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Long Horizon Predictability:

An Asset Allocation Perspective.∗

Abraham Lioui† Patrice Poncet‡

24th April 2019

Abstract

Consider investors with a 10-year investment horizon who rebalance their portfolio at the
monthly frequency. Should they use information from monthly returns, 10-year returns or
intermediate returns to build their optimal portfolios? When stock and bond returns are
i.i.d., the frequency of returns is not relevant. However, when they are predictable, it is.
Using a new estimation approach and before correcting for overlapping observations, we show
that the positive impact of predictability on investors’ welfare is stronger for longer prediction
horizons and the more so as the investment horizon enlarges. This welfare improvement is
achieved by adopting realistic portfolio positions. When we correct for the persistence in the
predictive regression residuals due to overlapping observations, our results are preserved for
short to medium investment horizons although the added value of long horizon predictability
is reduced. Our results are robust to various checks and also hold out-of-sample. Overall,
short to medium term investors should exploit long horizon predictability even though they
rebalance their portfolios at high frequency.
JEL classification : E43, E52, G11, G12.
Keywords: finance, dynamic portfolio decision, predictive regression, long horizon predict-
ability, inter-temporal hedging.
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1 Introduction

In the wake of the pioneering work by Fama and French (1988), Campbell and Shiller (1988) and

Stambaugh (1999), many researchers believe and use what constitutes the ”academic conventional

wisdom” of weak predictability of financial asset returns at short horizons and stronger predictab-

ility at long ones.1 Long horizon predictability (hereafter LHP) seems convincing, as the adjusted

R2s of the predictive regressions increase considerably with the length of the return period. The

key econometric argument of LHP defenders in view of this evidence is that using long horizon

returns reduces the noise in asset returns. Rossi et al. (2013), computing a new standard error for

predictive regressions that does not impose the null hypothesis that equity returns are unpredict-

able, even showed that LHP is stronger than previously acknowledged. Adopting an alternative

methodology, Wang et al. (2018) reached the same conclusion.

Support for this view, however, was not universal. Some authors claimed that the improvement

in R2s is largely spurious, the main culprits being the persistence in variables generated by the use

of overlapping observations and the persistence in predictors. When persistence is cleansed away,

LHP could at times be more delusive than short horizon predictability. Boudoukh et al. (2008)

even argued that stock return LHP must be discarded as a myth. Ross (2005) used an asset pricing

model to set up bounds on predictability as an alternative way to convince that the observed LHP

is spurious. Moreno and Olmeda (2007) claimed that predictability is not exploitable for trading

purposes if transaction costs are taken into account. Fama and French (2018) documented that

the distribution of continuously compounded long-term returns tend to be normally distributed.

Yet, recent research in favor of LHP contests these findings. Carmona et al. (2012) find that

executive stock options are not fairly valued unless stock return predictability is accounted for.

Huang and Zhou (2017) and to a lesser extent Poti (2018) show that the bounds offered by Ross

(2005) are all violated in the data since they rest on an asset pricing model which in general

performs poorly. Madan and Schoutens (2018) flatly reject Fama and French’s (2018) findings of

normally distributed long-run returns.

More significantly, a new stream of research argues that predictors operate at different fre-

quencies or ”scales”, leading to scale-specific predictability.2 For instance, Fuster et al. (2010) and

Bianchi and Tamoni (2017) show that the hump-shaped dynamics in many predictors can hardly

be reconciled with low-order models. Dew-Becker and Giglio (2016) derive scale-specific risk prices

that reflect the prices of risk of consumption fluctuations at various frequencies to assess whether

short or long term risks are priced in the equity market. Favero et al. (2017) use various predictor-

based variance bounds of the pricing kernel to discriminate leading classes of asset pricing models.

Similarly, Bandi et al. (2018) provide strong evidence that different predictors exhibit explanatory

1See for instance the standard textbooks by Campbell et al. (1997) and Cochrane (2005), or the surveys by
Barberis and Thaler (2003) and Koijen and Van Nieuwerburgh (2011) among many others.

2A pioneering paper by Calvet and Fisher (2007) had already shown that the dividend yield dynamics is driven
by shocks with heterogeneous persistence levels, and investigated their impact on asset return predictability.
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power at different frequencies. All this evidence implies that standard predictive systems are too

restrictive return generating processes and that a whole range of frequency-specific expected re-

turns can be exploited. Two main consequences follow: i) using long-term projection of short-term

returns in lieu of genuine long-term returns is not compatible with the data, which justifies LHP,

and ii) there are neither theoretical nor empirical reasons why the R2 of predictive regressions

should increase monotonically with the prediction horizon. Our contribution is to explore the

implications of these two findings for optimal asset allocation.

The debate in the literature cited above thus has mostly centered on estimation and inference

issues, not on applications to actual asset allocation. Regarding the latter, arguing that rational

investors should use parameters estimated from the predictive regression yielding the best goodness-

of-fit, independently of their portfolio rebalancing horizon misses a crucial point. First, in a

static framework, the individual having a one-month investment horizon will obviously choose

the parameters derived from a one-month return period, even though the (say) four-year return

period leads to a much larger R2. Second, in a dynamic setting, should a ten-year investment

horizon investor who rebalances her portfolio very frequently adopt the one-month prediction

horizon or, say, the ten-year one? The answer is not clear: If different return periods in fact

lead to different estimated parameters, as the recent literature on estimation and inference issues

cited above demonstrates, a model misspecification problem arises when the investor’s prediction

horizon, on the one hand, and her decision interval and/or investment horizon, on the other hand,

do not coincide. Therefore, arbitrarily adopting a given return period to estimate the parameters

of the data generating process of the traded assets’ returns may result in substantial welfare losses.

Given the practical importance of this issue, the literature on exploiting LHP for portfolio

allocation purposes is surprisingly scant.3 In particular, the portfolio and welfare implications of

the evidence that estimates obtained using LHP differ markedly from those obtained from short

return periods have not been addressed. As a typical example, Brennan and Xia (2010) study the

impact of predictability on dynamic asset allocation, but their estimates for long horizon returns

are mechanically inferred from those obtained with short term (one month) returns and then differ

from those directly found in the data. There is by construction no additional information contained

in their long horizon returns. A rare counter-example is Carroll et al. (2017) who find that there

is a trade-off in portfolio optimization between forecasting horizon, rebalancing frequency and

transaction costs due to the time-varying nature of correlation between asset returns.

What can a long term investor really achieve by exploiting LHP thus remains an open issue on

which this paper intends to shed light. Our main objective is to investigate the welfare implications

of the differences between short- and long-horizon predictability. The estimation procedure we

adopt sharply differs from what is offered in the asset allocation literature. The standard method

consists in estimating the parameters of AR(1) processes for the predictors and one-period (h = 1)

asset excess returns, and then deriving the dynamics of the h-period excess returns (h integer and

3For reviews, see Brandt (2010), Wachter (2010) and Campbell (2017).
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≥ 2) from forward recursion of the one-period return process. Consequently, the parameters for

the predictors and the asset excess returns are known, deterministic functions of the parameters of

the initial processes and no information is gained by varying the prediction horizon. The investor’s

dynamic portfolio strategy then is left unaffected by a change in that horizon. In sharp contrast,

we use long horizon returns that are the truly observed (realized) ones and estimate the parameters

of the data generating processes with these realized returns. Our recommendation to the long-term

investor is to adopt the prediction horizon (h) that yields the highest expected utility of wealth for

a given investment horizon (T ). The return period thus optimally selected will not in general be

the one for which the R2 is maximum, as what counts for the investor is the portfolio’s risk-return

reward (such as the Sharpe ratio), not the R2.

Our economic setting, estimation procedures and main findings can be summarized as follows.

The investor is endowed with CRRA utility and operates in an arbitrage-free, frictionless but

incomplete market, in which trading in a stock index, a constant-maturity long term bond and a

locally riskless asset takes place continuously. In the empirical analysis, we use US monthly data

for the 76-year period spanning 1942:M1 to 2016:M12. We adopt the standard assumption that

the stock index and long term bond excess returns are predicted by the dividend yield and the

default spread. The prediction horizon h spans one month to ten years, and the investor’s horizon

T is varied from one month to thirty years.

For each individual prediction horizon h, we derive the continuous time parameters, using

OLS to estimate the discretized processes. Our first main contribution is to provide renewed and

convincing evidence that the estimation procedure has a strong impact on the parameters of the

dynamic processes involved (see the recent papers by Bianchi and Tamoni (2017), Dew-Becker

and Giglio (2016), Favero et al. (2017), and Bandi et al. (2018)). Estimating the parameters of

the predictive regressions and of the stock and bond excess returns for long prediction horizons

taken individually rather than mechanically inferring them from those obtained from the one-

period horizon leads to significantly different loadings on the dividend yield and the default spread,

regression R2s, and conditional and unconditional volatilities of the stock and bond excess returns.

The latter conform more closely to those actually observed since they are estimated from true long

period returns.

We then assess the potential value added by LHP. We compare, for each investment horizon T ,

the optimal portfolio’s certainty equivalent (CE) rates of return obtained by exploiting predictab-

ility at various horizons. Our second main contribution is to show that using a prediction horizon

different from one month i) leads to larger CE rates, albeit ii) to a markedly smaller extent than

could be anticipated from the predictive regression R2s. The investor’s welfare tends to increase

with the length of the prediction period, for all investment horizons, although the relationship

is not monotonic. We also show that ignoring the time variability in excess returns decreases

substantially the long-term investors’ welfare.

We then investigate whether these results survive the correction for overlapping observations.
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As a third main contribution, we show that a drastic correction, borrowed from Valkanov (2003),

for the persistence in the predictive regression residuals created by overlapping data fairly confirms

previous findings. In particular, the estimated stock and bond (conditional) volatilities decrease.

Although, when comparing the certainty equivalents for long (beyond 10 years) investment ho-

rizons, the added value of LHP disappears, it is still strongly present for all short and medium

investment horizons (up to 3 years) for all prediction horizons, and for medium term (from 5 to

7 years) investors for medium to long (at and beyond 5 years) prediction horizons. Therefore, in

sample, the economic value added by LHP is not an artefact due to overlapping observations.

In the final step, we perform an analysis for prediction and investment horizons up to five years

to check whether our main in-sample results survive out of sample. For prediction horizons up to

four years, our tests confirm that LHP increases investors’ welfare.

The remainder of the paper is structured as follows. Section 2 describes the economy and

derives the individual’s optimal dynamic portfolio strategy. Section 3 details our estimation pro-

cedures. Section 4 presents the data and provides the estimated parameters for the dynamics of the

predictors and the stock and bond excess returns estimated by OLS. Section 5 analyzes the impact

of stock and bond return predictability on the investor’s optimal strategy, portfolio composition

and welfare. Section 6 corrects for overlapping observations and compares the results with those

obtained in Section 4. In Section 7 we run an out-of-sample analysis. Section 8 concludes. To save

space, all technical derivations and proofs are left to the companion Internet Appendix, which also

provides additional analytical and empirical results.

2 The dynamic asset allocation model

We describe the economy in which the investor operates and then derive her optimal portfolio

strategy and the normalized certainty equivalent of her optimal terminal wealth.

2.1 The economy

We consider a frictionless and arbitrage-free financial market in which trading takes place continu-

ously. There are three assets available for trade, a riskless asset, a stock (the market portfolio,

or simply the market) and a long lived, constant maturity bond. Following Yao et al. (2016), we

assume that the instantaneous interest rate rt follows the mean-reverting process:

drt = θr [r − rt] dt+ σrdZr,t. (1)

The parameters θr (speed of mean reversion) and σr are constant and r is the long term value

of the riskless rate. Zr,t is a one-dimensional Brownian motion under the physical probability

measure, as will be all our subsequent (correlated) Brownian motions Zx,t. Together with mean
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reverting market prices of risk, the specification given by Eq. (1) belongs to the class of extensively

used affine dynamic term structure models.4

The valueMt of the market portfolio is assumed to evolve according to the stochastic differential

equation (SDE):
dMt

Mt

− rtdt = µM,tdt+ σMdZM,t, (2)

where µM,t denotes its time-varying expected excess return and σM its constant instantaneous

conditional volatility. Note that its square computed over a finite interval (σ2
M t) is not the market

unconditional variance for this interval since the expected excess return µM,t is stochastic. ZM,t is

a Brownian motion whose correlation with Zr,t is denoted by ρr,M .

The value Bt of the constant maturity bond is assumed to obey the SDE:

dBt

Bt

− rtdt = µB,tdt+ σBdZB,t, (3)

where µB,t denotes its time-varying expected excess return and σB its constant instantaneous

conditional volatility.5 ZB,t is a Brownian motion whose correlations with ZM,t and Zr,t are denoted

by ρB,M and ρr,B, respectively. Excess returns on bonds of different maturities are not perfectly

correlated since the predictors influence them variously across the yield curve. This justifies using

distinct Zr and ZB.

Stock and bond excess returns vary in some predictors. To avoid perfect correlation between

the premia associated with these assets, we assume a bivariate predictive regressions. Using z1,t

and z2,t as predictors, we assume the following affine structure:

µM,t = µM,0 + µM,1z1,t + µM,2z2,t, (4)

µB,t = µB,0 + µB,1z1,t + µB,2z2,t, (5)

where µi,0, µi,1 and µi,2 are constants for i = M, B. We keep the simple mean reverting specification

for the dynamics of the predictors:

dzi,t = θi [zi − zi,t] dt+ σzidZzi,t, ∀i = 1, 2, (6)

where the parameters θi, σzi , ρi,M , ρi,B, ρi,r (i = 1, 2) and ρ1,2 (the correlation between the Brownian

increments dZz1and dZz2) are constant, and zi is the long term value towards which zi,t converges.

The mean-reverting specification is equivalent to the discrete time AR(1) process. Its use, common

in portfolio theory, suits well our purpose to keep the framework as standard as possible, so as to

focus on the impact of LHP and ease the comparison with the literature. The two predictors are

4See the review in Schmidt (2011).
5The same remark as for σM applies. Note additionally that this assumption does not make much violence to

the data since the bond has a constant (long) maturity.
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correlated through their own respective correlation with the stock, the bond and the interest rate,

as well as through their direct correlation (if ρ1,2 ̸= 0). Note that the presence of either one of the

two sources of risk Zzi,t makes the financial market incomplete.

2.2 The investor’s optimal portfolio strategy

The household has an investment horizon T and maximizes the expected utility of her terminal

wealth VT , subject to adopting an admissible, self-financing strategy. She is endowed with a power

utility function U(VT ):

U(VT ) =
V 1−γ
T

1− γ
, (7)

where the constant γ (> 0 and ̸= 1) is her relative risk aversion coefficient. A decisive advantage of

ignoring intermediate consumption is that an exact and quasi-explicit solution obtains even under

incomplete markets (see for instance Kim and Omberg (1996)), which is not the case with interim

consumption, even with power utility.

We denote by ωM,t and ωB,t the proportion of the household’s wealth invested in the stock and

in the bond, respectively. She solves the program:

Max
{ωt}

Et

[
V 1−γ
T

1− γ

]
s.t.

dVt

Vt

= rtdt+ ωM,t

[
dMt

Mt

− rtdt

]
+ ωB,t

[
dBt

Bt

− rtdt

]
, (8)

and also subject to Eqs. (1) to (6).

In the Internet Appendix we show that the investor’s optimal portfolio allocation is: ωM,t

ωB,t

 =
1

γ
Σ−1

 µM,0 + µM,1z1,t + µM,2z2,t

µB,0 + µB,1z1,t + µB,2z2,t

 (9)

+
A1 (T − t)

γ
Σ−1Σr

+
A2 (T − t) + A22 (T − t) z1,t + A4 (T − t) z2,t

γ
Σ−1Σ1

+
A3 (T − t) + A33 (T − t) z2,t + A4 (T − t) z1,t

γ
Σ−1Σ2,

where the (2×2) variance-covariance matrix Σ of asset returns and the (2×1) vectors of covariances

Σr, Σ1 and Σ2 are defined in the Internet Appendix, and the complicated Ai(T − t) and Ajj(T − t)

functions (along with the function A0(T − t)) are obtained from the system of ordinary differential

equations derived therein. The structure of this strategy is standard in an affine model. The first

component is the mean-variance term and the last three terms are Merton-Breeden intertemporal
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hedges against unfavorable shifts in the predictors and the interest rate that affect the stock and

bond excess returns. The portfolio weight allocated to the riskless asset is equal to (1−ωM,t−ωB,t).

We underline that in such a dynamic setting, even though the utility is defined for a given, fixed,

investment horizon, the solution to the intertemporal optimization program involves horizon effects

as evidenced by the presence of (T − t) in equation (9). There is no exogenous horizon dependence

beyond the investor’s investment horizon (T ).

To compute the value at time t of the indirect utility function induced by the optimal strategy,

we need in particular to know ωM,t and ωB,t. The latter weights depend on the variables z1,t and

z2,t and, directly or through the Ai(T − t) and Ajj(T − t) functions, on the following set of 27

parameters: µM,0, µM,1, µM,2, µB,0, µB,1, µB,2, σM , σB, σr, σz1 , σz2 , ρB,M , ρr,M , ρr,B, ρ1,M , ρ2,M ,

ρ1,B, ρ2,B, ρ1,r, ρ2,r, ρ1,2, θr, θ1, θ2, r, z1 and z2. These will be obtained by means of the estimation

procedure described in Section 3. It is important to note that the set of parameters is derived

for a given prediction horizon (return period) h. Crucially, all our estimated parameters then will

genuinely depend on h, instead of being either independent from it or mechanically proportional

to it (see Section 3.2).

This step once completed, we can compute the optimal strategy and the certainty equivalent of

the random (annualized) rate of return achieved over the investment horizon. Denoting by J(t, .)

the investor’s value function at date t (0 ≤ t ≤ T ) and by CEOW the certainty equivalent of the

investor’s optimal wealth, we have:

CEOW (t, T )1−γ

1− γ
= J(t, T, .) =

V 1−γ
t

1− γ
eG(T−t,rt,z1,t,z2,t), (10)

where

G (T − t, rt, z1,t, z2,t) ≡ A0 (T − t) + A1 (T − t) rt + A2 (T − t) z1,t (11)

+
1

2
A22 (T − t) z21,t + A3 (T − t) z2,t +

1

2
A33 (T − t) z22,t

+ A4 (T − t) z1,tz2,t.

Evaluating at initial date t = 0, and normalizing initial wealth by setting V0 = $1, we can com-

pute the certainty equivalent of the investor’s optimal terminal wealth in dollar terms. CEOW (0, T )

is the amount of wealth to be obtained at the investment horizon T with certainty that would yield

the same expected utility as the one derived from investing $1 optimally at date t = 0. Then cal-

culating lnCEOW (0, T )/T ≡ CE, as done in Brennan and Xia (2010), yields the annualized

certainty equivalent rate of return. CE can be compared to the average value of the risk-free rate

over the investment horizon T or the market yield on the zero-coupon bond maturing at date T .

The main advantage of computing CE rates is that comparing results across different prediction
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horizons or different risk aversion levels is immediate.6

3 Estimation procedures

To compute the certainty equivalent return rates of the strategies, we identify first the parameters

for the dynamics of the predictors, the interest rate, and the stock and bond excess returns. Then

we estimate the parameters using actual data. We set h, the prediction horizon the investor deems

appropriate, equal to ∆t, 2∆t, ..., H∆t, where ∆t is the length of the discrete interval between

actual observations (one month) and H∆t is the longest prediction horizon.

3.1 Short horizon predictability

We discuss first the standard case of short horizon predictability, i.e. h = ∆t. We skip here

unessential details, as the procedure is well known (see for instance Bandi and Perron (2008) or

Cochrane (2005)), and will be more explicit in the next subsection. As observed data are discrete,

we must use a discretized version of each continuous process. Therefore, we integrate the continuous

time dynamics Eq. (6) over the discrete time interval [t, t+∆t], which yields:

zi,t+∆t = zi
(
1− e−θi∆t

)
+ e−θi∆tzi,t + σzie

−θi(t+∆t)

ˆ t+∆t

t

eθisdZzi,s, ∀i = 1, 2. (12)

We then identify the integrated process parameters with those of the discrete time regressions:

zi,t+∆t = azi,∆t + Azi,∆tzi,t + υzi,t,t+∆t, ∀i = 1, 2. (13)

Next we estimate the parameters for the dynamics of the stock and bond excess returns. For

the stock market, we integrate the continuous time process Eq. (2), using Eq. (4), over the discrete

interval [t, t+∆t] and obtain:

lnMt+∆t − lnMt −
ˆ t+∆t

t

rsds =

(
µM,0 −

σ2
M

2

)
∆t+ µM,1

(
∆t− 1

θ1

(
1− e−θ1∆t

))
z1

+ µM,2

(
∆t− 1

θ2

(
1− e−θ2∆t

))
z2

− µM,1
1

θ1

(
e−θ1∆t − 1

)
z1,t − µM,2

1

θ2

(
e−θ2∆t − 1

)
z2,t

+

ˆ t+∆t

t

σMdZM,s + µM,1
1

θ1
σz1

ˆ t+∆t

t

(
1− e−θ1(t+∆t)eθ1s

)
dZz1,s

+ µM,2
1

θ2
σz2

ˆ t+∆t

t

(
1− e−θ2(t+∆t)eθ2s

)
dZz2,s.

6As a supplement, we explore in the Internet Appendix the economic cost induced by a standard ”myopic”
strategy, which ignores intertemporal hedging, by computing the associated sub-optimal CE rates.
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We apply the same technique to the constant-maturity bond excess returns to obtain a similar

expression for lnBt+∆t − lnBt −
´ t+∆t

t
rsds.

We then identify the integrated process parameters with those of the discrete time regressions:

rM,t,t+∆t −
ˆ t+∆t

t

rsds = aM,∆t + βM,∆t,1z1,t + βM,∆t,2z2,t + υM,t,t+∆t, (14)

rB,t,t+∆t −
ˆ t+∆t

t

rsds = aB,∆t + βB,∆t,1z1,t + βB,∆t,2z2,t + υB,t,t+∆t, (15)

where rM,t,t+∆t (resp., rB,t,t+∆t) is the one-period return on the stock market (resp., bond) between

dates t and t+∆t, the return on the stock possibly including a dividend.

Finally, we apply the same procedure to the interest rate, integrate the process rte
θrt over the

time interval [t, t + ∆t] and identify the integrated process parameters with those of the discrete

time regression, as we did for the predictors.

3.2 Long horizon predictability

To study the properties of the return generating processes implied by LHP, two approaches can be

distinguished. The first, adopted by the strand of literature devoted to asset allocation, consists

in mechanically inferring long horizon processes from the short term process by simple recursion.

Consequently, no additional information can be gained by varying the prediction horizon. In con-

trast, the second approach, encountered in the literature devoted to inference problems associated

with LHP, consists in using truly observed long horizon returns, which generally imply short period

return dynamics completely different from the explicit one (see for instance Valkanov (2003), Bandi

and Perron (2008) and Cochrane (2005)). As this procedure captures the information contained

in actual returns, the estimated parameters and, consequently, the investor’s strategy and welfare

will in general depend on the prediction horizon. We borrow from this strand of research, without

claiming originality, and fill a gap in the asset allocation literature by using the true, as opposed

to inferred, long horizon returns.

To illustrate, suppose we have calibrated Eq. (14) and are now interested by a prediction

horizon longer than one period (h ≥ 2∆t). From forward recursion of Eq. (14), we obtain:

rM,t,t+h −
ˆ t+h

t

rsds =
h

∆t
.aM,∆t + βM,∆t,1

h/∆t−1∑
j=0

z1,t+j∆t (16)

+βM,∆t,2

h/∆t−1∑
j=0

z2,t+j∆t +

h/∆t∑
j=1

εM,t+(j−1)∆t,t+j∆t,

where, crucially, the coefficients present in Eq. (16) are mere known, deterministic functions of

those obtained for the one-period horizon ∆t.
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Next, by forward recursion of Eqs. (13), Eq. (16) rewrites as:

rM,t,t+h −
ˆ t+h

t

rsds =
h

∆t
.aM,∆t +

2∑
i=1

azi,∆tβM,∆t,i

h/∆t−1∑
j=1

(
h

∆t
− j)Aj−1

zi,∆t (17)

+

 2∑
i=1

βM,∆t,i

h/∆t−1∑
j=0

Aj
zi,∆t

 zi,t +

h/∆t∑
j=1

εM,t+(j−1)∆t,t+j∆t

+
2∑

i=1

βM,∆t,i

h/∆t−1∑
k=1

υzi,t+(k−1)∆t,t+k∆t

h/∆t−k−1∑
l=0

Al
zi,∆t

The properties of any long horizon return (such as its conditional and unconditional variances)

can be studied extensively from Eq. (17), as did for example Brennan and Xia (2010) and Campbell

and Viceira (2005). Also, when the model is taken to the data, one just has to estimate, once and

for all, the coefficients for h = ∆t, and then to generate mechanically the coefficients for any

prediction horizon h.

Our procedure is novel in portfolio allocation models and follows that found in the literature

on LHP devoted to inference problems. The coefficients of the discrete processes assumed for the

stock excess return

rM,t,t+h −
ˆ t+h

t

rsds = aM,h + βM,h,1z1,t + βM,h,2z2,t + υM,t,t+h (18)

are estimated using, in particular, the true long horizon returns. This is also true for the predictor

processes:

zi,t+h = azi,h + Azi,hzi,t + υzi,t,t+h ∀i = 1, 2. (19)

As the optimal strategy involves intertemporal hedging terms that protect the investor from

unfavorable changes in the state variables, we need to estimate the correlations between the stock

and bond excess returns with the contemporaneous innovations in the predictors. For instance,

to obtain an estimate of the 2-year-ahead stock risk premium, one must use the 2-year-ahead

estimates for the values of the predictors also. This is a key point. The regression coefficients and

the constant in Eqs. (18) and (19) are indexed by h, as they now depend on h for two reasons.

The first is obvious as the terms in the l.h.s. refer to h-period returns. The second, much more

important, is that the actual distributions of long horizon returns may well be different from that

inferred from one-period returns, and differ across h.

This approach, although in line with the LHP literature, suffers from the persistence due to

overlapping observations. This is unfortunately necessary to generate reasonable series of long-

horizon returns. We will address this issue in Section 6 (see Eq.(26)).

11



3.3 Parameter estimation

To take the model to the data, we first integrate the continuous time dynamics Eq. (6) over the

discrete time interval [t, t+ h] and obtain:

zi,t+h = zh,i
(
1− e−θh,ih

)
+ e−θh,ihzi,t + σh,zie

−θh,i(t+h)

ˆ t+h

t

eθh,isdZzi,s, ∀i = 1, 2. (20)

Next we identify, for a given h, the integrated process parameters with those of the discrete time

regressions given by Eqs. (19). As shown in the Internet Appendix, our procedure yields the

following seven (annualized) parameters: θ1, θ2, z1, z2, σ
2
z1
, σ2

z2
, and ρ1,2 (all of which depend on h

in spite of the parsimonious notation adopted here). We apply the same procedure to the interest

rate, integrate the process rte
θrt over the time interval [t, t+ h] and obtain:

rt+h = rh
(
1− e−θh,rh

)
+ e−θh,rhrt + σh,re

−θh,r(t+h)

ˆ t+h

t

eθh,rsdZr,s. (21)

Identifying the integrated process parameters with those of the discrete time regression

rt+h = ar,h + Ar,hrt + υr,t,t+h (22)

yields, for a given h, the following five parameters: θr, r, σ
2
r , ρ1,r and ρ2,r (see Internet Appendix).

As to stock excess returns, we integrate the continuous time process Eq. (2), using Eq. (4), over

the discrete interval [t, t+ h] for each prediction horizon h. We obtain (see Internet Appendix):

lnMt+h − lnMt −
ˆ t+h

t

rsds =

(
µh,M,0 −

σ2
h,M

2

)
h (23)

+ µh,M,1

(
h− 1

θh,1

(
1− e−θh,1h

))
zh,1

+ µh,M,2

(
h− 1

θh,2

(
1− e−θh,2h

))
zh,2

− µh,M,1
1

θh,1

(
e−θh,1h − 1

)
z1,t − µh,M,2

1

θh,2

(
e−θh,2h − 1

)
z2,t

+

ˆ t+h

t

σh,MdZM,s

+ µh,M,1
1

θh,1
σh,z1

ˆ t+h

t

(
1− e−θh,1(t+h)eθh,1s

)
dZz1,s

+ µh,M,2
1

θh,2
σh,z2

ˆ t+h

t

(
1− e−θh,2(t+h)eθh,2s

)
dZz2,s.

The stock excess return is affected by three sources of risk: its own idiosyncratic component

and the two components associated with the variability in the predictors. Therefore, when the
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return period length h increases, the (annualized) volatility of the stock excess return, which would

remain constant by assumption in absence of predictors, may decline or increase depending on the

signs and magnitudes of the parameters extracted from the data that characterize the predictive

processes.7, 8

The same technique is applied to the constant maturity bond excess returns and yields a similar

expression for lnBt+h − lnBt −
´ t+h

t
rsds.

We then identify the integrated process parameters with those of the discrete time regressions

(see Eq. (18)):

rM,t,t+h −
ˆ t+h

t

rsds (≡ RM
t,t+h) = aM,h + βM,h,1z1,t + βM,h,2z2,t + υM,t,t+h, (24)

and

rB,t,t+h −
ˆ t+h

t

rsds = aB,h + βB,h,1z1,t + βB,h,2z2,t + υB,t,t+h, (25)

where rM,t,t+h (resp., rB,t,t+h) is the continuously compounded h-period return on the stock market

(resp., bond) between dates t and t+ h.

This procedure yields, for each prediction horizon h, the fifteen needed parameters (again, delet-

ing here the explicit dependence on h): µM,0, µM,1, µM,2, σ
2
M , ρr,MσMσr, ρ1,MσMσz1 , ρ2,MσMσz2 for

the stock market, µB,0, µB,1, µB,2, σ
2
B, ρr,BσBσr, ρ1,BσBσz1 , ρ2,BσBσz2 for the bond and ρB,MσMσB

for their direct correlation [see the Internet Appendix].9

7Note that the continuous time parameters are always expressed on a yearly basis for consistency, irrespective of
the length of the prediction horizon. For instance, the instantaneous stock return variances estimated using monthly
returns

(
σ2
∆t,M

)
or biannual returns

(
σ2
6∆t,M

)
are both annualized.

8The volatility of stock returns estimated (without correcting for various other uncertainties) over the long run is
often reported to be smaller than in the short term because of the mean reversion induced by return predictability.
This is true for both realized variance and variance conditioned on information relevant in forecasting returns.
However, Pastor and Stambaugh (2012) also find that the positive effect of other components of long horizon
predictive variance (such as estimation risk and uncertainty about current and future expected returns) outweighs
that of mean reversion. Consequently, they argue that the stock market is in fact more volatile over longer horizons
from an investor’s viewpoint. Fama and French (2018) also find that uncertainty about expected returns can
significantly impact uncertainty about long-run returns. Although we ignore these other components for simplicity,
our model could theoretically allow for such an increase in long run volatility.

9A statistical issue associated with our estimates is the persistence of predictors, a phenomenon acknowledged
in the literature and confirmed by our data in Section 4. Persistence would require a correction for the estimated
parameters of the predictive regressions as for instance in Stambaugh (1999) and Amihud, Hurwich and Wang
(2008). However, since no method is available for long horizons prediction and the correction is fairly weak (in
particular when the dividend yield is a predictor) for h = ∆t, we ignore this issue.
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4 Data and Estimation

4.1 Data

This study uses US monthly data for the period 1942:M1 to 2016:M12 (900 observations).10 Data

relative to the returns on the market portfolio have been downloaded from CRSP database. The

stock market return (”mkt”) is computed as the value-weighted return on all NYSE, AMEX,

and NASDAQ stocks obtained from the CRSP data files. We have selected the constant 10-year

maturity Treasury bond as our long term fixed income instrument.11 Its monthly returns (”bond”)

were downloaded from the CRSP files. The riskless rate is the one-month Treasury bill rate (”r”)

downloaded from the CRSP ”Fama Risk Free Rates” data file.

The choice of predictors is more arbitrary, and many candidates have been proposed in the

literature. As an illustration, we adopt the dividend yield and the default spread that are variously

but routinely used since the early start of Fama and French (1989).12 The dividend yield (”dy”)

is measured as the total dividends paid off during the last 12 months divided by the actual value

of the value-weighted market portfolio. We select this measure as monthly or quarterly dividend

yields cannot be used because seasonality is predominant. We construct the dividend yield series

from the two series of stock market returns with and without dividends. The default spread, a

measure of financial duress, is computed as the spread between the yield of a 10-year Baa-rated

bond and that of a 10-year Aaa-rated bond (”def”). This predictor is constructed from the relevant

series in FREDR⃝ database. Summary statistics are reported in Table 1.

Panel A of Table 1 reports statistics for the one-month T-bill rate, the returns and excess returns

(using the T-bill rate) on the risky assets and the predictors. The average excess return is 0.60%

for the equity market (7.2% per year) and 0.13% for the long term bond (1.56% annually). The

average annualized short term rate is 3.73%, which can be used as a benchmark. A salient feature

of particular relevance emerges. The large first-order auto-regression coefficients for the predictive

variables and the interest rate, ranging from 0.97 to 0.99, reflect a high level of persistence, also

found in the literature, to be discussed below. In contrast, the coefficients for the stock and bond

are very small (0.09 for mkt and 0.06 for bond). As shown in Panel B, the correlation of dy with

101942:M1 is the first date for which returns on constant maturity bonds are available.
11The 10-year rate seems to be the usual long term reference. Results for predictive regressions are not significantly

different with bonds of constant 20-year and 30-year maturities.
12The literature is abundant on this topic. For example, the term spread (Morell 2018), the consumption-

wealth ratio (Lettau and Ludvigson 2001), the firms’ total payout (Lamont 1998; Baker and Wurgler 2000), market
volatility (Bandi et al. 2018) and option-implied expected returns (Martin 2017), among other variables, were also
shown to have predictive ability. Goyal and Welch (2008) provided a comprehensive analysis of predictability for
a variety of predictors at the monthly, quarterly, and annual frequencies and found a substantial heterogeneity in
their explanatory power. See also Bianchi and Tamoni (2017) and Bandi et al. (2018) for a related discussion. As
a robustness check, we redid the whole exercise of this paper with another pair of predictors, market volatility and
term spread. One constraint was to retain the monthly frequency, and some predictors are computed at a quarterly
frequency only, such as the consumption-to-wealth ratio. Results are reported in the Internet Appendix. We were
heartened to find, qualitatively, almost the same patterns as with the dividend yield and default spread. This is
not to deny that, quantitatively, the value added by LHP depends on the set of adopted predictors.
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Table 1: Summary Statistics
Panel A reports various statistics for the monthly returns on the stock market portfolio (mkt) and the

10-year bond (bond), and their monthly excess returns (mktex and bondex). In Panel B, we report the

summary statistics for the one-month T-bill rate (r) and two predictors: the dividend yield (dy) and the

default spread (def). Auto stands for the first-order auto-regression coefficient. Panel C displays the

means and standard deviations for the interest rate and the stock and bond excess returns across different

holding periods. The data cover the period 1942:M1 to 2016:M12.

Panel A: Stock, Bond and Predictors
mkt mktex bond bondex dy r def

Mean 0.91 0.60 0.43 0.13 3.37 3.73 0.94

Std 4.22 4.24 1.96 1.95 1.39 3.13 0.43

Skewness -0.78 -0.80 0.42 0.22 0.69 1.05 1.84

Kurtosis 5.73 5.72 5.21 5.12 3.25 4.42 7.88

Auto 0.09 0.09 0.07 0.06 0.99 0.97 0.97

Panel B: Stock, Bond and Predictors Correlations
mkt mktex bond bondex dy r def

mkt 1.00 1.00 0.08 0.08 0.10 -0.05 0.05

mktex 1.00 1.00 0.07 0.08 0.09 -0.11 0.03

bond 0.08 0.07 1.00 0.99 0.01 0.12 0.11

bondex 0.08 0.08 0.99 1.00 0.00 -0.01 0.07

dy 0.10 0.09 0.01 0.00 1.00 0.06 0.11

r -0.05 -0.11 0.12 -0.01 0.06 1.00 0.31

def 0.05 0.03 0.11 0.07 0.11 0.31 1.00

Panel C: Interest rate and excess returns (annualized, in %) for various horizons h
mean(r) std(r) mean(mktex) std(mktex) mean(bondex) std(bondex)

1m 3.62 2.97 7.25 14.69 1.56 6.76

3m 3.63 2.94 7.30 15.48 1.56 6.94

6m 3.64 2.92 7.32 16.12 1.57 6.94

1y 3.66 2.88 7.24 16.40 1.57 6.99

2y 3.70 2.82 6.98 15.75 1.59 6.78

3y 3.75 2.74 6.88 15.02 1.58 6.64

4y 3.80 2.67 6.77 14.46 1.55 6.75

5y 3.85 2.61 6.65 14.46 1.54 6.89

6y 3.90 2.55 6.57 14.31 1.53 6.87

7y 3.96 2.50 6.51 14.32 1.52 6.99

8y 4.01 2.45 6.46 14.66 0.82 6.24

9y 4.06 2.40 6.36 15.04 1.47 7.22

10y 4.12 2.35 6.30 15.22 0.91 6.50
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def (0.11) and that of dy with the interest rate (0.06) are encouragingly small. The correlation of

the interest rate with def is understandably larger (0.31). Panel C of Table 1 reports the influence

of the holding period horizon on the means and standard deviations of the interest rate and of the

stock and bond excess returns. Interestingly, the mean of the short term rate slightly increases,

and its unconditional volatility decreases with the horizon. Also, the volatility of the stock excess

return exhibits an inverted U-shape with a peak at one year (16.40% annualized). Under a pure

random walk, this volatility would not depend on the horizon. The study by Poterba and Summers

(1988) covering the 1871-1985 period and the update by Brennan and Xia (2010) for the 1871-2003

period both report a similar peak, although at 2 years.

4.2 Parameter estimates

We estimate the parameters of the discretized continuous processes followed by the two predictors

and the short term rate using the procedure described in Section 3 and detailed in the Internet

Appendix. We also estimate the parameters for the stock and bond return processes and compute

the corresponding Sharpe ratios. Findings are reported in Table 2.

In Panel A of Table 2 we check how the speed of mean reversion, the long run mean and

the volatility characterizing the O-U processes followed by the short term rate, Eq. (1), and the

predictors, Eqs. (6), behave across prediction horizons. The decreasing patterns for volatilities

and the speed of mean reversion are as expected. Time aggregation increases the signal-to-noise

ratio and hence reduces the volatility. The mean reversion coefficients exhibit a (non monotonic)

decreasing pattern according to h. Crucially, however, it is the product θh that matters, as

evidenced by Eq. (20). And this product does increase with h even when θ decreases. This result

is important as a larger θh implies a lower persistence (see the Internet Appendix). Therefore,

persistence is smaller for longer prediction horizons. Also, estimated long run values of both

predictors are very stable across the board. As to the correlations between predictors, also displayed

in Panel A, they increase swiftly reflecting again less noise and idiosyncratic variations for longer

horizons. A high default spread signals economic duress which increases the riskless rate, depresses

stock prices and thereby increases the dividend yield. Hence, the correlations are all positive in

the long run.

Panel B of Table 2 displays the estimated parameters of the process followed by the stock excess

return predicted by dy and def . The annualized long run equity excess return (EP ) implied by

our estimates is computed as the sum µM,0+µM,1z1+µM,2z2. EP is estimated to be 6.46% at the

monthly frequency and 5.63% at the 10-year frequency, the fall not being monotonic. Volatility

slightly increases (not monotonically) from 14.70% to 15.30%. The Sharpe ratio remains rather

stable (at 0.43) up to h = 6 years, then declines slowly and slightly to 0.37. The correlation of the

market with the dividend yield is pretty stable at the usual level (between -0.68 and -0.87) while

those with the interest rate and the default spread stabilize at around -0.5 for long horizons. The
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Table 2: Parameters Estimates
Panel A of this Table reports the estimated parameters of the processes followed by the predictors dy and

def and the interest rate r. The estimated parameters of the processes followed by the equity market

return and the 10-year bond return are reported in Panels B and C, respectively. Also on display are the

long-run equity excess return (EP) and 10-year bond excess return (BP), and their corresponding Sharpe

Ratios (SR). The sample period is 1942:M1 to 2016:M12.

Panel A: Parameters for the predictors and the interest rate
1m 3m 6m 1y 2y 3y 4y 5y 6y 7y 8y 9y 10y

r θ 0.36 0.21 0.17 0.15 0.15 0.14 0.12 0.10 0.09 0.09 0.09 0.10 0.09

LR Mean (%) 3.77 3.80 3.82 3.82 3.84 3.88 3.92 3.96 4.00 4.04 4.07 4.11 4.15

σ(%) 2.63 2.00 1.82 1.69 1.72 1.66 1.54 1.38 1.32 1.33 1.34 1.36 1.34

dy θ 0.14 0.16 0.18 0.18 0.13 0.12 0.10 0.09 0.09 0.08 0.09 0.10 0.11

LR Mean (%) 2.83 2.86 2.91 2.94 2.91 2.89 2.88 2.88 2.85 2.78 2.76 2.76 2.77

σ(%) 0.57 0.59 0.64 0.66 0.60 0.57 0.55 0.53 0.52 0.49 0.48 0.48 0.49

def θ 0.34 0.49 0.55 0.58 0.51 0.39 0.33 0.28 0.23 0.21 0.33 0.35 0.30

LR Mean (%) 0.92 0.92 0.93 0.93 0.93 0.93 0.94 0.94 0.95 0.96 0.96 0.96 0.97

σ(%) 0.35 0.42 0.44 0.46 0.43 0.38 0.35 0.32 0.29 0.28 0.36 0.37 0.34

corr(r,dy) -0.01 0.02 0.05 0.06 0.17 0.21 0.23 0.28 0.31 0.35 0.41 0.45 0.51

corr(r,def) -0.25 -0.26 -0.24 -0.26 -0.11 0.05 0.16 0.19 0.19 0.21 0.22 0.24 0.27

corr(def,dy) 0.04 0.18 0.30 0.32 0.32 0.30 0.30 0.28 0.28 0.31 0.38 0.44 0.45

Panel B: Parameters for the stock market
1m 3m 6m 1y 2y 3y 4y 5y 6y 7y 8y 9y 10y

µ0 -0.061 -0.079 -0.107 -0.102 -0.061 -0.045 -0.041 -0.045 -0.041 -0.037 -0.035 -0.034 -0.048

µ1 3.499 3.875 4.277 4.445 3.881 3.611 3.346 3.233 3.326 3.368 3.604 3.782 3.990

µ2 2.632 3.387 5.072 3.972 1.388 0.397 0.620 1.308 0.488 -0.225 -1.155 -1.755 -0.812

LR Mean = EP 0.064 0.065 0.066 0.068 0.066 0.064 0.062 0.061 0.059 0.055 0.054 0.054 0.056

σ 0.148 0.156 0.164 0.168 0.161 0.151 0.143 0.144 0.140 0.138 0.137 0.143 0.154

SR 0.430 0.414 0.406 0.401 0.409 0.425 0.435 0.425 0.418 0.402 0.394 0.376 0.362

corr(r,mkt) 0.019 0.027 0.017 0.041 -0.012 -0.035 -0.078 -0.166 -0.289 -0.396 -0.483 -0.518 -0.558

corr(dy,mkt) -0.872 -0.871 -0.844 -0.809 -0.762 -0.717 -0.686 -0.701 -0.747 -0.785 -0.814 -0.842 -0.848

corr(def,mkt) -0.082 -0.278 -0.453 -0.521 -0.541 -0.518 -0.515 -0.493 -0.440 -0.466 -0.507 -0.545 -0.571

Panel C: Parameters for the 10-year bond
1m 3m 6m 1y 2y 3y 4y 5y 6y 7y 8y 9y 10y

µ0 0.006 0.027 0.031 0.027 0.009 -0.011 -0.014 -0.005 -0.006 -0.008 -0.021 -0.040 -0.041

µ1 -0.439 -0.707 -0.933 -1.109 -1.261 -1.199 -1.187 -1.220 -1.251 -1.172 -1.031 -1.314 -1.261

µ2 3.329 2.104 2.508 3.596 6.028 7.902 8.121 7.222 7.367 7.323 7.351 11.171 10.370

LR Mean = BP 0.024 0.026 0.027 0.028 0.028 0.028 0.028 0.029 0.029 0.029 0.021 0.032 0.025

σ 0.089 0.090 0.088 0.087 0.086 0.090 0.095 0.095 0.095 0.098 0.094 0.117 0.112

SR 0.271 0.291 0.310 0.316 0.326 0.307 0.294 0.300 0.304 0.300 0.222 0.276 0.224

corr(r,bond) -0.208 -0.386 -0.447 -0.501 -0.602 -0.605 -0.640 -0.676 -0.688 -0.705 -0.742 -0.712 -0.684

corr(dy,bond) -0.129 -0.103 -0.094 -0.183 -0.283 -0.309 -0.301 -0.283 -0.330 -0.419 -0.499 -0.587 -0.597

corr(def,bond) 0.229 0.307 0.214 0.062 -0.255 -0.565 -0.652 -0.608 -0.661 -0.700 -0.697 -0.799 -0.825

corr(mkt,bond) 0.078 0.036 0.040 0.176 0.339 0.433 0.451 0.442 0.506 0.584 0.673 0.760 0.754
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negative signs were expected: when the interest rate decreases, investors reallocate their portfolios

towards stocks, exerting an upward pressure on prices leading to positive future returns. An

increasing default spread reflects economic dire straights which press stock prices downward.

From Panel C of Table 2 no clear picture emerges as to the long run excess return on the 10-year

bond which varies somewhat erratically but in a rather narrow range. Its volatility is pretty stable

(around 6.7%) except for a noticeable increase for h = 9 and 10 years, as well as its Sharpe ratio.

Overall, the choice of the prediction horizon h affects the estimated values of the parameters of

the stock and bond excess return processes.13

4.3 Simulating parameter estimates

The point-wise estimation proposed above might not help assessing whether estimates are biased

at particular (long) horizons. To address this issue, we ran simulations the purpose of which is to

shed light on the estimation risk and its impact on the findings, in particular the parameters for

the stock and bond excess returns and the CE spreads in sample. We thus provide a reasonable

range for the values of the parameters and variables of interest. One problem in the simulations is

to preserve accurately enough the observed time series cross correlation between these variables.

For brevity, we only sketch here the main steps of the method and relegate detailed procedure and

results to the Internet Appendix (Sections 2.4 and 2.5).

For the two predictors and the interest rate, we ran an OLS AR(1) process and collected the

residuals. We then ran a bivariate predictive regression for both the market and bond excess returns

and collected the residuals. Consequently, we obtained a T ×K matrix of residuals, where T = 900

(observations) and K = 5 (residuals). Then, using these time series residuals, we simulated 1,000

samples of the same size as our data (900 observations) using a multivariate normal distribution

with mean 0 and a variance-covariance matrix identical to that of the residuals. Using the simulated

residuals, we built time series for the two predictors, the interest rate and the two asset excess

returns. For each simulation, we ran OLS estimations for the AR(1) processes and the stock and

bond excess return predictive regressions. Doing this 1,000 times, we obtained 1,000 estimates for

each desired parameter. The estimates for the parameter means are very stable across the board

(i.e. for all the parameters at all prediction horizons) and the OLS and NW t-stats are very high

and roughly equal. We also redid the whole exercise to account for the problem of overlapping

data using Valkanov’s (2003) procedure (see Section 6 below for a discussion), which yielded even

more stable estimates.

Even though the point-estimated values of our parameters may be different from their respective

simulated means, they lie well in the range of their simulated values. Thus the upshot of the analysis

13We have, additionally, checked that estimating separately the parameters of the predictive regressions and of
the excess return dynamics for each prediction horizon rather than mechanically inferring them from those obtained
from the one-period horizon does lead to statistically significant differences. Our approach and detailed results are
discussed in the Internet Appendix.
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is that, although we do not claim that the in-sample evidence is indisputable, our parameters appear

to be well estimated and not to suffer from biases at any estimation horizon.

5 Asset allocation strategies

5.1 Certainty equivalent rates of return

Endowed with our estimated parameters, we can implement the investor’s portfolio strategies.

We compute by way of Eq. (9) the optimal portfolio composition, which includes the mean-

variance term MV and the intertemporal hedging components IH. Using Eq. (10), we calculate

the annualized certainty equivalent rate of return of the optimal strategy, CEopt, which can be

compared to the average riskless rate, 3.73%. Similarly, we compute CEmyo associated with the

myopic allocation. We set the individual’s risk aversion coefficient γ to 5, a reasonable value likely

to generate significant intertemporal hedging demands.

We consider many different situations by varying the investment horizon T and the prediction

horizon h. In papers devoted to portfolio allocation, the prediction horizon is usually one month,

more rarely one quarter. This is not necessarily optimal. A long term investor should use short

horizon predictability if the latter is more valuable than LHP. Likewise, a short term investor

should exploit LHP if it is welfare improving. We use for h the same values as in the predictive

regressions, from one month to ten years, and for T a wider range that includes four additional

horizons, namely 15, 20, 25 and 30 years (we have, however, omitted to report the 2-, 4-, 6- and

8-year horizons for readability). This yields a computed (13× 17) matrix and a reported (13× 13)

matrix of optimal CE return rates.14 Results are displayed in Table 3.

Two strong general patterns emerge. The first was expected: for a given prediction horizon,

the annualized CEopt return rate increases sharply and monotonically with the investment period.

For the 30-year horizon, CEopt is approximately 1.5 to 3.5 times as large as it is for the one-month

horizon, depending on the prediction horizon. According to the professional conventional wisdom

in asset allocation, the weight of risky assets in the optimal portfolio should depend positively on

the investment’s horizon. As shown below, this is the case for all prediction horizons. The sharp

increase in the proportion of risky assets entails that of the certainty equivalent return rate, as the

investor can benefit more from the positive stock and bond risk premia. CEopt is across the board

well above the average riskless rate (3.73%) because the weight of the global risky position in the

portfolio entails most of the time some leverage. Our results confirm those of Brennan and Xia

(2010) based on scenarios and simulations.

Reading Table 3 column-wise, the second, and more crucial to our investigation, striking pat-

tern is the rather strong tendency for CEopt to increase with the prediction horizon, for investment

horizons beyond 1 year. For instance, for T = 1, 10 and 30 years, respectively, CEopt is equal

14The omitted results are available upon request.
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Table 3: Certainty Equivalent Rates
This Table reports annualized CE rates (in %) for optimal strategies when the stock and 10-year bond

excess returns (computed over 1 month up to 10 years) are predicted as in Table 2. The investment

horizon T ranges (horizontally) from one month to 30 years. The prediction horizon h ranges (vertically)

from one month to 10 years. The average riskless rate is 3.73%. The period is 1942:M1 to 2016:M12.

1m 3m 6m 1y 3y 5y 7y 9y 10y 15y 20y 25y 30y

1m 6.24 6.31 6.42 6.61 7.13 7.49 7.79 8.05 8.16 8.63 8.95 9.17 9.33

3m 6.27 6.36 6.49 6.71 7.36 7.80 8.13 8.39 8.50 8.90 9.15 9.31 9.43

6m 6.29 6.41 6.58 6.88 7.76 8.35 8.76 9.05 9.17 9.55 9.74 9.84 9.91

1y 6.10 6.24 6.43 6.77 7.72 8.34 8.76 9.06 9.17 9.52 9.68 9.76 9.80

2y 6.10 6.29 6.55 6.99 8.11 8.75 9.17 9.47 9.59 9.96 10.15 10.26 10.33

3y 6.17 6.38 6.67 7.20 8.67 9.53 10.06 10.42 10.56 10.98 11.17 11.28 11.34

4y 6.20 6.38 6.64 7.12 8.59 9.52 10.13 10.54 10.69 11.15 11.34 11.42 11.46

5y 6.17 6.31 6.52 6.91 8.18 9.04 9.63 10.04 10.20 10.67 10.84 10.90 10.90

6y 6.16 6.30 6.50 6.90 8.24 9.25 9.99 10.54 10.76 11.48 11.83 12.00 12.07

7y 5.98 6.11 6.31 6.70 8.06 9.12 9.92 10.54 10.79 11.66 12.14 12.41 12.56

8y 5.70 5.92 6.23 6.80 8.56 9.71 10.49 11.05 11.28 12.03 12.42 12.63 12.74

9y 5.74 6.21 6.89 8.21 12.35 14.80 16.27 17.25 17.62 18.85 19.50 19.87 20.10

10y 5.70 6.04 6.55 7.54 11.03 13.51 15.16 16.29 16.72 18.12 18.85 19.26 19.51

to 6.61%, 8.16% and 9.33% when h is one month, and to 7.54%, 16.72% and 19.51% when h is

ten years. This novel result is consistent with the academic conventional wisdom, in the sense

that, since the R2s of the predictive regressions increase with h, one expects LHP to be valuable.

Note however that the relationship is not monotonic and presents humps for some (h, T ) couples.15

Therefore, caution is required here as there is no unique prediction horizon that would be optimal

for all investors. Nonetheless, except for very short run investors, LHP improves welfare signific-

antly. Recall that the Sharpe ratio for the stock market remains stable up to h = 6 years, then

declines slightly only, and is rather stable for the 10-year bond. In addition, the level of inter-

temporal hedging increases with h as the (absolute value) of the correlations of the stock and the

bond with the predictors and the interest rate rise sharply (see Table 2). This translates into more

weights allocated to the risky assets, as shown below, and into a better risk-return tradeoff, which

in turn improves the optimal certainty equivalent rates.

It would be helpful to provide a theoretical justification regarding the relationship between CE

rates and R-squares for a better understanding of our empirical results. Cochrane (1999) uses

Hansen-Jagannathan (1991) bounds to derive a relationship between the maximum unconditional

Sharpe ratio attainable using a univariate predictive regression and the regression R2.16 Cochrane’s

15Bandi et al. (2018), among others, also find a hump-shaped relationship, with the hump showing up for h
between 11 and 16 years, i.e. beyond our range of 10 years. Since they use the past market variance as a unique
predictor, their result is not directly comparable to ours.

16We are grateful to an anonymous referee for having pointed this out.
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purpose was to assess the economic importance of R2 improvement without having to compute

the portfolio strategy or, equivalently, the associated CE rate. For general risk preferences and

multivariate predictive regressions, unfortunately, we could not derive a Cochrane-like analytical

result due to the presence of intertemporal hedging. As a substitute, we conducted a two-step

numerical investigation of the relationship.17 First, we established the link between the predictive

R2 for the market and the bond returns as a function of the prediction horizon. Although, as

already reported, the relationship is not monotonically increasing, it is nevertheless very close to

being a straight line for the equity market, except for a prediction horizon larger than 9 years. For

the bond, it is hump-shaped, the increase being monotonic up to h equal to 4 years.

Next we assessed the relationship between CE rates and R2s. For investment horizons larger

than one year, and for both the market and the bond, CE rates increase with the predictive R2s,

which is consistent with Cochrane’s (1999) result that the maximum Sharpe ratio increases with

the predictive R2. Therefore, it is fair to conclude that the better goodness-of-fit obtained by

increasing the prediction horizon (up to 9 years for our sample) is economically relevant, at least

for investment horizons larger than one year.

5.2 Simulated Certainty Equivalent spreads

As we did for the parameter estimation, we simulated the CE rates (1,000 times) to assess whether

investors should focus on particular prediction horizons. To gain insight, we computed the spreads

between the CE rate for a given prediction horizon and that for the one-month prediction horizon.18

Panel A of Table 4 displays the mean of these spreads. The investment horizon ranges from one

month to 30 years and the prediction horizon from 3 month to 10 years. Panel B reports the

Newey-West t-stats relative to the means. To gain space, OLS t-stats are not shown as they are

almost identical to Newey-West ones. With rare exceptions, both t-stats are very large.

In Panel A, we observe first a systematic increase in CE spreads with the investment horizon, as

expected. The relative imprecision in the parameter estimates does not translate into very volatile

CE rates and spreads. Second, the relationship between the CE spread and the prediction horizon

exhibits a substantial positive slope for all investment horizons beyond one year and, although

not monotonic, is globally positive for investment horizons up to one year. Overall, the picture

obtained for CE rates thus is confirmed. The potential welfare gain from LHP may be substantial

for medium and long horizon investors. Increased uncertainty on the parameter estimates is more

than compensated by positively skewed welfare gains.

Finally, the last row of Panel C in Table 2 has shown that the correlation between market and

bond excess returns increases with the prediction horizon from negligible levels to 0.76. One may

wonder whether portfolio allocations, hence CE rates, are driven by this finding rather than by

17Results are available upon request to the authors.
18The Internet Appendix provides the CE rates from which spreads are obtained.

21



Table 4: Simulated Certainty Equivalent Spreads
This Table reports the simulated annualized CE spreads (in %) for optimal strategies when the stock and

10-year bond excess returns are simulated 1,000 times. The investment horizon T ranges (vertically) from

one month to 30 years. The prediction horizon h ranges (horizontally) from 3 month to 10 years, and

the spread is computed relative to the one-month prediction period. Panel A displays the mean spreads

(computed over the 1,000 simulations). Panel B exhibits the Newey-West t-stats relative to these means,

the number of lags being equal to the estimation horizon minus 1. The sample period is 1942:M1 to

2016:M12.

Panel A: Mean Spreads

1m 3m 6m 1y 2y 3y 4y 5y 6y 7y 8y 9y 10y

1m -0.03 -0.06 -0.12 -0.15 -0.14 -0.10 -0.03 0.03 0.16 0.10 0.48 0.46

3m -0.02 -0.05 -0.10 -0.13 -0.11 -0.05 0.01 0.09 0.21 0.14 0.53 0.53

6m -0.01 -0.04 -0.08 -0.10 -0.05 0.01 0.09 0.17 0.29 0.21 0.62 0.66

1y 0.01 -0.01 -0.04 -0.03 0.04 0.12 0.21 0.31 0.44 0.35 0.79 0.88

3y 0.05 0.07 0.08 0.17 0.33 0.50 0.64 0.82 0.97 0.89 1.45 1.76

5y 0.08 0.11 0.15 0.29 0.50 0.71 0.91 1.13 1.31 1.28 1.91 2.45

7y 0.08 0.12 0.18 0.35 0.60 0.84 1.05 1.30 1.52 1.54 2.22 2.85

10y 0.07 0.12 0.19 0.38 0.66 0.93 1.16 1.44 1.68 1.74 2.44 3.15

15y 0.05 0.10 0.18 0.38 0.67 0.95 1.19 1.49 1.74 1.83 2.53 3.33

20y 0.03 0.07 0.15 0.36 0.65 0.93 1.17 1.46 1.72 1.83 2.52 3.35

25y 0.01 0.05 0.12 0.34 0.63 0.91 1.15 1.42 1.68 1.79 2.48 3.33

30y -0.01 0.03 0.10 0.31 0.61 0.88 1.12 1.38 1.64 1.75 2.44 3.29

Panel B: Newey - West t-Statistics

1m 3m 6m 1y 2y 3y 4y 5y 6y 7y 8y 9y 10y

1m -5.1 -7.1 -8.5 -7.2 -5.1 -3.2 -0.9 0.8 2.8 1.6 6.8 7.4

3m -3.6 -5.8 -7.4 -6.1 -3.8 -1.6 0.3 1.8 3.7 2.2 7.6 8.4

6m -2.0 -4.0 -5.8 -4.4 -1.8 0.2 2.2 3.4 4.9 3.2 8.6 10.5

1y 1.3 -1.2 -3.0 -1.4 1.3 3.3 5.0 6.0 7.0 5.1 10.5 13.9

3y 8.8 6.8 5.4 7.3 9.8 11.4 13.1 13.4 13.4 11.1 16.6 28.2

5y 11.9 9.9 8.9 11.6 14.4 15.6 17.1 17.7 16.9 15.0 20.7 33.1

7y 11.2 10.2 10.1 13.6 16.7 17.6 19.3 20.0 18.8 17.2 22.4 32.8

10y 9.3 9.7 10.0 14.4 17.9 18.6 20.4 21.4 20.2 19.0 23.6 31.3

15y 5.7 7.3 8.4 13.8 18.0 18.5 20.2 21.4 20.7 20.0 23.7 28.9

20y 3.3 5.1 6.6 12.7 17.4 18.0 19.6 20.8 20.0 19.7 23.3 27.4

25y 1.1 3.5 5.4 11.7 16.7 17.3 18.9 20.0 19.5 19.3 22.8 26.4

30y -0.7 2.0 4.2 10.6 16.0 16.7 18.3 19.3 18.9 18.8 22.3 25.7
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Table 5: Optimal Strategies
This Table reports the overall weight of the risky assets (stocks and bonds) in the portfolio. Weights

larger than one imply that the riskless asset is held negatively. The period is 1942:M1 to 2016:M12.

1m 3m 6m 1y 3y 5y 7y 9y 10y 15y 20y 25y 30y

1m 1.24 1.25 1.28 1.32 1.47 1.60 1.71 1.81 1.86 2.04 2.17 2.25 2.30

3m 1.27 1.29 1.32 1.37 1.59 1.78 1.93 2.05 2.11 2.30 2.42 2.48 2.52

6m 1.28 1.31 1.34 1.42 1.68 1.90 2.08 2.22 2.28 2.47 2.57 2.62 2.64

1y 1.17 1.19 1.23 1.31 1.59 1.81 1.99 2.13 2.19 2.37 2.46 2.50 2.52

2y 1.16 1.19 1.25 1.35 1.69 1.95 2.15 2.30 2.37 2.57 2.67 2.72 2.74

3y 1.11 1.15 1.21 1.34 1.78 2.13 2.39 2.59 2.67 2.95 3.10 3.17 3.20

4y 1.05 1.09 1.15 1.28 1.74 2.13 2.45 2.69 2.80 3.17 3.37 3.47 3.53

5y 1.05 1.09 1.15 1.26 1.71 2.09 2.41 2.67 2.79 3.22 3.48 3.63 3.72

6y 1.05 1.09 1.14 1.25 1.68 2.06 2.40 2.70 2.83 3.34 3.67 3.88 4.01

7y 0.95 0.98 1.03 1.13 1.52 1.89 2.22 2.51 2.64 3.18 3.54 3.78 3.94

8y 0.43 0.46 0.49 0.57 0.93 1.27 1.59 1.87 1.99 2.49 2.80 3.00 3.12

9y 0.54 0.56 0.60 0.70 1.16 1.58 1.93 2.22 2.36 2.87 3.20 3.40 3.53

10y 0.38 0.39 0.41 0.46 0.73 1.06 1.38 1.66 1.79 2.32 2.66 2.88 3.01

predictability. Intuition suggests a negative answer, as the main driver of expected returns is more

the risky/riskless asset mix than the stock/bond mix in the risky part (see Section 5.3 below).

Simulating the stock/bond correlation confirms this intuition. As shown in the Internet Appendix,

the correlation exhibits the same properties as the other estimated parameters. If its increasing

pattern was driving our results, CE rates for short investment horizons would be affected in the

same way as those for medium and long ones. This is not the case: according to Table 3, CE rates

decrease or increase very slightly (and not monotonically) with h for investment horizons up to

one year. It is only for T longer than one year that CE rates increase sharply and steadily with

the prediction horizon.

5.3 Portfolio compositions

Adopting a prediction horizon of several years instead of one month leads to spectacularly larger

R2s of the predictive regressions. These results translate into increases in the optimal CE rates. A

natural question then arises as to the portfolio’s risk exposure. The percentages of wealth invested

in risky (stocks and bonds) assets that help explain, and reflect, the CE rates displayed in Table

3 are reported in Table 5.

For a given prediction horizon, the proportion of risky assets increases steadily with the in-

vestment horizon, in accordance with the professional conventional wisdom. The other, striking

finding is that we do not observe such a monotonic and quantitatively important pattern across

prediction horizons. The proportion is hump-shaped but tends to increase with h for long-term
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investors (T > 10 years); it is hump-shaped but tends to decrease for the other investors, especially

the short-run ones. This implies that the substantial increase in the CE rate is not obtained by

unrealistic portfolio composition. As we have not imposed leverage or liquidity constraints on the

portfolio, the proportions of wealth devoted to risky assets are rather large. Still, they remain in an

acceptable range given that we have selected a risk aversion coefficient γ significantly smaller (5)

than is usually assumed in empirical research (routinely from 7 to 10). For example, for a 30-year

investment horizon, the CE rate rises from 9.33% to 19.51% (a 109% jump) when the prediction

horizon increases from 1 month to 10 years. Yet, the proportion of risky assets rises from 230% to

301% only (a 31% increase). This (unconstrained) finding is very encouraging as to the potential

value added by LHP.

Overall, although we should bear in mind that the CE rates do not increase monotonically

with h, our results indicate that LHP translates into potentially sizable welfare gains. When

the prediction horizon is enlarged, investors in general benefit from the information that has

accumulated. Therefore, they can more effectively exploit asset return predictability and improve

their welfare. It now remains to be seen whether this economically meaningful result survives the

correction for overlapping observations.

6 Correcting for overlapping observations

For return periods h longer than one month, observations overlap. This creates spurious persistence

in the residuals of the regression of the excess returns on the predictors. To check whether our

results are robust to the correction for this persistence, we adopt the method proposed by Valkanov

(2003). According to his Theorem 3 (on p. 208), one may obtain consistent estimates of the slopes

of the predictive regressions if the stock excess return is regressed on the predictors’ long period

values, the latter being computed as the sum of the predictors’ monthly values over the h-long

period. We thus have to re-identify the parameters of the excess return processes. We run the

following regression for the stock excess returns:

rM,t,t+h −
ˆ t+h

t

rsds = aM,h + βM,h,1

h/∆t−1∑
i=0

z1,t+i∆t + βM,h,2

h/∆t−1∑
i=0

z2,t+i∆t + ξM,t,t+h, (26)

as an alternative to Eq. (24), in accordance with the analysis in Section 3.2 above, in particular

Eq. (23). The prediction regression for the bond excess returns is similar.

6.1 Parameter Estimates

Using the same parameters for the dynamics of the predictors as in subsection 4.2 above since they

are left unaffected, we re-estimate those for the stock and bond excess returns for all prediction
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Table 6: Parameters Estimates with Valkanov’s correction
Panels A and B display the estimated parameters of the processes followed by the stock market return

and the 10-year bond return, respectively. The period is 1942:M1 to 2016:M12 (900 observations). Panel
A: Parameters for the stock market

1m 3m 6m 1y 3y 5y 7y 9y 10y 15y 20y 25y 30y

1m 0.87 0.88 0.89 0.91 1.01 1.13 1.24 1.34 1.39 1.59 1.72 1.80 1.85

3m 0.73 0.74 0.75 0.76 0.82 0.88 0.93 0.98 1.01 1.10 1.17 1.21 1.23

6m 0.64 0.65 0.66 0.69 0.77 0.82 0.87 0.90 0.92 0.97 1.00 1.02 1.03

1y 0.63 0.63 0.64 0.66 0.70 0.72 0.74 0.75 0.76 0.78 0.79 0.79 0.79

2y 0.62 0.61 0.60 0.58 0.54 0.52 0.52 0.52 0.52 0.52 0.52 0.53 0.53

3y 0.79 0.76 0.72 0.65 0.52 0.47 0.45 0.43 0.43 0.42 0.42 0.42 0.42

4y 1.02 0.97 0.90 0.79 0.58 0.50 0.46 0.44 0.43 0.41 0.40 0.40 0.39

5y 0.93 0.89 0.84 0.76 0.59 0.52 0.48 0.46 0.45 0.43 0.42 0.41 0.41

6y 0.89 0.86 0.81 0.73 0.56 0.48 0.44 0.42 0.41 0.38 0.37 0.36 0.36

7y 0.99 0.95 0.90 0.81 0.61 0.52 0.47 0.44 0.44 0.41 0.40 0.40 0.40

8y -3.94 -4.50 -5.75 -13.12 3.45 1.76 1.31 1.11 1.05 0.89 0.83 0.79 0.78

9y 9.12 6.69 4.59 2.61 0.83 0.52 0.42 0.38 0.36 0.33 0.32 0.31 0.31

10y -3.14 -3.23 -3.40 -3.96 45.59 2.86 1.56 1.14 1.03 0.76 0.65 0.61 0.58

Panel B: Parameters for the 10-year bond

1m 3m 6m 1y 2y 3y 4y 5y 6y 7y 8y 9y 10y

µ0 0.006 0.007 0.013 0.021 0.032 0.037 0.041 0.044 0.045 0.044 0.034 0.046 0.044

µ1 -0.439 -0.777 -1.001 -1.215 -1.409 -1.440 -1.449 -1.519 -1.468 -1.456 -1.256 -1.500 -1.353

µ2 3.329 4.449 4.716 4.610 4.114 3.615 3.111 2.922 2.741 2.724 2.262 2.525 1.792

LR Mean = BP 0.024 0.026 0.027 0.028 0.029 0.028 0.028 0.028 0.029 0.029 0.020 0.029 0.023

σ 0.089 0.090 0.088 0.087 0.085 0.082 0.083 0.085 0.084 0.084 0.077 0.086 0.081

SR 0.271 0.291 0.311 0.319 0.338 0.345 0.340 0.327 0.342 0.349 0.263 0.337 0.289

corr(r,bond) -0.208 -0.376 -0.424 -0.462 -0.525 -0.495 -0.488 -0.514 -0.519 -0.514 -0.518 -0.479 -0.488

corr(dy,bond) -0.129 -0.094 -0.078 -0.150 -0.214 -0.226 -0.201 -0.175 -0.188 -0.229 -0.258 -0.287 -0.285

corr(def,bond) 0.229 0.284 0.170 0.034 -0.121 -0.255 -0.273 -0.239 -0.245 -0.261 -0.200 -0.183 -0.173

corr(mkt,bond) 0.078 0.036 0.043 0.170 0.285 0.374 0.402 0.420 0.495 0.577 0.625 0.675 0.678

periods h (except one month) using Valkanov’s correction. Results are reported in Panels A and

B of Table 6, which are analogous to Panels B and C of Table 2.

Comparing Panel A with Panel B of Table 2 shows that the correction has a substantial impact

on the long-run mean of the equity excess return (EP ), although it keeps its hump-shaped pattern

with values lower for long prediction horizons than for short ones. EP ranges between 5.61% and

6.83% before correction and between 5.09% and 7.70% after. In addition, its volatility significantly

decreases with h larger than one year, indicating that stocks are less risky at longer terms, as often

claimed. Yet, interestingly, we do not observe a systematic improvement in the risk-return tradeoff

as the Sharpe ratio is rather stable (slightly humped) across the board. The absolute values of

the correlations between the stock market and the predictors are now somewhat lower for return
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periods longer than one year, an expected result since the predictors become less persistent as the

prediction horizon enlarges.

As to the bond excess returns, three results emerge from the comparison of Panel C of Table 2

with Panel B of Table 6. First, its mean excess return BP is essentially left unchanged. Second,

its correlations with the predictors are smaller, in absolute value and the more so when h is large,

as expected. Third, its volatility now tends to decrease with h, which improves the Sharpe ratio

for longer prediction horizons.

Correcting for overlapping observations thus does affect parameters’ estimates. The final step

is to assess the impact of these changes on CE rates and then on portfolio compositions.

6.2 Impact on welfare and portfolio choice

We compute the CE spreads generated by the new optimal strategies, displayed in Table 7, and

compare them with those obtained without correction for overlapping observations (see Table 4).

We thus performed again the 1,000 simulations, using Valkanov’s correction for the parameter

estimation. Panel A of Table 7 displays the mean of the CE spreads. Panel B reports the Newey-

West t-stats relative to the means.19 With rare exceptions, these t-stats are extremely significant.

Results tend to confirm those of Section 5, although in a less clear cut manner. For investment

horizons up to 7 years, CE spreads are positive and increase almost monotonically with the pre-

diction period, and for investment horizons between 8 and 25 years, CE spreads are positive for

h = 10 years. Spreads are negative only for the 30-year investment horizon.

Overall, at both short and long horizons asset returns are predictable (here, by the dividend

yield and the default spread, and, as shown in the Internet Appendix, by market volatility and

term spread), and the positive impact on investors’ portfolio performance and welfare is sizable. In

almost all cases, CE rates are larger, sometimes notably so, at prediction horizons longer than one

month and, in the majority of cases, this finding survives Valkanov’s correction. LHP thus retains

its potential value and does not appear to spring spuriously from using overlapping observations.

However, since the added value of LHP does not increase monotonically with h, the fact that

the R2s of the stock and bond excess return dynamics does not in itself guarantee that welfare

improves with the length of the prediction horizon.

7 Out-of-Sample Analysis

Finally, it remains to be seen whether our in-sample results survive out of sample (OOS). While such

an OOS exercise is straightforward when considering static investors, which is typically the case in

the asset allocation literature with a one-month investment horizon, it is much more challenging in

19The Internet Appendix provides the CE rates from which spreads are obtained. To gain space, OLS t-stats are
not shown as they are almost identical to Newey-West ones.
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Table 7: Simulated Certainty Equivalent Spreads
This Table is analogous to Table 4 except that we use Valkanov’s correction for overlapping data when

estimating the parameters. Panel A displays the mean spreads (computed over the 1,000 simulations).

Panel B exhibits the Newey-West t-stats relative to these means, the adopted number of lags being equal

to the estimation horizon minus 1. The sample period is 1942:M1 to 2016:M12.

Panel A: Mean Spreads

1m 3m 6m 1y 2y 3y 4y 5y 6y 7y 8y 9y 10y

1m 0.37 0.45 0.48 0.49 0.57 0.69 0.66 1.01 1.22 1.19 1.76 2.68

3m 0.37 0.46 0.49 0.52 0.59 0.72 0.70 1.04 1.24 1.20 1.80 2.74

6m 0.37 0.46 0.50 0.54 0.62 0.75 0.73 1.07 1.27 1.21 1.85 2.79

1y 0.35 0.45 0.50 0.54 0.63 0.77 0.77 1.09 1.30 1.22 1.90 2.85

3y 0.16 0.24 0.29 0.35 0.45 0.59 0.64 0.93 1.15 1.07 1.78 2.64

5y -0.04 -0.01 0.02 0.08 0.17 0.30 0.36 0.63 0.83 0.77 1.43 2.23

7y -0.21 -0.21 -0.20 -0.16 -0.09 0.02 0.08 0.33 0.51 0.45 1.08 1.83

10y -0.38 -0.43 -0.45 -0.44 -0.39 -0.31 -0.27 -0.06 0.10 0.02 0.63 1.33

15y -0.54 -0.64 -0.70 -0.75 -0.74 -0.68 -0.68 -0.51 -0.38 -0.50 0.08 0.73

20y -0.62 -0.75 -0.85 -0.93 -0.94 -0.91 -0.93 -0.79 -0.70 -0.83 -0.29 0.34

25y -0.65 -0.81 -0.92 -1.03 -1.07 -1.06 -1.09 -0.97 -0.90 -1.04 -0.53 0.07

30y -0.67 -0.85 -0.97 -1.10 -1.15 -1.15 -1.20 -1.10 -1.04 -1.20 -0.71 -0.11

Panel B: Newey - West t-Statistics

1m 3m 6m 1y 2y 3y 4y 5y 6y 7y 8y 9y 10y

1m 47.5 38.7 30.9 21.3 18.0 17.1 14.3 19.5 22.2 18.9 27.1 31.0

3m 47.4 38.8 31.3 21.6 18.2 17.1 14.6 19.4 22.0 18.9 27.3 31.1

6m 45.7 38.0 31.1 21.5 18.0 16.9 14.8 19.3 21.6 18.8 27.3 31.1

1y 40.5 34.6 29.1 20.6 17.3 16.4 14.7 18.8 21.1 18.6 27.4 31.2

3y 14.4 15.2 14.6 12.7 11.7 12.1 11.7 15.6 17.9 16.5 25.8 30.3

5y -3.3 -0.7 1.1 2.8 4.4 6.1 6.6 10.7 13.3 12.0 22.0 27.3

7y -13.8 -10.7 -8.4 -5.1 -2.1 0.5 1.5 5.6 8.2 7.0 17.0 23.5

10y -23.2 -20.1 -17.6 -13.5 -9.4 -6.2 -5.0 -1.0 1.6 0.2 10.0 17.6

15y -31.6 -28.7 -26.3 -21.5 -16.9 -13.4 -12.2 -8.6 -5.9 -7.7 1.3 9.8

20y -35.4 -33.1 -31.0 -25.9 -21.2 -17.7 -16.5 -13.3 -10.8 -12.7 -4.6 4.6

25y -37.1 -35.6 -33.7 -28.6 -23.8 -20.4 -19.2 -16.3 -14.0 -16.0 -8.5 1.0

30y -37.6 -36.8 -35.3 -30.3 -25.5 -22.1 -21.0 -18.4 -16.1 -18.4 -11.3 -1.5
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a dynamic, intertemporal setting. We first estimate the parameters over a burn-out period, before

rolling the window. As usual, there is a tension here as the estimation period should be neither

too short, to ensure the quality of the estimates), nor too long, to make room for a significant OOS

period. The half-life of the predictors and the interest rate can guide our choice. The dividend yield

is very persistent, exhibiting an autoregressive coefficient of 0.9882 at the one-month frequency.

Its half-life is 58 years (-log(2)/log(0.9882)). Those of the default spread and interest rate are 24

and 23 years, respectively. We thus opt for a burnt-out window of 38 years, close to the average of

the previous three half-lives. We then obtain 432, 408 and 384 valid OOS realizations for 1-year,

3-year and 5-year investment horizons, respectively, which allows for a significant perspective on

the findings.

We proceed as follows. Using the 38-year window, we estimate the parameters to be used over

the whole investment period. We do not update the parameters during the investment period lest

the strategy would become time inconsistent. Initial investment is one dollar and the portfolio is

rebalanced every month. We report in Table 8 the accumulated wealth as well as the corresponding

CEs, both in dollars and annual percentages. Figure 1 provides details for yearly mean returns for

the 1-year, 3-year and 5-year investment horizons. The prediction horizon h is 1, 12, 36 and 60

months.

LHP is unquestionably valuable out-of-sample also. For the 1-year and 3-year investment

horizons, the OOS performance increases steadily (almost monotonically) up to h = 3 years, and

is still significantly better for h=4 years than for h=1 month. For the 5-year investment horizon,

the OOS performance increases virtually monotonically up to h = 4 years. Only for h = 5 are the

results out-of-line.

8 Conclusion

The upshot of this research is that, although the dramatic increase in the predictive regression

R2s obtained by lengthening the prediction horizon does not translate in a comparable increase in

welfare and the relationship between the length of the return period (prediction horizon) and the

CE rate is weaker and not necessarily monotonic, LHP has economic value.

The econometric method we use to obtain the parameters of the predictive regressions and of

the stock and bond excess returns when the prediction horizon is longer than one period is novel

regarding asset allocation. Instead of mechanically inferring these parameters from those obtained

from the one-period prediction horizon, we let the data choose what are the best parameters for

each and every prediction horizon. Also, we distinguish the latter from the investment horizon.

The influence predictability exerts on the composition and CE return rate of optimal portfolios

is generally more pronounced for longer prediction horizons, although the extent of this result

depends on the investor’s horizon. In addition, it does not crucially depend on whether estimates

of the parameters for excess returns are corrected for the persistence in residuals generated by

28



Table 8: Summary Statistics of Out-of-sample Returns
We report various statistics for the out-of-sample returns on wealth for three investment horizons (1, 3

and 5 years). SR stands for the Sharpe ratio computed over the period. The certainty equivalent in

dollars (CE($)) and annualized in percentage (CE(%)) is computed for a risk aversion equal to 5.

Panel A: 1-year investment horizon
1m 3m 6m 1y 2y 3y 4y 5y

Mean (yearly, %) 8.382 8.487 8.565 8.197 9.328 10.119 9.321 6.725

Std (yearly, %) 9.409 8.619 8.401 7.929 9.683 11.383 10.656 11.710

Min (yearly, %) -13.065 -11.624 -10.055 -8.992 -8.799 -11.236 -11.133 -29.248

Max (yearly, %) 31.419 28.059 27.946 26.120 34.858 41.493 37.186 30.103

Skewness -0.127 -0.172 -0.021 0.099 0.671 0.650 0.413 -0.869

Kurtosis 3.328 3.102 2.986 2.949 3.497 3.501 3.147 4.488

SR 0.891 0.985 1.020 1.034 0.963 0.889 0.875 0.574

CE ($) 1.062 1.067 1.069 1.067 1.074 1.074 1.068 1.023

CE (%) 6.217 6.681 6.897 6.738 7.357 7.423 6.839 2.350

Panel B: 3-year investment horizon
1m 3m 6m 1y 2y 3y 4y 5y

Mean 8.958 9.370 9.571 9.208 9.671 10.453 10.170 7.065

Std 5.397 5.076 4.768 4.317 4.649 5.985 6.220 9.483

Min -4.787 -2.863 -1.748 -0.546 2.729 1.140 -0.667 -25.397

Max 20.426 19.669 18.726 18.495 20.533 24.579 25.169 20.491

Skewness -0.309 -0.214 -0.220 0.015 0.604 0.625 0.536 -1.922

Kurtosis 3.284 2.926 2.753 2.760 2.573 2.756 2.932 7.291

SR 1.660 1.846 2.007 2.133 2.080 1.747 1.635 0.745

CE ($) 1.226 1.251 1.265 1.263 1.279 1.282 1.265 0.838

CE (%) 7.035 7.741 8.149 8.093 8.537 8.640 8.150 -5.726

Panel C: 5-year investment horizon
1m 3m 6m 1y 2y 3y 4y 5y

Mean 9.124 9.847 10.211 9.881 10.224 11.154 11.215 8.536

Std 4.589 4.581 4.454 4.098 4.347 5.469 5.447 6.815

Min 0.646 1.962 2.706 3.114 2.903 1.749 2.284 -11.173

Max 18.900 19.169 19.253 18.785 20.941 25.434 25.674 20.747

Skewness 0.093 0.158 0.167 0.252 0.579 0.773 0.827 -1.075

Kurtosis 2.295 2.169 2.150 2.283 3.024 3.422 3.420 4.748

SR 1.988 2.150 2.293 2.411 2.352 2.040 2.059 1.252

CE ($) 1.416 1.469 1.501 1.498 1.516 1.531 1.541 1.057

CE (%) 7.204 7.996 8.468 8.414 8.678 8.896 9.027 1.107
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Figure 1: Out of Sample Returns
This Figure displays the out-of-sample returns on wealth for three investment horizons (1, 3 and 5 years,

column-wise) and four prediction horizons (1 month, 1, 3 and 5 years, row-wise.
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overlapping observations.

This work can be extended in at least two directions. First, it could be generalized to in-

corporate other sources of uncertainty that investors face in practice, such as model uncertainty

or preference for robustness, estimation risk, and uncertainty about current and future expected

returns in the spirit of Pastor and Stambaugh (2012). These are, however, serious and difficult

challenges because of inference issues and the dynamic nature of the portfolio optimization pro-

gram. Second, the argument put forward in this paper could be also applied to the numerous

papers that use long-horizon returns to test asset pricing models. While most papers proceed

by inferring long-horizon returns from short-horizon ones, our work suggests that using genuine

long-horizon returns may yield substantially different results.
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Carmona, J., A. León and A. Vaello-Sebastià, 2012, Does stock return predictability affect ESO
fair value? European Journal of Operational Research 223, 188-202.

31



Carroll, R., T. Conlon, J. Cotter and E. Salvador, 2017, Asset allocation with correlation: A
composite trade-off, European Journal of Operational Research 262, 1164-1180.

Cochrane, J., 1999, Portfolio advice for a multifactor world (No. w7170), National Bureau of
Economic Research.

Cochrane, J., 2005, Asset Pricing, Princeton, NJ: Princeton University Press.
Dew-Becker, I. and S. Giglio, 2016, Asset pricing in the frequency domain: theory and empirics,

The Review of Financial Studies, 29(8), 2029-2068.
Fama, E. and K. French, 1988, Dividend yields and expected stock returns, Journal of Financial

Economics, 22, 3-25.
Fama, E. and K. French, 1989, Business conditions and expected returns on stocks and bonds,

Journal of Financial Economics 25, 23-49.
Fama, E. and K. French, 2018, Long-Horizon Returns, The Review of Asset Pricing Studies,

forthcoming.
Favero, C. A., Ortu, F., Tamoni, A., Yang, H., 2017, Implications of Return Predictability across

Horizons for Asset Pricing Models, Working Paper.
Fuster, A., Hebert, B., Laibson, D., 2010, Investment dynamics with natural expectations, Inter-

national journal of central banking/Bank of Canada, 8(81), 243.
Goyal, A. and I. Welch, 2007, A comprehensive look at the empirical performance of equity

premium prediction, The Review of Financial Studies, 21(4), 1455-1508.
Hansen, L. and R. Jagannathan, 1991, Implications of security market data for models of dynamic

economies, Journal of political economy, 99(2), 225-262.
Huang, D. and G. Zhou, 2017, Upper bounds on return predictability, Journal of Financial and

Quantitative Analysis 52 (2), 401-425.
Inoue, A. and K. Lutz, 2002, Bootstrapping autoregressive processes with possible unit roots,

Econometrica 70(1), 377-391.
Kim, T. and E. Omberg, 1996, Dynamic nonmyopic portfolio behavior, Review of Financial Studies

9, 141-61.
Koijen, R. and S. Van Nieuwerburgh, 2011, Predictability of Returns and Cash Flows, Annual

Review of Financial Economics 3, 467-491.
Kreiss, J. P. and S. Lahiri, 2012, Bootstrap methods for time series, Handbook of Statistics 30,

3-26.
Lamont, O., 1998, Earnings and expected returns, The journal of Finance, 53(5), 1563-1587.
Lettau, M. and S. Ludvigson, 2001, Consumption, Aggregate Wealth, and Expected Stock Returns,

Journal of Finance, 56, 815-849
Madan, D. and W. Schoutens, 2018, Self-similarity in Long Horizon Asset Returns, Working Paper.
Martin, I., 2017, What is the Expected Return on the Market?, The Quarterly Journal of Eco-

nomics, 132(1), 367-43
Morell, J., 2018, The decline in the predictive power of the US term spread: A structural inter-

pretation, Journal of Macroeconomics, 55, 314-331.
Moreno, D. and I. Olmeda, 2007, Is the predictability of emerging and developed stock markets

really exploitable? European Journal of Operational Research 182, 436-454.
Pastor L. and R. Stambaugh, 2012, Are Stocks Really Less Volatile in the Long Run?, Journal of

Finance 67, 431-478.
Poterba, J. and L. Summers, 1988, Mean reversion in stock prices: evidence and implications,

Journal of Financial Economics 22, 27-59.
Poti, V., 2018, A new tight and general bound on return predictability, Economics Letters 162,

140-145.

32



Ross, S.A., 2005. Neoclassical Finance. Princeton University Press.
Rossi, M., T. Simin and D. Smith, 2013, Return Predictability Under the Alternative, Working

Paper.
Schmidt, M., 2011, Interest rate term structure modelling, European Journal of Operational Re-

search 214, 1-14.
Stambaugh, R., 1999, Predictive regressions, Journal of Financial Economics 54, 375-421.
Valkanov, R., 2003, Long-Horizon Regressions: Theoretical Results and Applications, Journal of

Financial Economics, 68, 201-232.
Wachter, J., 2010, Asset allocation, Annual Reviews of Financial Economics 2, 175-206.
Wang, Y., Liu, L., Ma, F., Diao, X., 2018, Momentum of return predictability, Journal of Empirical

Finance, 45, 141-156.
Yao, H., Z. Li and D. Li, 2016, Multi-period mean-variance portfolio selection with stochastic

interest rate and uncontrollable liability, European Journal of Operational Research 252, 837-
851.

33




