified by Eq.(6). 

• After some mathematical manipulations, one can rewrite Eq.(9) in the 

following form.  

 ( ) ( )( )
1

1 1
eq (2) (1) (2) (1) eq (2)

1 1ν ν
−− − = + − + −  

C C C C S S C   (11) 

Since the reference stiffness of both ellipsoidal regions is (2)C , the products of 

Eshelby’s tensors and the reciprocal of the reference stiffness are replaced with 

their corresponding polarization tensors. Therefore,  

 ( )
1

1
eq (2) (1) (2) (1) eq

1 1ν ν
−− = + − + −  

C C C C P P   (12) 

The advantage of this form of representation is that it clearly shows that eqC  is 

always symmetric, no matter how the ellipsoidal regions are oriented with 

respect to one another, because the stiffness tensors and polarization tensors 

are always symmetric. In programming applications, however, the original 

expression of (9) is preferable as one single matrix inversion operation is 

involved whereas Eq.(12) contains two matrix inversions.  
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• It is instructive to note that in the derivation procedure, no constraint 

whatsoever has been placed on the volume fractions and no singularity due to 

volume fractions is possible in the formulation of GEEE. With regard to the 

extreme case of 1 0ν → , the expression of Eq.(12) readily shows that eq (2)→C C

. On the other hand, when 1 1ν → , it implies that the core and shell regions 

geometrically approach one another, hence (1) eq→P P , and as a result 

(1) eq

1ν− → 0P P . In this case, the expression of Eq.(12) suggests that eq (1)→C C . 

Both limit values agree perfectly with the physical significance of the problem. 

Therefore, extreme volume fractions pose no problem to the implementation 

of GEEE and it works just as well as it does for intermediate volume fractions. 

• Eq.(9), which is the core of GEEE, is presented in tensorial form, indicating 

that the impact of the relative orientation of phases and their material 

symmetry are automatically taken into account, as all tensorial quantities 

ought to be expressed in the same reference frame. In addition, Eshelby’s 

tensors (or equivalently, the polarization tensors) take care of the effect of 

geometry (shape) of the phases. Therefore, the tensorial expression of Eq.(9) 

and Eshelby’s tensors guarantee that relative orientations, material 

symmetries and the geometry of phases are taken into account. 

• In analogy with the derivation of Eq.(9), one can independently derive the 

equivalent compliance of the core-shell configuration of interest by following a 

similar formalism but this time, under the stress applied conditions and 

prescribed transformation stress (eigenstress) instead of transformation strain 

(eigenstrain). The mathematical operations are straightforward using the 

discussions of  § 7.3.2 - 7.3.4 of the textbook of Nemat-Nasser & Hori [12] and 

are not given here. After some mathematical manipulations, one can easily 

show that thus-calculated equivalent compliance and 
eqC  of Eq.(9) are each 

other’s inverse, which indicates that GEEE satisfies the consistency condition.  



13 

 

• For a statistically homogeneous, two-phase, particulate composite in which 

inclusions are aligned in the matrix, Hashin-Shtrikman estimate of the 

effective stiffness derived by Ponte Castañeda and Willis [31] matches Eq.(12). 

Such a remarkable coincidence is more interesting when one notices that 

Eq.(12) is obtained as an equivalent stiffness estimator for ellipsoidal 

compounds whereas H-S estimate of [31] is derived based on the Hashin-

Shtrikman variational structure developed by [32], and in the context of 

overall effective properties of particulate composites. As expounded by Ponte 

Castañeda and Willis [31], the H-S estimate is the lower (upper) bound of the 

composite effective stiffness should the matrix happen to possess the lowest 

(largest) stiffness moduli.   

 

2.2 Generalization of 2-phase GEEE to n-phase heterogeneities  

For ellipsoidal heterogeneities composed of 2n >  phases, Eq.(9) of GEEE 

obtained for two-phase heterogeneities shall be used n-1 times recursively to obtain 

the effective stiffness of the associated equivalent inhomogeneity. In the recursive 

application of Eq.(9), the underlying assumption is that eqC  of the n-phase 

heterogeneity is independent of the surrounding matrix and that each phase only 

feels the uniform elastic field of its immediate outer neighbor with the last coating 

assumed immersed in a matrix of its own properties. Consequently the strain of each 

phase directly depends on the uniform strain of its outer neighbor. Using these 

simplifying assumptions, one can readily calculate, in a layerwise manner as 

described below, the equivalent stiffness of the multiphase heterogeneity and 

subsequently the overall stiffness of the composite medium, knowing that the entire 

scheme will give rise to sort of numerically acceptable compromise on the final 

results.  

Let an n-phase heterogeneity composed of a core inclusion encapsulated by n-

1 layers, be entirely inserted in a homogeneous matrix, as schematized in Figure 3. 
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The objective is to establish a relationship between the equivalent stiffness of the n-

phase compound and the n-1-phase sub-heterogeneity. To begin with, it is assumed 

that average strains (1)
ε , ( 2 )

ε ,…, ( )n
ε  are respectively induced in phase 1 (core), phase 

2 (1st coating), …, phase n (outermost coating). Corresponding average stresses (1)
σ ,

( 2 )
σ ,…, ( )n

σ  are also considered for each constituting phase. According to the average 

theorems, the average stress and average strain of the entire n-phase heterogeneity 

are defined as follows. 

 

 

Figure 3. Schematic illustration of an n-phase ellipsoidal heterogeneity. Central inclusion is enclosed in n-1 

ellipsoidal coatings that might take dissimilar orientations. 

 

 
( ) ( ) ( ) ( )

1 1 1

;
n n n

j j j j

j j j
n n

j j j

f f f
= = =

= = =∑ ∑ ∑ε ε σ σ εC   (13) 

The under-script n indicates that the related quantity is averaged over phases 1 to n. 

Using this form of representation, 
n
ε  and 

n
σ  are distinguished from the average of 

these quantities over the nth phase alone. Here, the relative volume fraction 

1

n

j j k

k

f V V
=

= ∑  is defined as the ratio of the volume of phase j to the volume of the 

entire heterogeneity. The equivalent stiffness of the n-phase heterogeneity, 
eq

n
C , is 

simply defined as 
eq

nn n
=σ εC  which takes the following form by substitution from 

Eq.(13). 

 
eq eq( ) ( ) ( )

1 1

or
n n

j j j

j j
n nn n

j j

f f
= =

= =∑ ∑σ ε ε εC C C   (14) 
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This last relationship can be decomposed as follows. 

 
1 1

eq( ) ( ) ( ) ( ) ( ) ( )

1 1

n n
j j n n j n

j n j n
n

j j

f f f f
− −

= =

 
+ = + 

 
∑ ∑ε ε ε εC C C   (15) 

This decomposition helps to correlate 
eq

n
C  with 

eq

1n−
C , the equivalent stiffness of the 

sub-heterogeneity composed of phases 1 to n-1. For this sub-heterogeneity, the 

analogue of relationships (13) and (14) read 

 

1
eq( )

11 11
1

1 1
1 1 eq( ) ( ) ( )

( ) ( ) ( )
1

1 11
1 1

;

n
j

j
nn nn

j
n n

n n j j j
j j j j j

nj j j jn
j j

φ

φ φφ φ

−

−− −− =
− −

− −

−= =− = =

  == 
 

= = =


∑

∑ ∑∑ ∑

σ εε ε

ε ε
σ σ ε

C

C C
C

  (16) 

with the relative volume fraction jφ  defined as 
1

1

n

j j k

k

V Vφ
−

=

= ∑ . One can easily show 

that jφ  and jf  are linearly correlated: / (1 )j j nf fφ = − . By using this equality, 

relationships (16) are rewritten as follows, in terms of initial volume fractions jf  

instead of  jφ .  

 

1
eq( )

11 11
1

1 1
1 eq( ) ( ) ( )

( ) ( )
1

1 11
1

1

1
;

1

1

n
j

j
nn nn

jn
n n

n j j j
j j j j

nj j jn
jn

f
f

f f
f

f

−

−− −− =
− −

−

−= =− =

  == − 
 

= =
 −

∑

∑ ∑∑

σ εε ε

ε ε
σ ε

C

C C
C

  (17) 

Simultaneous use of Eqs.(17) and (15) leads to the following equivalent relationships. 

 

( ) ( )

1 1
eq eq( ) ( ) ( ) ( ) ( )

1
1 1

eq eq( ) ( ) ( )

1 1 1
1 1

n n
j n n j n

j n j n
n n

j j

n n n

n n n n
n nn n

f f f f

f f f f

− −

−= =

− − −

 
+ = + 

 

 ⇒ − + = − +
 

∑ ∑ε ε ε ε

ε ε ε ε

C C C

C C C

  (18) 

Definitions (18) are equivalent to the basic definition of 
eq

n
C  presented in (14) and can 

be used instead. The implication of the first equality in (18)1 is that in the expression 

concerning the definition of 
eq

n
C , one can replace all ( )jC , 1,..., 1j n= −  with the 

homogeneous 
eq

1n−
C  without perturbing ( )j

ε , and use this alternative expression for 
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defining 
eq

n
C . The second equality in (18)2 is similar to the first one except that the sum 

1
( )

1

n
j

j

j

f
−

=
∑ ε  is replaced with the corresponding equivalent term ( )

1
1 n

n
f

−
− ε  thus 

rendering the problem to a simple two-phase one. In case the equivalent stiffness 

eq

1n−
C  is available or can be somehow identified, then within a two-phase 

heterogeneity setting in which 
eq

1n−
C  is the stiffness of the core and ( )nC  is the stiffness 

of the coating, Eq.(9) can be used to determine 
eq

n
C . This is the key idea that connects 

eq

n
C  to the exact Eq.(9). Rigorously speaking, instead of treating the n-phase 

heterogeneity in its original form, one may alternatively replace n-1 inner phases 

with one single phase characterized by 
eq

1n−
C  and then in conjunction with ( )nC  

calculate 
eq

n
C  using Eq.(9), no matter how the elastic fields are distributed. 

A similar procedure can be followed to establish analogous relationships 

between 
eq

1n−
C  and 

eq

2n−
C , the equivalent stiffness of the sub-heterogeneity n-2 

composed of phases 1 to n-2. The analogue of Eq.(18)2 is then expressed as follows. 

 ( ) ( )eq eq( 1) ( 1) ( 1)

1 1 1 1
2 12 2

1 1n n n

n n n n
n nn n

φ φ φ φ− − −
− − − −− −− −

 − + = − +
 

ε ε ε εC C C   (19) 

Note that the appropriate definition for relative volume fractions has to be used. 

Likewise, analogous relations can be written down for other sub-heterogeneities in a 

sequential manner until the deepest sub-heterogeneities are reached. 

 
( ) ( )

( ) ( )

eq eq(3) (3) (3)

3 3 3 3
2 32 2

eq(1) (1) (2) (2) (1) (2)

2 2 2 2
2

1 1

1 1

η η η η

ν ν ν ν

 − + = − +
 

 − + = − + 

ε ε ε ε

ε ε ε ε

C C C

C C C

  (20) 

with 3 3 1 2 3( )V V V Vη = + +  and 2 2 1 2( )V V Vν = + . eq

2
C  is calculated from Eq.(9) as the 

starting point. It is then plugged into Eq.(20)1, a two-phase problem whose unknown 

is 
eq

3
C  thus identifying 

eq

3
C  by using Eq.(9) a second time. This recursive, layer-by-
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layer sweeping procedure is then followed until the last layer is reached and 
eq

n
C  is 

identified. In this manner, the equivalent stiffness calculation of an n-phase 

heterogeneity is broken down to n-1 two-phase problems. In other words, in a 

recursive sequence leading to the calculation of 
eq

n
C , the starting point is eq

2
C  and n-1 

layers are swept in a layer-wise fashion within n-1 iterations.  

Remarks:  

• The above mathematical procedure concerning the elastic characterization of 

the equivalent inhomogeneity of any multiphase ellipsoidal heterogeneity by 

using the two-phase formula (9) is consistent with Hill’s statement [33] 

explained in the last paragraph of §3 op. cit. In the context of calculating the 

overall elastic moduli of a generic “cylindrical composite element” made of 

two transversely isotropic phases, Hill asserts that for an n-phase composite 

cylinder, the overall moduli of the innermost two phases are first calculated 

using the two-phase equations. Both phases are then replaced with a single 

element characterized by the calculated overall moduli, which in combination 

with the next shell are viewed as a new two-phase composite cylinder and 

treated using the two-phase formulation. Likewise, the other shells are 

successively swept to update the equivalent inhomogeneity until the 

incorporation of the outermost shell. 

• The above generalization of exact expression (9) from 2-phase to n-phase 

ellipsoidal compounds allows for the analysis of heterogeneities with radially 

graded interphases. In such cases where the elasticity of a layer varies 

continuously across the thickness (i.e. radially), one only has to subdivide the 

layer into sufficiently thin sublayers such that the elasticity of each sublayer is 

almost uniform. Then, using the above layer-wise sweeping procedure and 

without having to use any mathematical integration operation, the equivalent 

stiffness is readily obtained.  
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3. Results and discussion  

To assess the performance of the equivalent inhomogeneity estimators 

discussed hereinabove, several numerical examples of two- and three-phase 

spherical heterogeneities as well as two examples of three-phase spheroidal 

heterogeneities with different stiffness ratios are examined in this section. For two-

level homogenization part, GEEE is separately used in combination with FEM and 

MT techniques. Comparison is particularly made with (n+1)-phase model and ACI 

model, two relevant non Eshelby-type approaches. The assumption of perfect 

bonding between the adjacent components prevails in all examples. For verification 

purposes, H-S bounds of the equivalent bulk and shear moduli of the spherical 

configurations are also calculated. The H-S bounds relations for multiphase spheres 

are given in Appendix C. In the following, “reference values” signifies the results of 

GEEE and modified HNNM, as their outputs are always identical. 

 

3.1. Two-phase spherical heterogeneities 

In the following numerical examples, the Poisson’s ratio of all phases is fixed 

at 0.3, unless otherwise specified, while their Young’s moduli are let vary to create 

stiffness contrasts. Two numerical examples of two-phase core/shell spheres along 

with their effective stiffnesses evaluated using different estimators are summarized 

in Table 1. The core/shell stiffness ratios in both examples are 10-2 and 102. As 

reflected in Table 1, the results of GEEE and modified HNNM match perfectly. Such 

a perfect agreement is also seen in other spherical examples given further below.  

Regarding the performance of HNNM, it can be seen that for neither of 

equivalent moduli of the two-phase examples of Table 1, HNNM gives satisfactory 

results. This estimator exhibits a similar performance in other numerical examples 

too (see Table 2, 3, 4 and Figure 4). Nonetheless, HNNM results always fulfil the 

respective H-S bounds. Naturally, the deviation of equivalent moduli returned by 

HNNM from the reference values is attenuated by lowering the contrast between the 
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elastic moduli of constituting phases. This feature is illustrated and discussed further 

in the following subsection. It is underlined that in all numerical examples and for 

the solution of implicit equations of HNNM and modified HNNM, we ensured that 

the results are not influenced by the numerical techniques employed.   

 

Table 1. Equivalent moduli of two spherical core/shell examples as identified by different estimators. In both 

examples, Poisson’s ratio of the constituting phases is 0.3. In the 1st example, the core is two orders of magnitude 

more compliant than the shell and vice versa in the 2nd example.  

 1st ex.: Ecore/Eshell =10-2  2nd ex.: Ecore/Eshell =102 Remarks 

 K (GPa) μ (GPa) K (GPa) μ (GPa)  

Core  8.33×10-1 3.85×10-1 8.33×101 3.85×101 Diameter = 100 nm 

Shell 8.33×101 3.85×101 8.33×10-1 3.85×10-1 Outer diameter = 120 nm 

  

GEEE 18.97 10.97 2.61 1.44 - 

  

HNNM 3.20 1.99 12.97 8.26 * In disagreement with GEEE 

  

modified HNNM 18.97 10.97 2.61 1.44 In agreement with GEEE 

  

H-S lower bounds 1.79 0.95 2.61 1.44 - 

H-S upper bounds 18.97 10.97 29.47 16.40 - 
* Unless the contrast between core/shell moduli is low, the estimated equivalent moduli by HNNM are 

nowhere close to exact values, hence this estimator is inaccurate and unsatisfactory in general (cf. Figure 4).  

 

3.2. Three-phase spherical and spheroidal heterogeneities  

Evaluating the performance of the aforementioned estimators in determining the 

equivalent moduli of three-phase spherical and spheroidal heterogeneities is 

undertaken in this subsection. In the numerical examples of spherical 

heterogeneities, the Poisson’s ratio of the constituents is fixed at 0.3, while their 

Young’s moduli are let vary. In the third numerical example of Table 2, the inner core 

is more compliant than the intermediate shell, which is in turn more compliant than 

the outer shell. In the fourth numerical example, the inner core is stiffer than the 

intermediate shell, which is stiffer than the outer shell. In both examples, the ratio of 

elastic moduli between two adjacent constituents is 101. Similar to two-phase 

numerical examples of Table 1, GEEE and modified HNNM are always in perfect 

agreement, regardless of the contrast between the phases’ moduli. Regarding the 

performance of HNNM estimator, similar to the previous examples, neither of the 



20 

 

equivalent elastic moduli agree with the corresponding reference values. 

Nonetheless, they lie inside their respective H-S bounds. 

Table 2. Similar to Table 1 but for a three-phase spherical heterogeneity. In both examples, the phases’ Poisson’s 

ratio is fixed at 0.3 while the Young’s moduli differ one order of magnitude from their adjacent phase. In the 3rd 

example, the core is the most compliant phase and vice versa in the 4th example.       

 3rd ex.: Ecore/Eshell(1) =10-1 , 

Eshell(1)/Eshell(2) =10-1 

 4th ex.: Ecore/Eshell(1) =10+1, 

Eshell(1)/Eshell(2) =10+1 

Remarks 

 K (GPa) μ (GPa) K (GPa) μ (GPa)  

Core  8.33×10-1 3.85×10-1 8.33×101 3.85×101 Diameter = 100 nm 

Shell (1) 8.33 3.85 8.33 3.85 outer diameter = 120 nm 

Shell (2) 8.33×101 3.85×101 8.33×10-1 3.85×10-1 outer diameter = 140 nm 

  

GEEE 18.04 10.35 2.78 1.52 - 

  

HNNM 6.84 4.09 6.59 3.94 * In disagreement with GEEE 

  

modified HNNM  18.04 10.35 2.78 1.52 In agreement with GEEE 

  

H-S lower bounds 2.76 1.49 2.72 1.46 - 

H-S upper bounds 19.17 10.69 18.83 10.51 - 
* : See footnote of Table 1. 

 

To probe deeper into our analysis, the numerical examples of Table 3 and 4 are 

presented, which concern a composite heterogeneity made of three homothetic, 

concentric spheroids. The similar diameters of the spheroids correspond those of the 

examples of Table 2. The aspect ratio of the spheroids, defined as the ratio of 

dissimilar axis to similar ones, is chosen 5. The state of the Young’s moduli of the 

example of Table 3 and that of Table 4 is identical with, respectively, the 3rd and 4th 

example of Table 2. For performance evaluation purposes, the Poisson’s ratios of the 

phases are chosen different than 0.3. The hypothetical Poisson’s ratios 0.05, 0.2 and 

0.45 are respectively assigned to the core, the first and second coating. To calculate 

Eshelby’s tensors, we used the analytical relationships derived by Withers et al. [34] 

for spheroidal geometries with reference media no weaker than transverse isotropy 

such that the dissimilar axis of the spheroid, viz. z- or 3-axis, is normal to the plane of 

isotropy. Note that the final symmetry of the equivalent stiffnesses is transverse 

isotropy. As a common practice, instead of working with 11C  and 12C , we opt for 12K  

and 12µ , the plane bulk and shear moduli, as two out of five independent elastic 
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constants of equivalent stiffnesses. It can be seen that again modified HNNM returns 

the same results that GEEE does and HNNM shows deviation from reference values.    

Table 3. Similar to 3rd example of Table 2 but for concentric, homothetic spheroids with aspect ratio 5. 

Hypothetical Poisson’s ratios of core, shell(1) and shell(2) are respectively, 0.05, 0.2 and 0.45.  

 5th ex.: Ecore/Eshell(1) =10-1 , Eshell(1)/Eshell(2) =10-1 Remarks 

 
C13 

(GPa) 

C33 

(GPa) 

C44 

(GPa) 

K12 = 

(C11+C12)/2 

(GPa) 

μ12 = C66 = 

(C11-C12)/2  

(GPa) 

 

Core  0.053 1.01 0.48 0.53 0.48 similar diameters = 100 nm 

Shell (1)  2.78 11.11 4.17 6.94 4.17 outer similar diameters = 120 nm 

Shell (2) 310.34 379.31 34.48 344.83 34.48 outer similar diameters = 140 nm 

 

GEEE 17.90 52.55 9.75 21.54 8.72 - 

 

HNNM 3.13 31.47 4.76 4.54 2.61 * In disagreement with GEEE 

 

modified HNNM  17.90 52.55 9.75 21.54 8.72 In agreement with GEEE 

 

Table 4. Similar to 4th example of Table 2 but for concentric, homothetic spheroids with aspect ratio 5. 

Hypothetical Poisson’s ratios of core, shell(1) and shell(2) are respectively, 0.05, 0.2 and 0.45. 

 6th ex.: Ecore/Eshell(1) =10+1 , Eshell(1)/Eshell(2) =10+1 Remarks 

 
C13 

(GPa) 

C33 

(GPa) 

C44 

(GPa) 

K12 = 

(C11+C12)/2 

(GPa) 

μ12 = C66 = 

(C11-C12)/2  

(GPa) 

 

Core  5.29 100.53 47.62 52.91 47.62 similar diameters = 100 nm 

Shell (1)  2.78 11.11 4.17 6.94 4.17 outer similar diameters = 120 nm 

Shell (2) 3.10 3.79 0.34 3.45 0.34 outer similar diameters = 140 nm 

 

GEEE 5.24 14.70 1.44 6.93 1.29 - 

 

HNNM 4.12 30.73 4.80 7.96 2.74 * In disagreement with GEEE 

 

modified HNNM  5.24 14.70 1.44 6.93 1.29 In agreement with GEEE 

 

To complete our appraisal of the performance of the above estimators, the 

normalized equivalent moduli of a three-phase spherical heterogeneity taking a wide 

range of stiffness ratios are plotted in Figure 4. We opted for constant radii and 

Poisson’s ratios, similar to the numerical examples of Table 2. Unlike the example of  
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Figure 4 Log-Log plots of normalized (A) Keq and (B) µeq returned by different estimators for a three-phase spherical 

configuration. The geometry of the heterogeneity is identical with the examples of Table 2 and remains unchanged. The 

abscissa of both figures is the ratio of the Young’s moduli of the phases defined as α = Ecore/Eshell(2) = Eshell(2)/ Eshell(1). In 

general, the less successful estimator is HNNM.  

Table 2, the modulus ratio between the phases, 
core shell(2) shell(2) shell(1)E E E Eα = = , is 

defined such that the monotony of the elasticity contrast between the phases from the 

core to the outer shell is perturbed. This helps to study the relative position of the 

(A) 

(B) 
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equivalent elastic moduli and their corresponding H-S bounds. α  ratio is let vary 

continuously from 10-2 to 10+2 and then the equivalent bulk and shear moduli are 

estimated using the above estimators.  

Figure 4 confirms that modified HNNM and GEEE results coincide over the 

entire range of elasticity contrast, in agreement with the results of Table 1-4, . In two 

forthcoming papers discussing cylindrical and platelet compounds, a similar 

agreement between these two estimators is demonstrated. The intuitive explanation 

for this observation lies most likely in the idea of “multiple reference media” that 

was introduced by Aboutajeddine and Neale [35] for the double-inclusion problem, 

and employed later on by Dinzart et al. [16] for the multi-inclusion problem. 

Likewise, in GEEE, after each intermediate equivalent stiffness calculation, the 

reference medium for calculating the polarization/Eshelby tensors is updated. This 

characteristic feature is common between both estimators and helps to have a better 

understanding of the complete agreement between GEEE and modified HNNM for a 

wide range of numerical examples we tested. Unlike GEEE, modified HNNM has a 

system of coupled, nonlinear, tensor equations. This is a major drawback of modified 

HNNM which significantly limits its practical applications. 

In relation to the performance of HNNM estimator, similar to Table 1-4, it fails 

to match reference values. Nonetheless, the calculated moduli always meet the 

respective H-S bounds. A similar performance is exhibited by HNNM in treating 

composite cylinders, as will be discussed in a follow-up study. However, for weak 

contrasts between the stiffnesses, say ( )0.5 Log 0.5α− < < , HNNM results are in good 

agreement with reference values.   

In the examples of Table 1 and Table 2, there is a clear agreement between the 

reference equivalent moduli and one of their corresponding H-S bounds. Such an 

agreement, however, does no longer exist in the example of Figure 4. Examination of a 

large number of numerical examples of multiphase spherical compounds (including 

those not given here) have led us to the following conjecture regarding the state of 
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reference equivalent moduli with respect to their corresponding H-S bounds: when 

the contrast between the bulk and shear moduli of the phases changes monotonically 

(decreasing or increasing) from the core to the outmost shell, the reference equivalent moduli 

agree with either of H-S bounds. For two-phase compounds, the bulk and shear moduli 

of one of phases is always greater than its counterpart in the other phase, except for 

the trivial case of identical moduli. For this class of heterogeneities, a complete 

agreement between the reference moduli and one of the H-S bounds always exists. 

For other multiphase spherical particles, when the bulk and shear moduli change 

radially monotonically, the reference equivalent moduli continue to be fairly close to 

one of the H-S bounds. Numerical examples of Table 2 belong to this class of core-

shell heterogeneities. However, if the monotonic change in stiffness from the core to 

the outmost layer is perturbed, as is the case of the numerical example of Figure 4, 

except for rather weak contrasts, the reference moduli are no more close to H-S 

bounds (Note the Log-Log scale of the plots). The mathematical proof of this 

conclusion being beyond our capability, we call it a conjecture. 

 

3.3. Comparison with (n+1)-phase model and ACI model  

To assess the validity of our proposed estimator, we compare it with two 

relevant non Eshelby-type models that are specifically developed for studying 

multiphase spherical heterogeneities. These two estimators are (n+1)-phase model 

[18] and Annular Coated Inclusion (ACI) model [20].  

In the comparison made with (n+1)-phase model, the effective elastic moduli 

of a three-phase composite made of a host matrix containing two-phase spherical 

inclusions arranged in a cubic array of infinite extent are numerically evaluated 

using finite element method for several volume fractions. From among different 

possible combinations of elasticity contrasts between the phases, we choose a case 

where the coating is stiffer than the matrix, which is in turn stiffer than the core. 
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coating 100GPaE = , m 80GPaE =  and core 1 GPaE =  are Young’s moduli chosen for the 

phases and their Poisson’s ratio is 0.3. Three types of analyses have been carried out:  

• Type A) where each phase is modeled using its proper dimensions, meshed 

and FE analyzed; the outputs of this Type are considered as reference values.  

• Type B) where the core-shell compound is replaced with the equivalent 

inhomogeneity determined from (n+1)-phase model, before meshing and FE 

analysis.  

• Type C) where the core-shell compound is replaced with the equivalent 

inhomogeneity determined from our developed GEEE, before meshing and FE 

analysis. 

For different volume fractions, the corresponding numerical results of each type of 

analysis are tabulated in Table 5. It can be immediately seen that both Types of two-

level homogenization of B, C give very close results to corresponding reference 

values, namely Type A, with a slight advantage in favor of Type C results, which is 

based on GEEE, since Dev_B < Dev_C.  

Table 5. Comparison of hybrid analyses of GEEE/FE and (n+1)-phase/FE with reference FE results for three-phase composites 

filled with coated spherical inclusions arranged in cubic arrays. In each case, core and coating share the same volume 

fraction.  

Effective 

moduli 

Type A Type B Type C Dev_B =100× 

|A-B|/A 

Dev_C =100× 

|A-C|/A 
feq 

C11 (GPa) 98.19 97.83 98.16 0.37 0.031  

feq = 0.1 C12 (GPa) 40.98 41.113 40.94 0.33 0.10 

C66 (GPa) 28.46 28.213 28.495 0.89 0.11 
 

C11 (GPa) 89.92 89.15 89.74 0.86 0.20  

feq = 0.2 C12 (GPa) 36.392 36.67 36.36 0.77 0.09 

C66 (GPa) 26.302 25.81 26.35 1.83 0.2 
 

C11 (GPa) 82.54 81.23 82.05 1.59 0.59 

feq = 0.3 C12 (GPa) 32.30 32.75 32.32 1.4 0.06 

C66 (GPa) 24.24 23.56 24.32 2.78 0.34 
 

C11 (GPa) 75.92 73.90 74.96 2.66 1.27  

feq = 0.4 C12 (GPa) 28.67 29.30 28.77 2.22 0.35 

C66 (GPa) 22.28 21.47 22.43 3.63 0.65 
 

C11 (GPa) 69.76 66.78 68.09 4.26 2.40  

feq = 0.5 C12 (GPa) 25.35 26.16 25.53 3.19 0.71 

C66 (GPa) 20.36 19.49 20.62 4.28 1.27 
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The FEM calculations were performed using ABAQUS software. As illustrated 

in Figure 5, the representative unit cell (RUC) of the cubic array was discretized with 

10-node tetrahedral solid quadratic elements, whose characteristic size was 2% of the 

RUC edge length. We took advantage of the symmetric features of the RUC to model 

1/8 of it and ended up with 94529 elements (133780 nodes). In the reference model 

associated with Type A analyses illustrated in Figure 5a, the coating is discretized 

with four rows of elements. In two other FE models associated with two-level 

homogenization of Type B, C, the distribution of elastic fields are qualitatively 

similar in agreement with the quantitative results of Table 5. Knowing that the elastic 

fields in none of the phases are uniform, contour plots of stress field clearly show 

that this nonuniformity is more pronounced in the equivalent inhomogeneity than in 

the core phase of the reference model.  

 

   

(a) (b) (c) 

Figure 5. Contour plots of the stress distribution inside 1/8 of the RUCs associated with FE analyses of Table 5 for feq=0.3.  

 

In the comparison made with ACI model, which is a relevant model developed in 

[20] for isotropic composites reinforced with spherical core-shell inclusions, a two-

level homogenization of GEEE/MT is carried out. What distinguishes ACI model is 

the way the localization tensor of fillers is calculated by accounting for the presence 

of coating around each inclusion immersed in the binding matrix. According to the 

authors of ACI, there is a need for such a model as the commonly used Mori-Tanaka 

(MT) method with the approximated Eshelby-based localization tensor does not 

yield satisfactory results, especially for soft coatings. The numerical examples of 
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Fig.4b in [20] are re-examined here. As illustrated in Figure 5, the two-level scheme of 

GEEE/MT yields satisfactorily close enough results to accurate ACI values, in both 

cases of relative core-shell volume fractions considered, whereas the error of direct 

MT analysis turns out to be far larger. Note that ACI is an estimator that is 

specifically developed for this configuration and is presented to be more accurate 

than MT method for associated composite systems, as claimed by its authors. The 

implementation of ACI however is not as simple as the hybrid GEEE/MT. With its 

complementary analogue developed for three-phase composites reinforced with long 

cylindrical coated fillers, ACI is confined to these two configurations. Additionally, 

although its implementation is relatively simpler for spherical inclusions, it is much 

more complicated for the cylindrical fillers. On the other hand, the results of 

GEEE/MT can be used insightfully as it gives acceptable predictions compared to 

approaches such as direct MT, especially when we consider the simplicity and 

versatility of GEEE, which outweighs the small error that its assumptions impart into 

the effective properties calculation.    

 

 

Figure 6. Normalized effective elastic modulus of a three-phase isotropic composite containing spherical coated inclusions. 

The numerical example of Fig.4b in [20]  is re-examined using ACI model op. cit. and the two-level GEEE/MT. 
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4. Summary and conclusion  

An efficient, general and explicit Eshelby-type estimator, called GEEE, for the 

equivalent stiffness calculation of multiphase ellipsoidal heterogeneities has been 

developed and evaluated. The popular configuration of spherical and spheroidal 

heterogeneities made of isotropic phases has been chosen for numerical analysis and 

performance evaluation purposes. To this end, two other Eshelby-type estimators, 

namely HNNM and modified HNNM, together with the Hashin-Shtrikman bounds 

have also been implemented. Examination of several numerical examples and related 

plots of equivalent elastic moduli over a wide range of stiffness ratios of multiphase 

spherical heterogeneities revealed that: 

- GEEE, as an Eshelby-type estimator like modified HNNM, is flexible enough 

to be applied to a wide range of geometries. Unlike modified HNNM, GEEE 

consists of an explicit and linear tensor equation that is recursively run. 

Implementation of this estimator requires elementary matrix operations 

together with the appropriate form of Eshelby’s tensor.  

- The less successful estimator turns out to be HNNM. Implementation of this 

estimator requires numerical techniques for finding the roots of the associated 

nonlinear tensor equation (cf. Appendix A). Unless the contrast between the 

constituents’ stiffnesses is low, a huge difference between the results of 

HNNM estimator and the corresponding reference values is observed. 

- Generalization of GEEE to multiphase ellipsoidal heterogeneities leads to a 

direct framework for the characterization of heterogeneities in which the 

elasticity of one or more coating(s) is radially graded. In this event, one needs 

to subdivide the inhomogeneous coating(s) into subshells such that the elastic 

properties are nearly uniform across each subshell. Next, an appropriate 

estimator such as GEEE is used for finding the equivalent elasticity of the 

entire heterogeneity by starting from the innermost phases and sweeping each 
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layer/subshell. This analysis may be redone with a finer subdivision of the 

radially graded coating(s) to ensure the adequate accuracy of the estimated 

equivalent elastic moduli.  

- Breaking the homogenization problem into two or multiple levels usually 

requires simplifying assumptions, which normally adds some error into the 

results. With regard to hybrid analyses of GEEE/FE and GEEE/MT, the 

performance of the proposed estimator has been quite satisfactory and the 

deviation from the reference values has been sufficiently small.  
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Appendix A   

In the same work that Hori and Nemat-Nasser [15] proposed the well-known 

Double-Inclusion Model, they presented its generalization to multilayer ellipsoidal 

inclusions by following a similar procedure. Relations (5.1) to (5.5) in [15] are 

exploited here to find the adapted HNNM formulation to very long, multiphase 

cylinders. The consistency conditions for a multilayer inclusion composed of N 

phases are expressed as follows. 

 

( ) ( )
( ) ( )

( ) ( )

1 1 1

2 2 2

p * (1) p

p * (2) p

p * ( ) p

N N N

N

∞ ∞

Ω Ω Ω

∞ ∞

Γ Γ Γ

∞ ∞

Γ Γ Γ

 + − = +


 + − = +



 + − = +


M

C C

C C

C C

ε ε ε ε ε

ε ε ε ε ε

ε ε ε ε ε

  (A.1) 

For convenience, the same symbols and notations employed in [15] are used here. To 

recapitulate, the elasticity of the reference medium and that of phase ‘i’ are denoted 

by C  and ( )iC , respectively; 1Ω  and i
Γ  represent the region of space occupied by the 

innermost inclusion and phase ‘i’, respectively; 
1

*

/ iΩ Γ
ε  and 

1

p

/ iΩ Γ
ε  are, 

respectively, the average transformation strain over 1 /
i

Ω Γ  and the average 

perturbation strain over 1 /
i

Ω Γ . Remember that the angle brackets  used in [15] 

has the same function as the overbar sign ‘‾’ we used in §2.2. Finally, ∞ε  stands for 

the far field strain. Rearranging the system of equations (A.1) yields 
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35 

 

Additionally, when the Eshelby tensor of all regions are identical owing to their 

homothety and confocality, the relationships between the average transformation 

and perturbation strains of each phase are expressed as follows. 
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Substitution from (A.3) into (A.2) results into following expressions for average 

transformation strains. 
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The coefficients behind ∞ε  in the above expressions, hereafter denoted by ( )iH , are 

used in the following equation estimating the effective elasticity of the multilayer 

inclusion, effC . 

 ( ) ( ) 1eff ( )

R R R

1

where
N

i

i

i

f
−

=

 = + − + =  ∑C C I S I H I SH H H   (A.5) 

In the above equation, i
f  is the volume fraction of phase ‘i’ relative to the entire 

multilayer heterogeneity, and trivially 
1

1
N

i

i

f
=

=∑ . As a plausible choice of the reference 

medium which is also suggested in [15], the elasticity of the host medium is set equal 

to that of the entire heterogeneity, i.e. eff =C C . Simultaneous solution of this equality 

and Eq.(A.5) leads to the following equation which is analogue of Eq.(4.6a) in [15]. 
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Given that Eshelby’s tensor corresponds the multiplication of polarization tensor, P , 

and the reference stiffness tensor, this last equation can be further simplified as 

follows. 

 ( ) ( ) ( ){ }1
( ) ( )1
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i iN
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  (A.7) 

The above equation, referred to as HNNM equation in this work, is the simplified 

representation of HNNM description of the effective elasticity of multilayer 

inclusions where all phases are coaxial and have nearly identical Eshelby tensors. 

Accordingly, this relationship suits well concentric spheroidal configurations treated 

in this study. This equation obviously applies to any multiphase ellipsoidal 

heterogeneity in which all regions share the same Eshelby’s tensor such as multilayer 

spherical particles. From the numerical point of view, Eq.(A.7) is preferable to 

Eq.(A.6) since the former is singular at all ( )iC  whereas in the latter such singularities 

are removed. Properly speaking, ( )i ≠C C  which is exploited here, is hypothesized by 

Hori and Nemat-Nasser [15] during the derivation procedure. 
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Appendix B  

Similar to Appendix A, the adapted form of modified HNNM for multiphase 

inclusions made of concentric phases with identical Eshelby’s tensors is formulated. 

The following arguments are consistent with the relationships presented in [16] 

which are essentially an extension to the formalism of Hori and Nemat-Nasser [15] 

and also the improvement proposed by Aboutajeddine & Neale [35]. In this 

appendix, ‘D-S-B:’ before any equation number stands for Dinzart, Sabar & Berbenni 

[16] and refers to the equation from that reference. According to (D-S-B: 40), the 

effective stiffness of an N-phase multi-coating reinforcement embedded in a medium 

with the boundary conditions of uniform strain at infinity is described as follows  
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Similar to the numbering convention of HNNM, the outermost phase is numbered 

‘N’ and the core phase is numbered ‘1’. Substitution of ( / eff)KA  into the expression of 

(eff)C  gives the following simpler form of representation for the effective stiffness. 

 ( ){ }
1

( / ) ( /eff)(eff) ( ) ( ) ( )
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Here, J
Ω  denotes the closed region of space delineated by the outer boundary of 

phase J. Fourth-order strain concentration tensors, A , have the following definitions. 
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Although the last relationship is not explicitly given in [16] it can be easily deduced 

from the definition of strain concentration tensors. Note that tensor multiplication is 
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not, in general, commutative and the above order of multiplication of concentration 

tensors has to be respected. Additionally, ( / )L LΩ Ω =A I  and 

 1

1 1
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1 1 1 1
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Note that the expression for ( / )K NΩ Ω∆A  in (D-S-B: 44) is not consistent with the 

corresponding one in (D-S-B: 35). From (D-S-B: 35), it can be easily shown that 
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which means that the term ‘ K
f ’ in the denominator of (D-S-B: 44) is superfluous. 

Similarly, ‘ K
f ’ in the denominator of the expression immediately after (D-S-B: 41) is 

superfluous. Next, the fourth-order tensor 
( 1)

1

J

J

+
+P  is expressed as 
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where ( )( ) ( 1)

1 ,J J

J J

Ω +
+ = ΩP P C  denotes the polarization tensor of region J

Ω  with ( 1)J +C  

being its reference stiffness. Obviously, 
( )

1
J

J

Ω
+P  is related to Eshelby’s tensor as follows. 

 ( ) 1
( ) ( 1) ( 1)

1 ( , )J J J

J J

−Ω + +
+ = ΩP S C C   (B.7) 

Likewise, ( )( ) (eff )

eff ,N

N

Ω = ΩP P C . Having defined all the variables required for 

estimating effC , one can adapt the formulation to the specific configuration of 

multiphase reinforcements made of concentric and similar ellipsoidal phases in the 

sense that their Eshelby’s tensors are identical. This constraint simplifies Eq.(B.6) in 

the following way 

 1( ) ( ) ( )( 1)

1 1 1 1
J J JJ

J J J J
+Ω Ω Ω+

+ + + += ⇒ =P P P P   (B.8) 

Thus, the index of region Ω  can be removed as all regions are similar and no 

distinction between the regions is required. It can be seen that, contrary to HNNM 

formulation, the constraint of similarity of the ellipsoidal regions allows no further 
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simplification to the above system of equations. As a simple and straightforward 

verification, for a two-phase heterogeneity, called ‘double-inclusion’ in [15] and [35], 

the expression of (eff)C  is obtained as follows after some mathematical manipulations  

 ( ) ( ){ } 1
1

(DI) (2) (DI) (2) (eff) (1) (2) (DI) (DI)

1 eff 2 2 1 eff
f f f

−−  = + + − − + +    
C C I P C C C C P P   (B.9) 

which is consistent with the expression derived by Aboutajeddine & Neale [35].   
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Appendix C  

In this appendix, Hashin-Shtrikman bounds for the equivalent moduli of n-phase 

spherical particles are presented. The following development is built on certain 

equations derived in [36] and [37]. From the former, the general equation defining H-

S bounds on the stiffness components of a general n-phase composite system in 

which neither of phases can be identified as the comparison (reference) phase is 

given by  

 ( ) ( )
1

1 1
B ( ) c ( ) c ( )

1 1

n n
i i i

i i

i i

f f

−
− −

= =

    = + − + −     
∑ ∑C= I C= C= P I C= C= P C=   (C.1) 

This equation is valid only if the shape and distribution polarization tensors are 

identical, meaning that s d= =P P P . This is obviously the case of an isotropic, matrix-

based composite system containing n-1 types of isotropic, spherical particles with 

randomly uniform distribution. To determine the lower bound B−C , one needs to 

build the comparison stiffness, cC , by choosing the minimal value of each 

component in ( )iC . Analogously, the upper bound B+C , is constructed by choosing 

the maximal value of each component in ( )iC  to build the associated cC . Note that 

since the comparison stiffness is constructed in a componentwise manner, the as-

built cC  might correspond to none of ( )iC . Moreover, in deriving Eq.(C.1), no 

constraint has been placed on the relative position of constituents, which means that 

it equally applies to the equivalent stiffness of n-phase, isotropic, spherical 

heterogeneities made up of isotropic, spherical phases.  

Parnell in [37] employed an efficient convention of short-hand notation in 

representing fourth-order, isotropic tensors, which is exploited here because in 

applying Eq.(C.1) to n-phase spherical heterogeneity problem under study, all 

fourth-order tensors are isotropic. Their system of notation simplifies to a great 

extent the mathematical manipulations involved, as demonstrated in the following. 

According to this system of notation (cf. Section 5 and Appendix C of [37]), I  is 
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decomposed into deviatoric, K , and volumetric, J , parts to form an orthonormal 

tensor basis.  

 ( ) ( )1 1
, ,

2 3
ijkl ik jl il jk ijkl ij kl= + = = −δ δ δ δ δ δI J K I J   (C.2) 

It can be shown that the adopted decomposition has the following properties.  

 , ,= = = = 0JJ J KK K KJ JK   (C.3) 

In this orthonormal basis, the fourth-order tensors of interest can be represented in 

the following short-hand form.  
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With this form of representation, the summation, multiplication and inversion 

operations between fourth-order tensors are performed componentwise. Substitution 

from (C.4) into Eq.(C.1) yields  
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  (C.5) 

Further simplification gives  
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  (C.6) 

which finally leads to following scalar equations representing H-S bounds of the 

equivalent bulk and shear moduli of an n-phase spherical heterogeneity.   
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  (C.7) 

The above development is more general than the bounds derived in [38], in that the 

comparison material is not required to correspond one of the constituents.  

 

 




