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In the stable general linear group over an arbitrary field, we prove that every element with determinant ±1 is the product of three involutions, and of no less in general. We also obtain several results of the same flavor, with applications to decompositions of automorphisms of an infinite-dimensional vector space that are scalar multiples of finite-rank perturbations of the identity.

Introduction

The problem

Let F be a field, whose group of units we denote by F * . Denote by M n (F) the algebra of all n by n square matrices with entries in F, by GL n (F) its group of invertible elements, and by SL n (F) its subgroup of all matrices with determinant 1. The zero matrix of M n (F) is denoted by 0 n , the identity matrix by I n . A matrix of M n (F) will be called scalar when it is a scalar multiple of I n .

An element x of a group G, with unity 1 G , is called an involution whenever x 2 = 1 G . An element x of a unital ring R is called unipotent of index 2 when (x-1 R ) 2 = 0 R (i.e. it is invertible, with inverse 2.1 R -x). In particular, a matrix A ∈ GL n (F) is an involution if and only if A 2 = I n , and it is unipotent of index 2 if and only if (A -I n ) 2 = 0 n (in which case we say that A is a U 2 -matrix). We note that the U 2 -matrices are the involutions if F has characteristic 2. Every involutory matrix has determinant ±1, while every U 2 -matrix has determinant 1. Note also that I n is both an involution and a U 2 -matrix.

Our starting point is the classical problem of decomposing a square matrix into a product of involutions (with unprescribed number of factors). Obviously, a matrix that is a product of involutions must be invertible, and more precisely its determinant must equal ±1. The converse is easily proved by noting that any transvection matrix is the product of two involutions: for 2 by 2 matrices, we note that, for all λ ∈ F,

1 λ 0 1 = 1 0 0 -1 1 λ 0 -1 .
The next step in this problem is the so-called length problem: given a matrix A ∈ GL n (F) with determinant ±1, what is the minimal number of factors ℓ(A) (called the length of A) required to write A as the product of ℓ(A) involutions? For similar problems, see [START_REF] Carter | Bounded elementary generation of SL n (O)[END_REF], in which the authors determine an upper bound for the minimal number of factors necessary to express an element of SL n (O) into a product of elementary matrices (where O is the ring of integers in an algebraic number field), [START_REF] Dennis | On a question of M. Newman on the number of commutators[END_REF], where the authors consider the corresponding problem for decompositions of an element of SL n (R) into a product of commutators (where R is a commutative Euclidean ring), and [START_REF] Vaserstein | Commutators and companion matrices over rings of stable rank 1[END_REF] where the authors prove that every element of SL n (A) is the product of two commutators when A is a commutative ring that satisfies the first Bass stable range condition.

Surprisingly, ℓ(A) is very small! More precisely, ℓ(A) ≤ 4; in other words, every matrix with determinant ±1 is the product of at most four involutions (see [START_REF] Gustafson | Products of involutions[END_REF], and [START_REF] Sourour | A factorization theorem for matrices[END_REF] for a shorter proof over fields with large cardinality). Yet, in general there are matrices with determinant ±1 that fail to be the product of three involutions (e.g. any matrix of the form αI n in which α ∈ F * satisfies α n = ±1 and α 4 = 1; see [START_REF] Halmos | Products of symmetries[END_REF]).

The matrices that are the product of two involutions are known: the celebrated theorem of Wonenburger [START_REF] Wonenburger | Transformations which are products of two involutions[END_REF] (for the field of complex numbers), Djokovic [START_REF] Djoković | Products of two involutions[END_REF] (for the general case), and Hoffmann and Paige [START_REF] Hoffman | Products of two involutions in the general linear group[END_REF] (an independent discovery) states that they are exactly the invertible matrices that are similar to their inverse: this result is rephrased as point (i) of Theorem 1.2 in the present article. Note that, in any group, an element is the product of two involutions only if it is conjugated to its inverse.

The remaining open problem is the determination of the matrices A with length 3. Of course, the length of A is invariant under conjugation, and hence it is encoded in the invariant factors of A (i.e. its rational canonical form). Unfortunately, several studies in low dimension have shown that for length 3 no neat necessary and sufficient condition in terms of invariant factors appears possible (a famous quote by Paul Halmos even states that "the best known characterization of products of three involutions is being the product of three involutions"). Several interesting non-trivial necessary conditions have been found however: for example, if A is of length 3 then it has no eigenvalue λ with geometric multiplicity at least 3n 4 and such that λ 4 = 1 (see [START_REF] Ballantine | Products of involutory matrices I[END_REF]). This result has been improved by Liu (see Theorem 3.1 of [START_REF] Liu | Decomposition of matrices into three involutions[END_REF]). Moreover, several nice sufficient conditions are also known: for example if A has determinant ±1 and a sole invariant factor then it is the product of three involutions (see [START_REF] Ballantine | Products of involutory matrices I[END_REF], and also Proposition 3.7 here); if F is the field of complex numbers, A has determinant ±1 and all its eigenvalues have geometric multiplicity at most n 2 , then A is the product of three involutions [START_REF] Liu | Decomposition of matrices into three involutions[END_REF]. Here, we will prove a variation of that result for arbitrary fields (see Theorem 1.6). Finally, characterizations are known for very small values of n. Yet, we agree with Halmos that a full solution to the length problem should be viewed as an essentially hopeless endeavour.

In the present article, we will not tackle the length problem per se but the stable length problem, which is motivated by the length problem in the general linear group of an infinite-dimensional vector space (see Section 1.3). Given A ∈ GL n (F) and p ∈ N, we consider the "augmented matrix"

A ⊕ I p := A 0 0 I p ∈ GL n+p (F).
Interestingly, this new matrix has the same determinant as A, and hence it is a product of involutions if and only if so is A. Obviously, if A is of length k then A ⊕ I p is of length at most k: indeed if we split A = S 1 • • • S k for involutions S 1 , . . . , S k , then A ⊕ I p = (S 1 ⊕ I p ) • • • (S k ⊕ I p ) is obviously the product of k involutions. Moreover, judging from Djokovic's theorem, A ⊕ I p is of length 2 if and only if A is of length 2 (classically, the primary canonical form yields a cancellation rule for the similarity of matrices with respect to the direct sum). Strikingly, there are cases when ℓ(A ⊕ I p ) = 3 whereas ℓ(A) = 4! For example, it is known that given a positive integer p > 0 and a scalar α in F with α p = ±1 and α 4 = 1, the matrix αI p is of length 4 (see [START_REF] Halmos | Products of symmetries[END_REF]), yet αI p ⊕ I p is of length 3 (see Lemma 7.1).

Here, we shall prove that for every matrix A ∈ GL n (F) having determinant ±1, the augmented matrix A ⊕ I n is the product of three involutions. In [START_REF] De Seguins Pazzis | A note on sums of three square-zero matrices[END_REF], a similar result was proved for the decomposition of a trace-zero matrix into the sum of three square-zero matrices. The striking point here is that, in the known sufficient conditions for a matrix A ∈ GL n (C) with determinant ±1 to be the product of three involutions, it is required that there be no eigenvalue with geometric multiplicity too large. In contrast, here it is precisely the fact that 1 is an eigenvalue with large geometric multiplicity that will make A ⊕ I n a product of three involutions if det A = ±1!

The stable length problem has a nice reformulation as a statement on the stable general linear group. Recall that this group can be defined as follows. For A ∈ GL n (F) and B ∈ GL p (F), we say that A and B are stably equal whenever A ⊕ I p = B ⊕ I n . This defines an equivalence relation on the union n∈N GL n (F), whose quotient set we denote by GL ∞ (F). Noting that the class of the product (A ⊕ I p ) × (B ⊕ I n ) depends only on the respective classes of the matrices A ∈ GL n (F) and B ∈ GL p (F), we naturally endow GL ∞ (F) with a group structure. Noting that det(A ⊕ I 1 ) = det(A) for all A ∈ GL n (F), we see that all the matrices in an equivalence class share the same determinant. This yields a group homomorphism from GL ∞ (F) to F * , called the determinant.

Let now A ∈ GL n (F) have determinant ±1. By the above, the sequence of lengths ℓ(A ⊕ I k ) k∈N is non-increasing, and one sees that its ultimate value is the length of the class of A in GL ∞ (F), i.e. the minimal number of factors required to write this class as a product of involutions. Moreover, this length equals 2 if and only if the length of A equals 2, which is equivalent to the class of A being conjugated to its inverse in GL ∞ (F). Hence, as a consequence of Theorems 1.2 and 1.7 that follow, the length problem will be completely solved in the stable group GL ∞ (F):

Theorem 1.1. (a) An element of GL ∞ (F) is a product of involutions if and
only if its determinant equals ±1.

(b) An element of GL ∞ (F) is the product of two involutions if and only if it is conjugated to its inverse.

(c) Every element of GL ∞ (F) with determinant ±1 is the product of three involutions.

Actually, we will not restrict our study to decompositions into products of involutions, because the techniques we develop here allow us to consider more general decompositions that involve involutions and U 2 -matrices. Here is our more general problem: let A 1 , . . . , A k be subsets of GL n (F), each of which equal to the set of all involutions or to the set of all U 2 -matrices, and set

A 1 • • • A k := k i=1 S i | S 1 ∈ A 1 , . . . , S k ∈ A k .
Given a matrix A ∈ GL n (F), can we give a nice necessary and sufficient condition for A to belong to A 1 • • • A k ? A full solution to this is known when k = 2, and we will also obtain one for k ≥ 4. A complete solution in the case k = 3 is of course out of reach as it would imply a characterization of products of three involutions. In the case k = 3, we will however give a complete solution to the stable version of this problem (see Theorems 1.7 to 1.10).

In general, we note that, since each set A i is stable under conjugation, so is

A 1 • • • A k .
Moreover, it is crucial to observe that the order of factors is not important. To see this, consider two subsets U and V of GL n (F) that are both stable under conjugation and transposition. Then, we claim that UV = VU. First, VU is stable under conjugation, obviously. Then, given (u, v) ∈ U × V, we write (uv) T = v T u T to find that (uv) T belongs to VU and we conclude that so does uv because every square matrix with entries in a field is similar to its transpose.

It follows that A 1 • • • A k = A σ(1) • • • A σ(k) for every permutation σ of [[1, k]].
In particular, given k ∈ {0, 1, 2, 3}, if a matrix of GL n (F) is the product of k involutions and (3 -k) unipotent matrices of index 2 in some prescribed order, then it is the product of k involutions and (3 -k) unipotent matrices of index 2 in any possible order! Hence, for the length 3 problem, we only have four cases to consider, and for the length 4 problem only five cases need consideration.

Main results

It is time to state our main results. Here, we write A ≃ B to state that two square matrices A and B are similar. We start by recalling the characterization of products of two involutions, and the one of products of two U 2 -matrices. We will make systematic use of them. See [START_REF] Djoković | Products of two involutions[END_REF] for statement (i), and [START_REF] Botha | Product of two unipotent matrices of index 2[END_REF] for statement (ii) (see also the recent [START_REF] De Seguins Pazzis | The sum and the product of two quadratic matrices[END_REF] for a more general characterization of products of two invertible matrices with prescribed annihilated polynomials with degree 2).

Theorem 1.2. Let M ∈ GL n (F). (i) The matrix M is the product of two involutions if and only if M ≃ M -1 . (ii) The matrix M is the product of two U 2 -matrices if and only if M ≃ M -1
and, if char(F) = 2, all the Jordan cells of M with respect to the eigenvalue -1 are even-sized.

Note in particular that a matrix that is the product of two U 2 -matrices is also the product of two involutions!

The matrices that are the product of an involution and a U 2 -matrix are also known: see [START_REF] Wang | Sums and products of two quadratic matrices[END_REF] for the field of complex numbers, and [START_REF] De Seguins Pazzis | The sum and the product of two quadratic matrices[END_REF] for the general case. We will only use the following two sufficient conditions:

Theorem 1.3. Let M ∈ GL n (F). Assume that M ≃ -M -1
and that, for any α ∈ F {1} such that α 2 = -1, the Jordan cells of M associated to the eigenvalue α are all even-sized. Then, M is the product of a U 2 -matrix and an involution.

Theorem 1.4. Let k, l be non-negative integers such that |k -l| ≤ 2, and let M be the direct sum of a Jordan cell with size k for the eigenvalue 1 and of a Jordan cell with size l for the eigenvalue -1. Then, M is the product of a U 2 -matrix and an involution. Now, we turn to the new results. First, our result on the length 4 problem in the general linear group (not the stable one!): Theorem 1.5. Let A 1 , . . . , A 4 be subsets of GL n (F), in which each A i equals the set of all involutions or the one of all U 2 -matrices.

If at least one A i equals the set of all involutions, then

A 1 A 3 A 3 A 4 = M ∈ GL n (F) : det M = ±1}.
Otherwise,

A 1 A 3 A 3 A 4 = SL n (F).
Here, the case when all the A i 's equal the set of all involutions of GL n (F) was already known, as stated in the introduction ( [START_REF] Gustafson | Products of involutions[END_REF]), and the case when all the A i 's equal the set of all U 2 -matrices of GL n (F) was known over the field of complex numbers (see [START_REF] Wang | Products of unipotent matrices with index 2[END_REF]).

Next, we have a new sufficient condition for the decomposability into the product of three matrices, either unipotent of index 2 or involutory: Theorem 1.6. Let M ∈ GL n (F) be such that det M = ±1. Assume that M has at most one Jordan cell of size 1 for each one of its eigenvalues in F, and that the characteristic polynomial of M is not a power of some irreducible polynomial.

Then, for all k ∈ {0, 1, 2}, the matrix M is the product of k unipotent matrices of index 2 and 3 -k involutions. Moreover, if det M = 1 then M is the product of three U 2 -matrices.

Note that our assumptions imply that every eigenvalue of M in F has geometric multiplicity at most n 2 • Hence, in the case when k = 0 and F is the field of complex numbers, our result is weaker than the result of Liu recalled in the introduction (theorem 2.5 of [START_REF] Liu | Decomposition of matrices into three involutions[END_REF]).

Our most demanding results deal with the stable length 3 problem. First, the case of three involutions: Theorem 1.7. Let A ∈ GL n (F) have determinant ±1. Then, A ⊕ I n is the product of three involutions.

Then, the case of three U 2 -matrices, which turns out to be easier to deal with:

Theorem 1.8. Let A ∈ SL n (F). Then, A ⊕ I n is the product of three U 2 - matrices.
Finally, the results on "mixed" products, the latter of which is the most difficult of all: Theorem 1.9. Let A ∈ GL n (F) have determinant ±1. Then, A ⊕ I n is the product of two involutions and one U 2 -matrix.

Theorem 1.10. Let A ∈ GL n (F) have determinant ±1. Then, A ⊕ I n is the product of one involution and two U 2 -matrices.

Using the same techniques, we will also prove three additional results of the same flavor in which we augment the matrix A not by an identity matrix, but by a scalar multiple of an identity matrix.

The motivation for tackling such results is related to the characterization of the scalar matrices that are of length 3. It can indeed be proved that, given a scalar α and a positive integer n:

• The matrix αI n is the product of three involutions if and only if α = ±1, or α 4 = 1 and n is even. The same holds for the decomposition into the product of one involution and two U 2 -matrices.

• The matrix αI n is the product of three U 2 -matrices if and only if α = 1, or α = -1 and n is even.

• The matrix αI n is the product of two involutions and one U 2 -matrix if and only if α = ±1.

Theorem 1.11. Assume that F has characteristic not 2, and let i be an element of F such that i 2 = -1. Let A ∈ GL n (F), and let r ≥ n be an integer such that i r det A = ±1. Then, A ⊕ (iI r ) is the product of three involutions.

Theorem 1.12. Assume that F has characteristic not 2. Let A ∈ GL n (F), and let k ≥ n be an integer such that (-1)

k det A = 1. Then, A ⊕ (-I k ) is the product of three U 2 -matrices.
Theorem 1.13. Assume that F has characteristic not 2, and let i be an element of F such that i 2 = -1. Let A ∈ GL n (F), and let r ≥ n be an integer such that i r det A = ±1. Then, A ⊕ (iI r ) is the product of one involution and two U 2matrices.

Application to the general linear group of an infinite-dimensional vector space

Our motivation for tackling the stable length problem comes from the length problem in infinite-dimensional vector spaces. Let V be an infinite-dimensional vector space over F. Denote by End(V ) the algebra of all endomorphisms of V , and by GL(V ) its group of invertible elements (i.e. the automorphisms of V ). It can be shown that every element of GL(V ) is a product of involutions, and, better still, every element of GL(V ) is the product of four involutions (this will be proved in a subsequent article). Over fields with more than 3 elements, there are automorphisms that are not the product of three involutions however, which motivates us to characterize the automorphisms that are the product of three involutions.

In considering this problem, it turns out that a special kind of automorphism needs to be singled out: the ones that equal α id V +u for some nonzero scalar α and some finite-rank endomorphism u. Denote by End f (V ) the twosided ideal of End(V ) consisting of the finite-rank endomorphisms of V . Then, F id V ⊕ End f (V ) is a subalgebra of End(V ), denoted by A(V ), and every element of it that is invertible in End(V ) has its inverse in A(V ). To every f ∈ A(V ), we assign the unique λ(f ) ∈ F such that f -λ(f ) id V has finite rank, thereby defining a morphism of F-algebras from A(V ) to F. We denote by GP f (V ) the group of all invertible elements of the algebra A(V ), and by SP f (V ) the subgroup of all elements of GP f (V ) of the form id V +u for some

u ∈ End f (V ) (i.e. the kernel of f ∈ GP f (V ) → λ(f ) ∈ F * ). Hence, GP f (V ) is isomorphic to the direct product of SP f (V ) with F * .
For every u ∈ SP f (V ) and every finite-dimensional linear subspace W of V that includes Im(u -id V ), the determinant of the induced endomorphism u |W depends only on u (not on the choice of W ). By assigning this quantity to u, one obtains a group homomorphism from SP f (V ) to F * , called the determinant.

Here, we shall derive the following results from the theorems stated in the preceding section: Proposition 1.14. Let u ∈ SP f (V ) have determinant ±1. Then, in the algebra A(V ), u is the product of three involutions, and also of one unipotent element of index 2 and two involutions, and also of one involution and two unipotent elements of index 2 (in any prescribed order).

Moreover, if u has determinant 1 then it is the product of three unipotent elements of index 2.

Proof. We prove the first claimed result. The proof is similar for the other three, and consequently left to the reader.

We choose a finite-dimensional linear subspace W of V such that Im(uid V ) ⊂ W and W + Ker(u -id V ) = V . Then, we choose a linear subspace H of Ker(u -id V ) such that W ⊕ H = V . Set n := dim W . Then, H is infinite-dimensional, and hence we can re-split H = H 1 ⊕ H 2 where dim H 1 = n. Choose a matrix A that represents the automorphism of W induced by u. Then, det A = det u = ±1. Since u is the identity on H 1 , the automorphism v of W ⊕ H 1 induced by u is represented by A ⊕ I n in some basis. Hence, by Theorem 1.7, v = abc for some involutions a, b, c in GL(W ⊕ H 1 ). Now, extend a, b, c to automorphisms ã, b, c of V that are the identity on H 2 . Obviously, ã, b, c are involutions that belong to SP f (V ), and u = a b c.

Noting that the opposite of an involution is an involution, we deduce the following corollary:

Corollary 1.15. Let u ∈ SP f (V ) have determinant ±1, and let ε ∈ {-1, 1}.
Then, in the algebra End(V ), εu is the product of three involutions, and also of one unipotent element of index 2 and two involutions, and also of one involution and two unipotent elements of index 2 (in any prescribed order).

Here are the corresponding results for special extensions: Proposition 1.16. Let i ∈ F * be of order 4. Let u ∈ SP f (V ) have its determinant in {±1, ±i}. Then, in the algebra End(V ), the automorphism iu is the product of three involutions, and also the product of one involution and two unipotent elements of index 2 (in any prescribed order). Proposition 1.17. Let u ∈ SP f (V ) have determinant ±1. Then, in the algebra End(V ), -u is the product of three unipotent elements of index 2.

We only prove Proposition 1.16, since the proof of Proposition 1.17 is essentially similar.

Proof. We choose a finite-dimensional linear subspace

W of V such that Im(u - id V ) ⊂ W and W + Ker(u -id V ) = V . Then, we choose a linear subspace H of Ker(u -id V ) such that W ⊕ H = V . Set n := dim W .
Choose a matrix A that represents the automorphism of W induced by u. Then det(iA) = i n det u ∈ {±1, ±i}. By Theorem 1.11, there is an integer k ≥ 0 such that iA ⊕ iI k is the product of three involutions in GL n+k (F). Then, we resplit

H = H 1 ⊕ H 2 where dim H 1 = k.
Since u is the identity on H 1 , the automorphism v of W ⊕ H 1 induced by iu is represented by iA ⊕ iI k in some basis. Hence, v = abc for some involutions a, b, c in GL(W ⊕ H 1 ). Next, we can write H 2 = x∈X P x in which each P x is a 2-dimensional linear subspace of V . By Corollary 7.3, for each x ∈ X we can find involutions a x , b x and c x in GL(P x ) such that a x b x c x = i id Px . Now, consider the endomorphism a of V whose restriction to W ⊕ H 1 is a and whose restriction to P x is a x for all x ∈ X: this is obviously an involution. Likewise, we define b and c, and we obtain iu = ãb c.

In a similar fashion, one deduces from Theorem 1.13 and Corollary 7.3 that iu is the product of one involution and two unipotent endomorphisms of index 2 (in any prescribed order).

The proof of Proposition 1.17 is an easy adaptation of the previous one, where instead of Theorems 1.11 and 1.13, one uses Theorem 1.12, and instead of Corollary 7.3 one uses Lemma 6.1.

Finally, it can be proved that the above results yield all the elements of GP f (V ) that are the product of three involutions (respectively, of two involutions and a unipotent element of index 2, of one involution and two unipotent elements of index 2, of three unipotent elements of index 2) in the group GL(V ). This is however another story to be told.

In a further article, the above results will be used to complete the classification of the products of three involutions in GL(V ), as well as for the other three types of decompositions we have considered earlier.

Strategy, and structure of the article

Let us start from the problem of decomposing a matrix A ∈ GL n (F) into the product of three involutions. Note that this problem is invariant under replacing A with a similar matrix B, and that it amounts to finding an involution S such that SA is the product of two involutions. The following notion and notation will thus be very convenient:

Definition 1.1. Let A, B be matrices of GL n (F).
We say that A is i-adjacent to B whenever there exists an involution S ∈ GL n (F) such that SA ≃ B: then, we write A →

i B.
We say that A is u-adjacent to B whenever there exists a

U 2 -matrix U such that U A ≃ B; then, we write A → u B. Remarks 1. (i) The inverse of an involution is itself. The inverse of a U 2 - matrix is a U 2 -matrix. It follows that both relations → i and → u are symmetric. (ii) If A → i B, A ′ ≃ A and B ′ ≃ B, then A ′ → i B ′ . (iii) If A → i B and A ′ → i B ′ then A ⊕ A ′ → i B ⊕ B ′ . (iv) If A → u B, A ′ ≃ A and B ′ ≃ B, then A ′ → u B ′ . (v) If A → u B and A ′ → u B ′ then A ⊕ A ′ → u B ⊕ B ′ .
If A is i-adjacent to the product of two involutions, then it is the product of three involutions. If A is u-adjacent to the product of two U 2 -matrices, then it is the product of three U 2 -matrices. And so on. This suggests a basic strategy:

(1) Devise ways to construct suitable matrices that are i-adjacent (or u-adjacent) to a given matrix.

(2) Recognize products of two involutions, and products of two U 2 -matrices, from their Jordan canonical form (or their rational canonical form).

Point ( 2) is settled: we have already recalled the characterizations in Theorem 1.2: yet they require a bit of caution with respect to the products of two U 2 -matrices, because of the possible eigenvalue -1 in the characteristic not 2 case.

Most of our efforts, in the first half of this article, will be geared towards problem [START_REF] Ballantine | Products of involutory matrices I[END_REF]. There has already been some good work on the matter in the literature (see e.g. [START_REF] Liu | Decomposition of matrices into three involutions[END_REF]): in particular, the fact that any invertible cyclic matrix is i-adjacent to any cyclic matrix of the same size and with opposite determinant has been already recognized and used with success by other authors [START_REF] Ballantine | Products of involutory matrices I[END_REF][START_REF] Liu | Decomposition of matrices into three involutions[END_REF]. Our key contribution here is the generalization of this idea to the so-called wellpartitioned matrices that were introduced in [START_REF] De Seguins Pazzis | On decomposing any matrix as a linear combination of three idempotents[END_REF]: in short, a well-partitioned matrix is a block-diagonal matrix A ⊕ B in which the matrices A and B have coprime characteristic polynomials and are themselves direct sums of companion matrices, with at most one block of size 1 in each. While they are not truly generalizations of cyclic matrices, well-partitioned matrices are extremely convenient to solve our problem: indeed, with the exception of the matrices with characteristic polynomial having a sole monic irreducible divisor, any matrix is similar to the direct sum of a well-partitioned matrix and a diagonalisable matrix with at most two eigenvalues. Hence, after we give general results on well-partitioned matrices, the rest of our effort will focus on transforming matrices that are diagonalisable with two eigenvalues, and even more specifically those in which the eigenvalues have the same multiplicity.

In a recent work [START_REF] De Seguins Pazzis | A note on sums of three square-zero matrices[END_REF], a similar strategy was used to prove that for any matrix A ∈ M n (F) with trace 0, the augmented matrix A⊕0 n is the sum of three squarezero matrices. We will use similar ideas, but things tend to be substantially more complicated in the present context. One part of the additional complexity comes from the elements of finite order in the multiplicative group F * . The other major source of additional difficulty comes from the necessity, in the study of the matrices that are i-adjacent or u-adjacent to a well-partitioned matrix, to recognize some that are cyclic: this has lead us to identify a very large class of matrices that are cyclic but not in an obvious way: see Lemma 2.5.

The remainder of the article is laid out as follows.

In Section 2, we introduce some additional notation, we recall some basic results on cyclic matrices, and we develop the groundwork for the next part.

The key new concept in this section is the notion of a block-quasi-companion matrix, to be used in Section 3.

In Section 3, we explore well-partitioned matrices: we prove various decomposition theorems involving well-partitioned matrices (mostly variations of known results, but better suited to the present study); we finish the section with the Adaptation Theorem, a major result on matrices that are i-adjacent or u-adjacent to a well-partitioned matrix (Theorem 3.6). We conclude the section by obtaining decomposition results for cyclic or well-partitioned matrices, as easy consequences of the previous groundwork.

In Section 4, we prove Theorem 1.5. The proof we will give is certainly not the shortest one in some cases, but it has the main upside of requiring little discussion on the five types of decompositions! The strategy is simple: we start from a matrix A ∈ GL n (F) with determinant ±1. When A is cyclic, the result is known (see Proposition 3.7). When A is scalar, its diagonal entry has finite order: we write A as the product of two well-chosen diagonal matrices (whose diagonal elements form cycles or half-cycles) that are the product of two U 2matrices, or of two involutions, or of one involution and one U 2 -matrix. When A is neither scalar nor cyclic, we prove that it is u-adjacent to a well-partitioned matrix, and then we use the decomposition theorems of Section 3 for wellpartitioned matrices. Note that a more elementary strategy is possible in three situations: for products of four involutions, products of four U 2 -matrices, and products of two involutions and two U 2 -matrices, one can prove that any nonscalar matrix is similar to the product of a lower-triangular matrix with only 1's on the diagonal, and an upper-triangular matrix in which all the diagonal entries equal 1 with the possible exception of the last one (see [START_REF] Sourour | A factorization theorem for matrices[END_REF]). Then, each such matrix is the product of two involutions, the first one is the product of two U 2 -matrices, and ditto for the second one if its determinant equals 1.

The remaining sections deal with the proofs of Theorems 1.7 to 1.13. We start by establishing results that are largely common to all four situations in the stable length 3 problem: in Section 5, we first prove adjacency results for matrices of the form αI n ⊕ βI n where α and β are distinct nonzero scalars, and then we combine them with the Adaptation Theorem to obtain decomposition results in specific situations when we have the direct sum of such a matrix with a well-partitioned matrix (Section 5.4).

Then, we turn to the specific situations in the stable length 3 problem. First, we deal with products of three U 2 -matrices (Section 6, where we successively prove Theorems 1.8 and 1.12). Then, we deal with products of three involutions (Section 7). Products of one involution and two U 2 -matrices are easily dealt with in Section 8. We finish, in Section 9, with the most difficult situation: products of one involution and two U 2 -matrices. In those sections, the extension of A to A ⊕ I k is called natural, whereas the extension of A to A ⊕ -I k (in Theorem 1.12) or to A ⊕ iI k (in Theorems 1.11 and 1.13) is called unnatural.

Given an integer n ≥ 2, one could seek to find the least integer k ≥ 0 for which, for every field F and every matrix A ∈ GL n (F) with determinant ±1, the augmented matrix A ⊕ I k is the product of three involutions. It turns out that n is not the right answer but very close to it. In Section 10, we will briefly discuss the corresponding problem in Theorems 1.8 to 1.13. It turns out that the optimal augmentation size always corresponds to a special case when A is scalar. Improving our theorems involves a hefty dose of additional technicalities, and proving the optimality of the improved statements is a tedious task that requires a careful use of the classification of products of two quadratic matrices (see [START_REF] De Seguins Pazzis | The sum and the product of two quadratic matrices[END_REF]). Moreover, our primary motivation for the present study comes from the infinite-dimensional setting, in which the size of the augmentation is a nonissue. Hence, in that ultimate section we will state the optimal results but we will offer no proof.

A final word about mixed decompositions: it is seen in Theorem 1.2 that any product of two U 2 -matrices is also the product of two involutions. Hence, a matrix that is the product of one involution and two U 2 -matrices is also the product of three involutions. In particular, Theorem 1.7 is a corollary of Theorem 1.10, and in Theorem 1.5 one could reduce the situation to only three problems (products of two involutions and two U 2 -matrices, products of one involution and three U 2 -matrices, and products of four U 2 -matrices). We have used this trick to shorten the proof of Theorem 1.5. However, as far as the stable length 3 problem is concerned, we have chosen not to start from the most difficult situation, for two reasons: firstly, we suspect that most readers will be more interested in the decompositions into involutions only, and hence they will more quickly grasp the techniques if we focus first on them; secondly, the proofs that involve the recognition of products of two U 2 -matrices tend to be substantially more technical, and as a consequence we prefer to save them for later parts of the article.

On cyclic matrices

Additional notation

We denote by N the set of all natural numbers, i.e. non-negative integers, and by Z the set of all integers.

Given a square matrix M ∈ M n (F), we denote its characteristic polynomial by χ M (t) := det(tI n -M ).

Let

p(t) = t n - n-1 k=0 a k t k ∈ F[t]
be a monic polynomial with degree n. We define its trace by a n-1 , denoted by tr p, and its norm by (-1) n-1 a 0 , denoted by N (p). The companion matrix of p is defined as

C p(t) :=         0 (0) a 0 1 0 a 1 0 . . . . . . . . . . . . . . . 0 a n-2 (0) • • • 0 1 a n-1         ∈ M n (F).
The characteristic polynomial of C(p(t)) is precisely p(t), and so is its minimal polynomial. Given n ∈ N * and α ∈ F, we simply write

C n (α) := C (t -α) n ,
and we note that this matrix is similar to a Jordan cell with size n with respect to the eigenvalue α.

Let A ∈ M n (F) and X ∈ F n . We say that X is cyclic for A whenever (A k X) k∈N spans F n . This is equivalent to (A k X) 0≤k<n being a basis of F n , and in that case A is similar to the companion matrix of χ A . More precisely, we have

P -1 AP = C(χ A ) for P := X AX • • • A n-1 X .
We note that if A is invertible, then for X ∈ F n to be a cyclic vector of A it suffices that span{A k X | k ∈ Z} = F n : indeed, as V := span{A k X | k ∈ N} is finite-dimensional and stable under A, it is also stable under A -1 , and hence it contains A k X for every negative integer k,

yielding span{A k X | k ∈ Z} = V .
A good cyclic matrix is a matrix of the form

A =         a 1,1 a 1,2 • • • a 1,n 1 a 2,2 0 . . . . . . . . . . . . . . . . . . a n-1,n-1 a n-1,n (0) • • • 0 1 a n,n        
with no specific requirement on the a i,j 's for j ≥ i. Classically, such a matrix is always cyclic: more precisely the first vector of the standard basis is a cyclic vector for it.

Finally, we denote by M n,p (F) the vector space of all n by p matrices with entries in F, and in this space we consider the matrix units

H n,p :=    0 • • • 1 . . . (0) . . . 0 • • • 0    , K n,p :=    0 • • • 0 . . . (0) . . . 0 • • • 1    and L n,p :=    0 • • • 0 . . . (0) . . . 1 • • • 0    .

Basic lemmas

The first lemma is folklore and is an easy consequence of Roth's theorem (see [START_REF] Roth | The equations AX -Y B = C and AX -XB = C in matrices[END_REF]):

Lemma 2.1. Let A ∈ M n (F), B ∈ M p (F), and C ∈ M n,p (F). Assume that χ A and χ B are coprime. Then, A C 0 B ≃ A 0 0 B .
The next lemma will be crucial: Let X ∈ F m be a cyclic vector for B, and Y ∈ F n be a cyclic vector for A T . Then, there exists a matrix D ∈ M n,m (F) such that

tI n -A -D tXY T tI m -B = p(t).
To prove this, our starting point is a result of similar flavor that was proved in [START_REF] De Seguins Pazzis | On decomposing any matrix as a linear combination of three idempotents[END_REF] (see lemma 11 there):

Lemma 2.3. Let A ∈ M n (F)
and B ∈ M m (F) be good cyclic matrices, and p(t) be a monic polynomial of degree n + m such that tr p = tr(A) + tr(B). Then, there exists a matrix D ∈ M n,m (F) such that

tI n -A -D -H m,n tI m -B = p(t).
This allows us first to obtain a weaker version of Lemma 2.2, in which the matrices A, B, X and Y are much more specific: Lemma 2.4. Let A ∈ M n (F) and B ∈ M m (F) be good cyclic matrices, and p(t) be a monic polynomial of degree n + m such that N (p) = (det A)(det B). Then, there exists a matrix D ∈ M n,m (F) such that

tI n -A -D tH m,n tI m -B = p(t).
Proof of Lemma 2.4. We write p(t) = χ A (t) χ B (t) + t q(t) for some q(t) ∈ F[t] with degree at most n + m -2. It follows that χ A (t) χ B (t) -q(t) is monic with degree n + m and trace tr A + tr B. By Lemma 2.3, we can find a matrix D ∈ M n,m (F) such that

tI n -A -D -H m,n tI m -B = χ A (t) χ B (t) -q(t).
Denote by R(t) the minor of the characteristic matrix

tI n -A -D 0 m,n tI m -B in the entry (n + 1, n).
Using the linearity of the determinant with respect to the (n + 1)-th row leads to the two formulas

tI n -A -D tH m,n tI m -B = χ A (t) χ B (t) -tR(t) and tI n -A -D -H m,n tI m -B = χ A (t) χ B (t) + R(t).
The second result yields R(t) = -q(t), and hence we deduce from the first one that

tI n -A -D tH m,n tI m -B = χ A (t) χ B (t) + t q(t) = p(t).
We are now ready to prove Lemma 2.2.

Proof of Lemma 2.2. We will reduce the situation to the one covered by Lemma 2.4.

Set Q := X BX • • • B m-1 X and P := (A T ) n-1 Y • • • A T Y Y .
Our assumptions show that P and Q are invertible and that Q -1 BQ = C(χ B ). Moreover, in denoting by (E 1 , . . . , E n ) the standard basis of F n , we see that the last n-2 columns of the matrix P -1 A T P are E 1 , . . . , E n-1 . Thus, (P -1 A T P ) T = P T A(P T ) -1 is a good cyclic matrix (it is actually very close to a companion matrix, but instead of having potential nonzero entries in the last column it has potential nonzero entries in the first row).

The matrix R := (P T ) -1 ⊕ Q ∈ M n+m (F) is then invertible, and one checks that, for all D ∈ M n,m (F),

R -1 tI n -A -D tXY T tI m -B R = tI n -P T A(P T ) -1 -P T DQ tQ -1 XY T (P T ) -1 tI m -Q -1 BQ . Note that Q -1 XY T (P T ) -1 = H m,n . Indeed, Q -1 X
is the first vector of the standard basis of F m , and P -1 Y is the last vector of the one of F n . Hence,

R -1 tI n -A -D tXY T tI m -B R = tI n -P T A(P T ) -1 -P T DQ tH m,n tI m -Q -1 BQ .
Remember that P T A(P T ) -1 and Q -1 BQ are good cyclic matrices. As they are similar to A and B, respectively, their respective characteristic polynomials are χ A and χ B . Hence, by Lemma 2.4 there exists D ′ ∈ M n,m (F) such that

tI n -P T A(P T ) -1 -D ′ tH m,n tI m -Q -1 BQ = p(t).
Setting D := (P T ) -1 D ′ Q -1 , we deduce that

tI n -A -D tXY T tI m -B = tI n -P T A(P T ) -1 -D ′ tH m,n tI m -Q -1 BQ = p(t).

Block quasi-companion matrices

Definition 2.1.

A square matrix M = (m i,j ) ∈ M n (F) is called quasi-companion whenever m i,j = 0 for all (i, j) ∈ [[1, n -1]]
2 such that i = j + 1, i.e. when M has the following shape: 

M =         0 ( 0 
M =         D 1 ? (?) β 1 K d2,d1 D 2 0 β 2 K d3,d2 . . . . . . . . . D N -1 ? (0) • • • 0 β N -1 K dN ,dN-1 D N        
, where the question marks represent unspecified blocks. In that case (d 1 , . . . , d N ) is called a characteristic list of M (in general there can be several such lists attached to M ). Now, we prove that any invertible BQC matrix is cyclic. More precisely, we establish the following result: 

a k := k i=1 d i , V k := span(e i ) 1≤i≤a k and V ′ k := span(e i ) a k <i≤n.
To prove point (a), we set W := span(A k e d1 ) k∈Z . Note that this subspace is obviously stable under both A and A -1 .

We prove by induction that

V k ⊂ W for all k ∈ [[0, N ]]. This inclusion is trivial for k = 0. Let k ∈ [[0, N -1]] be such that V k ⊂ W . First, we claim that
W contains e a k+1 : if k = 0 this comes from having e d1 in W ; otherwise we use the assumptions on A to obtain Ae a k = λe a k+1 mod V k for some λ ∈ F {0}, which yields the claimed result since W is stable under A and includes

V k . Next, for all i ∈ [[1, d k+1 -1]], we have Ae a k +i = λe a k +i+1 mod V k + span(e a k+1 )
for some λ ∈ F, whence Ae a k +i = λe a k +i+1 mod W , and we deduce that e a k +i = λA -1 e a k +i+1 mod W because W is stable under A -1 . Hence, by downward induction we get that e a k +i ∈ W for all i ∈ [[1, d k+1 ]], and we conclude that V k+1 ⊂ W .

Therefore, by induction W includes V N = F n , which completes the proof of point (a) (see the basic considerations in Section 2.1).

To prove point (b), we set B := A T and W ′ = span(B k e aN-1+1 ) k∈Z . Note again that W ′ is stable under B and B -1 . We prove by downward induction

that V ′ k ⊂ W ′ for all k ∈ [[0, N ]]. This inclusion is trivial if k = N . Now, we let k ∈ [[0, N -1]] be such that V ′
k+1 ⊂ W , and we prove that V ′ k ⊂ W . First, we claim that e a k+1 ∈ W ′ . Indeed:

• if k = N -1 and d N = 1 then this is known because W contains e aN-1+1 ;

• if k = N -1 and d N > 1, then Be aN-1+1 = λe aN for some λ ∈ F, and since B is invertible we find λ = 0 and hence e aN ∈ W ′ ;

• if k < N -1 then we see that Be a k+2 = λe a k+1 mod V ′ k+1 for some λ ∈ F * , and hence e a k+1 ∈ W ′ because W ′ includes V ′ k+1 , contains in particular e a k+2 , and is stable under B.

If d k+1 = 1, then the above is enough to see that W includes V ′ k . Now, assume that d k+1 > 1. We see that Be a k +1 = λe a k+1 mod V ′ k+1 for some scalar λ. Since W ′ is stable under B -1 , contains e a k+1 and includes V ′ k+1 , this yields e a k +1 ∈ W ′ . Finally, for all i ∈ [[2, d k+1 -1]], we have Be a k +i = λe a k +i-1 mod span(e a k+1 ) + V ′ k+1 for some λ ∈ F, whence Be a k +i = λe a k +i-1 mod W ′ . Using once more the fact that W ′ is stable under B -1 , we obtain by induction that

e a k +i ∈ W ′ for all i ∈ [[1, d k+1 -1]]. Hence we have shown that V ′ k ⊂ W ′ . Therefore, by downward induction we find F n = V ′ 0 ⊂ W ′ , which
shows that e aN-1+1 is a cyclic vector for the invertible matrix A T .

Well-partitioned matrices

Definition

Definition 3.1. A square matrix M is called well-partitioned if there are positive integers r and s and monic polynomials p 1 , . . . , p r , q 1 , . . . , q s in F[t] such that:

(i) M = C(p 1 ) ⊕ • • • ⊕ C(p r ) ⊕ C(q 1 ) ⊕ • • • ⊕ C(q s ); (ii) deg p i ≥ 2 for all i ∈ [[2, r]]; (iii) deg q j ≥ 2 for all j ∈ [[1, s -1]];
(iv) Each polynomial p i is coprime to each polynomial q j . Note that the polynomials p 1 , . . . , p r , q 1 , . . . , q s are then uniquely determined by M (beware that in (i) we really require an equality and not a mere similarity).

If in addition at most one of p 1 and q s has degree 1, we say that M is very-well-partitioned.

Reducing a square matrix with the help of a well-partitioned matrix

Here, we prove the following results. They are variations of a lemma that was proved in [START_REF] De Seguins Pazzis | A note on sums of three square-zero matrices[END_REF] (lemma 3.1 there). Lemma 3.1. Let M ∈ M n (F). Assume that M has at least n 2 Jordan cells of size 1 for the eigenvalue 0. Then, there exist non-negative integers p, q, r such that p + q + r = n, a matrix N ∈ M p (F) and a scalar α ∈ F {0} such that M ≃ N ⊕ α I q ⊕ 0 r , r ≥ q, and either N is void, or N is nilpotent and q = 0, or N is very-well-partitioned. Lemma 3.2. Let M ∈ M n (F). Assume that M has at most one Jordan cell of size 1 for each one of its eigenvalues in F, and that the characteristic polynomial of M is not a power of some irreducible polynomial. Then, M is similar to a well-partitioned matrix.

We start with the proof of Lemma 3.2 as it is easier:

Proof of Lemma 3.2. Since the characteristic polynomial of M is not a power of an irreducible polynomial, we deduce from the primary canonical form that we can split M ≃ A⊕B in which A and B are nonvoid square matrices with coprime characteristic polynomials. We write the invariant factors of A as p 1 , . . . p a and the ones of B as q 1 , . . . , q b . There is at most one integer k for which p k is constant, otherwise M would have several Jordan cells of size 1 for one of its eigenvalues in F. Likewise, there is at most one integer k such that q k is nonconstant. Hence, the matrix

M ′ := C(p a ) ⊕ • • • ⊕ C(p 1 ) ⊕ C(q 1 ) ⊕ • • • ⊕ C(q b )
is well-partitioned, and obviously M ≃ M ′ .

Proof of Lemma 3.1. The proof strategy is similar to the previous one, only the details differ. If 0 is the sole eigenvalue of M in an algebraic closure of F, then we take N := M , q = r = 0 and α = 1. Assume now that the contrary holds. Then, M ≃ A ⊕ B in which A is nilpotent and B is invertible, both of them nonvoid. The assumptions on M show that the size of A is at least n 2 , and hence the one of B is at most n 2 • Using the rational canonical form, we find that A ≃ 0 m ⊕ A ′ , where A ′ is the direct sum of companion matrices associated with polynomials of the form t i with i ≥ 2 (possibly A ′ is void). Note that m is the number of Jordan cells of size 1 for the eigenvalue 0 of M , whence m ≥ n 2 . Moreover, the rational canonical form of B can be written B ≃ B ′ ⊕ αI q , in which B ′ is the direct sum of invertible companion matrices with size at least 2, and α is a nonzero scalar (possibly q = 0 here, in which case we take α = 1).

• If A ′ and B ′ are both nonvoid, then A ′ ⊕ B ′ is very-well-partitioned and M ≃ (A ′ ⊕ B ′ ) ⊕ αI q ⊕ 0 m . Note that q ≤ n 2 ≤ m in that case.

• If A ′ is void but B ′ is not, then 0 1 ⊕ B ′ is very-well-partitioned and M ≃ (0 1 ⊕ B ′ ) ⊕ αI q ⊕ 0 m-1 . Note that q ≤ n 2 -2 ≤ m -1 in that case. • If A ′ is nonvoid but B ′ is void, then q > 0, A ′ ⊕αI 1 is very-well-partitioned, M ≃ (A ′ ⊕ αI 1 )
⊕ αI q-1 ⊕ 0 m , and again q -1 ≤ m.

• If A ′ and B ′ are both void, then M ≃ αI q ⊕ 0 m with q ≤ n 2 ≤ m, and the first possible outcome is satisfied.

Actually, we will not use Lemma 3.1 directly but in the form of the following corollary. It is easily deduced from the standard observation that, for every monic polynomial p(t) ∈ F[t] with degree k, and every β ∈ F, the matrix C(p(t)) + βI k is similar to C(p(t -β)). Proposition 3.3. Let M ∈ GL n (F). Assume that, for some nonzero scalar β, M has at least n 2 Jordan cells of size 1 for the eigenvalue β. Then, there exist non-negative integers p, q, r such that p + q + r = n, a matrix N ∈ GL p (F) and a scalar α ∈ F {β} such that M ≃ N ⊕ α I q ⊕ βI r , r ≥ q, and either N is void, or N -βI p is nilpotent and q = 0, or N is very-wellpartitioned.

Adjacency results for cyclic or well-partitioned matrices

Proposition 3.4. Let A ∈ GL n (F) be an invertible cyclic matrix and p be a monic polynomial of degree n such that N (p) = ± det A.

If n is odd or

N (p) = -det A then A is i-adjacent to C(p).
Proof. Assume first that N (p) = -det A, and write p = t nn-1 k=0 b k t k . Without loss of generality, we can assume that A = C(r) for some monic polynomial

r = t n - n-1 k=0 a k t k . Hence, a 0 = -b 0 . Note that a 0 = 0 since A is invertible.
Define then S = (s i,j ) ∈ M n (F) as the matrix such that

s i,1 = bi-1-ai-1 a0 for all i ∈ [[2, n]], s 1,1 = -1, s i,i = 1 for all i ∈ [[2, n]]
, and all the other entries equal zero. Then, it is easily seen that S 2 = I n and that S C(r) = C(p).

Assume now that n is odd and N (p) = det A. Set q := -p(-t), so that N (q) = -det A. Then, there is an involution S such that SA ≃ C(q). Hence, (-S)A ≃ -C(q) ≃ C(p).

With a similar proof, we obtain the following result (in the definition of S from the above proof, it suffices to replace the entry at the (1, 1)-spot with 1). Proposition 3.5. Let A ∈ GL n (F) be an invertible cyclic matrix and p be a monic polynomial of degree n such that N (p) = det A. Then, A is u-adjacent to C(p). Now, we arrive at the main key of the present study, that can be viewed as a variation of the above two results: Theorem 3.6 (Adaptation Theorem). Let M ∈ GL n (F) be an invertible wellpartitioned matrix.

(a) For every monic polynomial r ∈ F[t] with degree n such that N (r) = det M , the matrix M is u-adjacent to C(r).

(b) There exists η ∈ {1, -1} such that, for every monic polynomial r ∈ F[t] with degree n such that N (r) = η det M , the matrix M is i-adjacent to C(r).

(c) If in addition M is very-well-partitioned, then for every monic polynomial r ∈ F[t] with degree n such that N (r) = ± det M , the matrix M is i-adjacent to C(r).

Proof. Let ε ∈ {1, -1}. Denote by p 1 , . . . , p u , q 1 , . . . , q v the polynomials associated with the well-partitioned matrix M , and by n 1 , . . . , n u , m 1 , . . . , m v their respective degrees. For k ∈ N * , set

U k := I k-1 ⊕ (εI 1 ). Set S :=                 U n1 0 n1×n2 (0) L n2,n1 U n2 . . . (0) . . . . . . L nu,nu-1 U nu 0 nu×m1 L m1,nu U m1 0 m1×m2 . . . L m2,m1 U m2 . . . . . . . . . 0 mv-1×mv (0) • • • (0) L mv,mv-1 U mv                 . Using the fact that n 2 > 1, . . . , n u > 1, m 1 > 1, . . . , m v-1 > 1, it is easily seen that (S -I n )(S -εI n ) = 0.
Note that det S is a power of ε. From now on, we let r(t) ∈ F[t] be an arbitrary monic polynomial with degree n such that N (r) = α det M for some α ∈ {1, -1}.

Next, set a = where S 1 , M 1 belong to GL a (F), and S 2 , M 2 belong to GL b (F). Along the same format, set

A U := M 1 U 0 b×a M 2 .
In order to conclude, it would suffice to prove that U can be chosen so that

SA U ≃ C(r).
Assume indeed that such a matrix U exists. Lemma 2.1 shows that

A U = Q -1 M Q for some Q ∈ GL n (F).
The matrix S := QSQ -1 is then annihilated by (t -1)(t -ε) and it satisfies

SM = Q(SA U )Q -1 ≃ C(r),
which will conclude the proof.

In order to obtain the claimed existence, we look more closely at SA U . Note first that det(SA U ) = det S det M . One computes that

SM = S 1 M 1 0 a×b L S 2 M 2
where

L := 0 m1×(a-nu) -p u (0) K m1,nu 0 (b-m1)×(a-nu) 0 (b-m1)×nu .
Moreover, one computes that both S 1 M 1 and S 2 M 2 are BQC matrices with respective characteristic lists (n 1 , . . . , n u ) and (m 1 , . . . , m v ). Finally, and this is crucial, one carefully checks that SA U is itself blockquasi-companion with characteristic list (n 1 , . . . , n u , m 1 , . . . , m v ). Hence, by Lemma 2.5 the invertible matrix SA U is cyclic. In order to conclude, it suffices to prove that U can be adjusted so that the characteristic polynomial of SA U be r(t).

We can split S = N S ′ where

S ′ := S 1 0 a×b 0 b×a S 2
and N is the transvection matrix that acts on rows by adding to the (a + m 1 )-th row the product of λ with the (a -n u + 1)-th row for some fixed nonzero scalar λ ∈ F {0}. Denote by X the m 1 -th vector of the standard basis of F b , and by Y the (a -n u + 1)-th vector of the one of F a . Then,

det(tI a+b -SA U ) = det(tN -1 -S ′ A U ) = tI a -S 1 M 1 -S 1 U t(-λXY T ) tI b -S 2 M 2 .
By Lemma 2.5, X is cyclic for S 2 M 2 , and hence so is -λX, and Y is cyclic for

(S 1 M 1 ) T . If α = det S, Lemma 2.2 yields a matrix U ′ ∈ M a,b (F) such that tI a -S 1 M 1 U ′ t(-λXY T ) tI b -S 2 M 2 = r(t)
and hence the matrix U := -S -1 1 U ′ satisfies the required conditions. Now, we can conclude.

• If α = 1, then we take ε := 1 and we obtain M → u C(r).

• If ε = -1 and α = det S, then we obtain M → i C(r).

• Assume finally that M is very-well-partitioned, that ε = -1 and that α = -det S. Then, we can do a simple modification in the matrix S that leaves all the arguments of the above proof intact but yields a new involution S of GL n (F) such that det S = α: if n 1 > 1, we can safely replace the n 1 -th diagonal entry of S with its opposite; otherwise m v > 1 because M is very-well-partitioned, and then we can safely replace the (n -m v + 1)-th diagonal entry of S with its opposite.

Hence, points (a), (b) and (c) are proved.

Decomposition of cyclic or well-partitioned matrices

We start with a result that is widely known in the case of products of three involutions. where q := (t -1) d-1 (t -λ) for some λ ∈ {1, -1}. By Theorem 1.2, C(q) is the product of two involutions. Hence, C(p) is the product of one U 2 -matrix and two involutions. Likewise, C(p) is i-adjacent to C(r) where r(t) := (t -1) d-1 (t -µ) for some µ ∈ {1, -1}, and hence C(p) is the product of three involutions.

If d is even, C(p) is u-adjacent to C(q 1 ) or to C(q 2 ), where q 1 := (t-1) d/2 (t+ 1) d/2 and q 2 := (t -1) d/2+1 (t + 1) d/2-1 , and both matrices C(q 1 ) and C(q 2 ) are the product of a U 2 -matrix and an involution (by Theorem 1.4). If d is odd, then C(p) is u-adjacent to C(r 1 ) or to C(r 2 ), where r 1 := (t -1) (d-1)/2 (t + 1) (d+1)/2 and r 2 := (t -1) (d+1)/2 (t + 1) (d-1)/2 , and again both matrices C(r 1 ) and C(r 2 ) are the product of a U 2 -matrix and an involution. Hence, C(p) is the product of two U 2 -matrices and an involution.

Assume finally that p has norm 1. By Proposition 3.4, C(p) is u-adjacent to C((t -1) d ), a matrix which is the product of two U 2 -matrices by Theorem 1.2. Hence, C(p) is the product of three U 2 -matrices.

Using Proposition 3.6 instead of Propositions 3.4 and 3.5, the same line of reasoning yields the following new result: Proposition 3.8. Let A ∈ GL n (F) be such that det A = ±1. Assume that A is similar to a well-partitioned matrix. Then, for all k ∈ {0, 1, 2}, the matrix A is the product of k unipotent matrices of index 2 and 3 -k involutions. Moreover, if det A = 1 then A is the product of three U 2 -matrices.

Combining this last result with Lemma 3.2 yields Theorem 1.6.

The length 4 problem in GL n (F)

Here, we give a proof of Theorem 1.5. This is done in three steps. First, we consider the case of scalar matrices (Section 4.1). Then, we prove that any invertible matrix that is neither scalar nor cyclic is u-adjacent to a wellpartitioned matrix (Section 4.2). We will complete the proof of Theorem 1.5 by using Propositions 3.7 and 3.8.

The case of scalar matrices

Lemma 4.1. Let α ∈ F * , and n ≥ 1 be an integer such that α n = ±1. Then, the matrix αI n is the product of four involutions, and it is also the product of two involutions and two U 2 -matrices.

Proof. Set A := n-1 k=0 C 1 (α 2k
). Noting that α 2n = 1, we see that A is similar to A -1 , and we deduce from Theorem 1.2 that A -1 is the product of two

involutions. Likewise αA = n-1 k=0 C 1 (α 2k+1 ) is similar to its inverse (note that C 1 (α 2k+1 ) = C 1 (α 2n-2k-1 ) -1 for all k ∈ [[0, n -1]]
), and hence it is the product of two involutions. Hence, αI n = (αA)A -1 is the product of four involutions.

We also claim that one of the matrices αA and A -1 is the product of two U 2matrices. This is immediate if F has characteristic 2, and hence in the remainder of the proof we assume that the characteristic of F is not 2.

By Theorem 1.2, it suffices to prove that -1 is not an eigenvalue of one of αA and A -1 . Assume on the contrary that -1 is an eigenvalue of both. Then, -1 = α p = α q for some pair (p, q) of integers, with p odd and q even. Thus α q-p = 1 with q -p odd, which yields that α has finite odd order and shows that -1 is not a power of α! This is a contradiction. Hence, one of the matrices αA and A -1 is the product of two U 2 -matrices, and the other one is the product of two involutions. Hence, their product αI n is the product of two U 2 -matrices and two involutions. Lemma 4.2. Let α ∈ F * , and n ≥ 1 be an integer such that α n = 1. Then, the matrix αI n is the product of four U 2 -matrices.

Proof. Because of Lemma 4.1, we only consider the case when the characteristic of F is not 2.

Assume first that n is odd. Then, α has odd order and hence -1 ∈ α .

Then, we set

A := n-1 k=0 C 1 (α 2k
). With the same method as in the proof of Lemma 4.1, we find that both A -1 and αA are products of two U 2 -matrices (using the fact that -1 is not a power of α), and we conclude that αI n is the product of four U 2 -matrices. Assume now that n is even, and write n = 2m. Note that α m = ±1. Then, we set

A := m-1 k=0 C 2 (α 2k ).
This time around, we see that both A -1 and αA are products of two U 2 -matrices (indeed, like in the proof of Lemma 4.1, we see that both are similar to their inverse, and all the Jordan cells for the eigenvalue -1 have size 2). Hence, αI n is the product of four U 2 -matrices. Lemma 4.3. Let α ∈ F * and n ≥ 1 be an integer such that α n = ±1. Then, αI n is the product of one U 2 -matrix and three involutions. Moreover, it is the product of three U 2 -matrices and one involution.

Proof. Due to Lemma 4.1, we only consider the case when the characteristic of F is not 2. Moreover, by Theorem 1.2, it suffices to prove that αI n is the product of three U 2 -matrices and one involution.

We split the discussion into two main cases. Case 1: n is even.

We write n = 2m. Set

B 1 := m-1 k=1 C 2 (-α 2 ) k and B := m-1 k=0 C 2 (-α 2 ) k = C 2 (1) ⊕ B 1 , so that αB ≃ m-1 k=0 C 2 α(-α 2 ) k .
Note that both matrices B -1 and αB only have Jordan cells of size 2. For every integer k, we see that

(-α 2 ) k (-α 2 ) m-k = (-α 2 ) m = (-1) m α n and α(-α 2 ) k α(-α 2 ) m-1-k = (-1) m-1 α n .
• Assume first that (-1) m α n = 1. Then, B -1

1
is similar to its inverse and αB is similar to the opposite of its inverse. Since both matrices only have Jordan cells of size 2, we deduce from Theorems 1.2 and 1.3 that B -1 is the product of two U 2 -matrices and that αB is the product of one U 2 -matrix and one involution.

• Assume next that (-1) m α n = -1. Then, B -1
1 is similar to the opposite of its inverse and αB is similar to its inverse. This time around, we combine Theorems 1.3 and 1.4 to see that B -1 is the product of one U 2 -matrix and one involution, whereas Theorem 1.2 shows that αB is the product of two U 2 -matrices.

In any case αI n = B -1 (αB) is the product of three U 2 -matrices and one involution.

Case 2: n is odd.

If α n = -1, we see that (-α) n = 1. Moreover, if -αI n is the product of three U 2 -matrices and one involution, then so is αI n . Hence, it suffices to deal with the case when α n = 1. In that case, we see that α has odd order, which we denote by q, and n is a multiple of q. Hence, it suffices to prove that αI q is the product of three U 2 -matrices and one involution.

Set

A 1 := q-1 k=1 C 1 (-α 2 ) k and A := q-1 k=0 C 1 (-α 2 ) k = C 1 (1) ⊕ A 1 , so that αA ≃ q-1 k=0 C 1 α(-α 2 ) k .
With the same line of reasoning as in the beginning of the proof, one sees that αA is similar to its inverse, whereas A -1

1
is similar to the opposite of its inverse. Moreover, we note that no eigenvalue of A -1 1 is a square root of -1: indeed otherwise there would be an integer k such that (-α 2 ) 2k = -1, whence -1 = α 4k , whereas -1 is not in the subgroup generated by α because the order of α is odd. Hence, by Theorem 1.3 the matrix A -1 is the product of a U 2 -matrix and an involution.

Next, we claim that one of the matrices αA and -αA is the product of two U 2 -matrices. Assume that the contrary holds. Since αA and -αA are both similar to their inverse, -1 must be an eigenvalue of both, yielding two elements k, l of [[0, q -1]] such that α(-α 2 ) k = -1 = -α(-α 2 ) l . Then α 2k+1 = (-1) k+1 and α 2l+1 = (-1) l . Since α has odd order, -1 is not a power of it and hence k is odd and l is even, whence they are distinct and α 2k+1 = α 2l+1 . Then, q divides 2(k -l), and hence it divides k -l, which is absurd because k, l are distinct elements of [[0, q -1]].

Therefore, one of αA and -αA is the product of two U 2 -matrices. Yet, both A -1 and -A -1 are products of one U 2 -matrix and one involution (using once more the fact that the opposite of an involution is an involution). Hence, by writing αI q = (αA) A -1 = (-αA) (-A -1 ), we conclude that αI q is the product of three U 2 -matrices and one involution.

Converting non-scalar matrices into well-partitioned matrices

Our aim here is to prove the following result:

Proposition 4.4. Let M ∈ GL n (F) be a matrix that is neither scalar nor cyclic. Then, M is u-adjacent to a well-partitioned matrix.

With a similar method, one can prove that M is also i-adjacent to a wellpartitioned matrix, but we will not use this result.

We start with a basic result on polynomials:

Lemma 4.5. Let I be a finite subset of F * , and let λ ∈ F * . Let n be an integer greater than 1. Then, there exists a monic polynomial q of degree n such that N (q) = λ and q has no root in I.

This result is deduced from the following one, which is folklore:

Lemma 4.6. Let F be a finite-dimensional affine space over F, and F 1 , . . . , F n be proper affine subspaces of F (possibly void), with n < |F|. If the converse holds every affine hyperplane H ′ of E that is parallel to H is included in F i for some i, and then it equals F i , which leads to n ≥ |F|. This contradicts our assumptions.

Proof of Lemma 4.5. For each α ∈ I, consider the nonconstant affine map

f α : (x k ) 1≤k≤n-1 ∈ F n-1 → n-1 k=1 x k α k + α n + (-1) n λ.
We note that |I| < |F| since I ⊂ F * . Hence, the proper affine subspaces f -1 α {0}, for α ∈ I, do not cover F n-1 . This yields a list x ∈ F n-1 such that f α (x) = 0 for all α ∈ I. Hence, the polynomial t n + n-1 k=1

x k t k + (-1) n λ has the required properties.

We are now ready to prove Proposition 4.4.

Proof of Proposition 4.4. Using the rational canonical form of M , we lose no generality in assuming that

M = C(p 1 ) ⊕ • • • ⊕ C(p r ) ⊕ αI s
where p 1 , . . . , p r are polynomials, all with degree at least 2 and such that N (p 1 ) = 0, . . . , N (p r ) = 0, r ≥ 1, α ∈ F {0}, and potentially s = 0. Moreover if s = 0 then r ≥ 2 since M is not cyclic. Now, we split the discussion into two cases. Case 1: s > 0. Set

B :=        s/2 i=1 C 2 (α) if s is even (s-1)/2 i=1 C 2 (α) ⊕ C 1 (α) if s is odd.
In any case, noting that α C 2 (1) ≃ C 2 (α), we see that

αI s → u B.
Then, by using Lemma 4.5, we find, for each i ∈ [ [1, r]], a monic polynomial q i such that N (q i ) = N (p i ), q i (α) = 0 and deg(p i ) = deg(q i ). By Lemma 3.5, we This lemma is a consequence of the following result, which was proved in [START_REF] De Seguins Pazzis | The sum and the product of two quadratic matrices[END_REF] (see lemma 4.5 there): Lemma 5.2. Let r ∈ F[t] be a monic polynomial with degree n > 0, and d be a nonzero scalar. Let N ∈ M n (F) be cyclic with characteristic polynomial r. Then,

0 n -dI n I n N ≃ C t n r(t + dt -1
) .

Proof of Lemma 5.1. We start from an arbitrary monic polynomial r ∈ F[t], which we will adjust afterwards. Set

A := γI n 0 n α -1 I n δI n and B := αI n C(r) 0 n βI n .
Then,

AB = αγI n γ C(r) I n δβI n + α -1 C(

r) .

Taking P := I n -αγI n 0 n I n , we deduce that

P (AB)P -1 = 0 n -πI n I n α -1 C(r) + (δβ + αγ)I n .
now s(t) := t -(x + πx -1 ) n , so that t n s(t + πt -1 ) = (t -x) n (t -πx -1 ) n .

The matrix α(C(s) -(δβ + αγ)I n ) is obviously cyclic. Hence, if we choose r as its characteristic polynomial, we deduce from Lemma 5.2 that

AB ≃ C (t -x) n (t -πx -1 ) n .
Next, it is easily checked that (t-α)(t-β) annihilates B, and (t-α) n (t-β) n is the characteristic polynomial of B. As α = β, we deduce that B is diagonalisable and its eigenspaces have dimension n, whence B = Q(αI n ⊕ βI n )Q -1 for some Q ∈ GL 2n (F). Finally, taking S := Q -1 AQ, we obtain

S (αI n ⊕ βI n ) = Q -1 (AB)Q ≃ AB ≃ C (t -x) n (t -πx -1 ) n .
The conclusion follows because one checks that the polynomial (t -γ)(t -δ) annihilates A (and hence it also annihilates S).

Lemma 5.3. Let α, β, γ, δ, x be nonzero scalars, with α = β. Set π := αβγδ and assume that x 2 = π. Then, there is a matrix S ∈ GL 2 (F) that is annihilated by (t -γ)(t -δ) and such that

S (αI 1 ⊕ βI 1 ) ≃ C 1 (x) ⊕ C 1 (πx -1 ).
Proof. As x 2 = π we have x = πx -1 and hence C (t -x)(t -πx -1 ) ≃ C(tx)⊕C(t-πx -1 ). Thus, the result follows from Lemma 5.1 applied to n = 1.

Lemma 5.4. Let α, β, γ, δ, x be nonzero scalars, with α = β. Set π := αβγδ.

Then, there is a matrix S ∈ GL 4 (F) that is annihilated by (t -γ)(t -δ) and such that

S (αI 2 ⊕ βI 2 ) ≃ C 2 (x) ⊕ C 2 (πx -1 ).
Proof. As in the previous proof, if x = πx -1 the result follows directly from Lemma 5.1 applied to n = 2. Assume now that x = πx -1 . Then, Lemma 5.1 yields a matrix S ′ ∈ GL 2 (F) that is annihilated by (t -γ)(t -δ) and such that

S ′ (αI 1 ⊕ βI 1 ) ≃ C (t -x)(t -πx -1 ) = C (t -x) 2 = C (t -πx -1 ) 2 . Hence (S ′ ⊕ S ′ ) (αI 1 ⊕ βI 1 ⊕ αI 1 ⊕ βI 1 ) ≃ C 2 (x) ⊕ C 2 (πx -1 ).
We can find a permutation matrix P ∈ GL 4 (F) such that

αI 1 ⊕ βI 1 ⊕ αI 1 ⊕ βI 1 = P (αI 2 ⊕ βI 2 )P -1 .
Hence, the matrix S := P -1 (S ′ ⊕ S ′ )P is annihilated by (t -γ)(t -δ) and satisfies

S (αI 2 ⊕ βI 2 ) ≃ (S ′ ⊕ S ′ ) (αI 1 ⊕ βI 1 ⊕ αI 1 ⊕ βI 1 ) ≃ C 2 (x) ⊕ C 2 (πx -1 ).

Cycles of cyclic matrices

The following notation will be extremely useful in the remainder of the article: Notation 5.1. Let n be a positive integer, and let π ∈ F * and d ∈ N * . We set

C n,d (π) := n k=-(n-1) C d (π k ), a matrix that is similar to n-1 k=0 C d (π -k ) ⊕ C d (π k+1 ) .
Lemma 5.5. Let n be a positive integer, and α, β, γ, δ be nonzero scalars with α = β. Set π := αβγδ. Then, there is a matrix S ∈ GL 4n (F) that is annihilated by (t -γ)(t -δ) and such that S (αI 2n ⊕ βI 2n ) ≃ C n,2 (π).

Proof. Noting that αI 2n ⊕ βI 2n is similar to the direct sum of n copies of αI 2 ⊕ βI 2 , it suffices to apply Lemma 5.4. Lemma 5.6. Let n be a positive integer, and α, β, γ, δ be nonzero scalars, with α = β. Let ε ∈ {-1, 1}. Set π := αβγδ. Assume that π 2k+1 = 1 for all k ∈ [[0, n -1]]. Then, there is a matrix S ∈ GL 2n (F) that is annihilated by (t -γ)(t -δ) and such that

S (αI n ⊕ βI n ) ≃ n-1 k=0 C 1 (επ -k ) ⊕ C 1 (επ k+1 ) .
Proof. The proof is similar to the one of Lemma 5.5, however we use Lemma 5.3 this time around. This works because our assumptions show that επ

-k = επ k+1 for all k ∈ [[0, n -1]].
The next result is a consequence of the classification of products of two U 2 -matrices: Lemma 5.7. Let n be a positive integer, and π be a nonzero scalar. Then,

C 2 (π -n ) ⊕ C n,2 (π) is the product of two U 2 -matrices.
Moreover, if π 2n = 1, then C n,2 (π) is also the product of two U 2 -matrices.

Proof. Reorganizing the terms, we find

C 2 (π -n ) ⊕ C n,2 (π) ≃ C 2 (1) ⊕ n k=1 C 2 (π -k ) ⊕ C 2 (π k ) M .
By Theorem 1.2, the matrix M is the product of two U 2 -matrices, and so is C 2 (1) (indeed, here all the Jordan cells have size 2). Assume now that π 2n = 1. Then ε := π n belongs to {1, -1}, and we can reorganize

C n,2 (π) ≃ C 2 (1) ⊕ C 2 (ε) ⊕ n-1 k=1 C 2 (π -k ) ⊕ C 2 (π k ) .
The conclusion then follows again from Theorem 1.2.

The following result is proved in a similar fashion, using the characterization of products of two involutions instead of the one of products of two U 2 -matrices: Lemma 5.8. Let n be a positive integer, let π be a nonzero scalar and let ε ∈ {-1, 1}. Then, for every positive integer d, the matrix

C d (επ -n ) ⊕ n-1 k=0 C d (επ -k ) ⊕ C d (επ k+1 )
is the product of two involutions, and if π n = ±1, then C n,d (π) is also the product of two involutions.

Therefore,

M → u C n-2 (1) ⊕ C(t 2 -t -1) ⊕ C(t 2 + t -1).
The latter matrix is similar to its inverse and -1 is no eigenvalue of it: hence it is the product of two U 2 -matrices.

In any case, we have shown that M is u-adjacent to the product of two U 2 -matrices, and hence it is the product of three U 2 -matrices.

Proposition 5.11. Assume that the characteristic of F is not 2. Let N ∈ GL n (F) be an invertible very-well-partitioned matrix. Let q be a positive integer and α, β be distinct nonzero scalars. Set M := N ⊕ αI q ⊕ βI q and assume that det M = ±1. Assume finally that (αβ) k = ±1 for all k ∈ [ [1, q]]. Then, M is the product of three involutions, but also of one involution and two U 2 -matrices, and also of one U 2 -matrix and two involutions.

Proof. Let ε ∈ {1, -1}, and define η := 1 if ε = -1, and η := det M otherwise. Set π := εαβ, and note that π

k = ±1 for all k ∈ [[1, q]]. Case 1: There is no integer k ∈ [[1, q]] for which π 2k+1 = 1.
Assume that ε = -1 (respectively, ε = 1). Then, by Lemma 5.6 the matrix αI q ⊕ βI q is i-adjacent (respectively, u-adjacent) to

q-1 k=0 C 1 (ηπ -k ) ⊕ C 1 (ηπ k+1 ) ,
whereas the Adaptation Theorem shows that N is i-adjacent (respectively, uadjacent) to

C (t -1) n-1 (t -ηπ -q ) ≃ C n-1 (1) ⊕ C 1 (ηπ -q ).
Hence, M is i-adjacent (respectively u-adjacent) to

M ′ := C n-1 (1) ⊕ C 1 (ηπ -q ) ⊕ q-1 k=0 C 1 (ηπ -k ) ⊕ C 1 (ηπ k+1 ) .
The matrix M ′ is obviously similar to its inverse and, if in addition η = 1 then -1 is no eigenvalue of it. Hence, M ′ is the product of two involutions, and it also the product of two U 2 -matrices if ε = -1. This yields the claimed result for M .

Case 2: There is an integer k ∈ [[0, q -1]] for which π 2k+1 = 1. We take the least such integer a. Then, our starting assumptions show that 2a + 1 > q, whence a ≥ q 2 • Set b := q -a, so that 1 ≤ b ≤ a ≤ q. Subcase 2.1: b < a or η = -1. Then, π a and ηπ b are distinct. Indeed, π a = π b if b < a, and on the other hand -1 does not belong to the group π because π has odd order. Assume that ε = -1 (respectively, ε = 1). By Lemma 5.6, the matrix αI a ⊕ βI a is Proposition 3.8 otherwise, N ⊕ (-I q ) ⊕ I q is the product of three U 2 -matrices. Therefore, so is M .

In the remainder of the proof, we assume that α = 1.

If p = 1, we have det N = α -1 ; then, as α -1 = 1, the Adaptation Theorem shows that N →

u C n-1 (1) ⊕ C 1 (α -1 ); hence, M is u-adjacent to C n-1 (1) ⊕ C 1 (α -1 ) ⊕ C 1 (α), which is the product of two U 2 -matrices because α = -1.
In the remainder of the proof, we assume further that p > 1 (and hence q > 0). We set π := -α. We shall prove that M is u-adjacent to a matrix that is the product of two U 2 -matrices. Note that

π k = -1 for all k ∈ [[1, q]].
Case 1: There is no integer k ∈ [[0, q -1]] such that π 2k+1 = 1. Then, by Lemma 5.6,

αI p ⊕ (-I q ) → u C 1 (α) ⊕ C q,1 (π).
As q > 0, we have π q = α otherwise α q-1 = (-1) q , and then q -1 > 0 and we contradict our assumptions on α. Hence, 1, α -1 and π -q are pairwise distinct. Since det N = α -1 π -q , the Adaptation Theorem shows that

N → u C (t -1) n-2 (t -α -1 )(t -π -q ) ≃ C n-2 (1) ⊕ C 1 (α -1 ) ⊕ C 1 (π -q ). It follows that M → u M ′ := C n-2 (1) ⊕ C 1 (α -1 ) ⊕ C 1 (α) ⊕ C 1 (π -q ) ⊕ C q,1 (π) .
By Lemma 5.8, the matrix M ′ is similar to its inverse. Moreover, as α = -1 and π k = -1 for all k ∈ [[-q, q]], we see that -1 is no eigenvalue of M ′ . Hence, Theorem 1.2 shows that M ′ is the product of two U 2 -matrices.

Case 2: q is even. We write q = 2a for some integer a. Then, by Lemma 5.5,

αI q ⊕ (-I q ) → u C a,2 (π).
Note that det N = α -1 (π -a ) 2 and that π a = 1 due to our assumptions. If π a = α then α a-1 = (-1) a , which yields a -1 = 0 (because 0 ≤ a -1 ≤ q) and we obtain a contradiction. Hence, 1, α -1 , π -a are pairwise distinct, and we deduce from the Adaptation Theorem that

N → u C (t -1) n-3 (t -α -1 )(t -π -a ) 2 ≃ C n-3 (1) ⊕ C 1 (α -1 ) ⊕ C 2 (π -a ). Hence, M → u C n-3 (1) ⊕ C 1 (α -1 ) ⊕ C 1 (α) ⊕ C 2 (π -a ) ⊕ C a,2 (π) .
Remembering that α = -1, we see that the latter matrix is the product of two U 2 -matrices.

Case 3: q is odd and there is an integer k ∈ [[0, q -1]] such that π 2k+1 = 1. We take the least such integer a. Note that 2a + 1 > q due to our assumptions. Hence, a ≥ q 2 . Setting b := q -a, we deduce that 1 ≤ b < a < q because q is odd. It ensues that 1, α -1 , π -a and π -b are pairwise distinct. Note that det N = α -1 π -q = α -1 π -a π -b . Thus, the Adaptation Theorem yields

N → u C (t-1) n-3 (t-α -1 )(t-π -a )(t-π -b ) ≃ C n-3 (1)⊕C 1 (α -1 )⊕C 1 (π -a )⊕C 1 (π -b ).
On the other hand, we note that π 2k+1 = 1 for all k ∈ [[0, a -1]], and hence Lemma 5.6 shows that

αI a ⊕ (-I a ) → u C a,1 (π) and αI b ⊕ (-I b ) → u C b,1 (π).
Combining the above two adjacency results yields that M is u-adjacent to

M ′ := C n-3 (1)⊕ C 1 (α -1 )⊕C 1 (α) ⊕ C 1 -a )⊕C a,1 (π) ⊕ C 1 (π -b )⊕C b,1 (π) .
By Theorem 1.2 and Lemma 5.8, the matrix M ′ is similar to its inverse. Moreover, -1 is not a power of π: indeed, as π 2a+1 = 1 we see that π has odd order. In addition α = -1, and hence -1 is no eigenvalue of M ′ . Therefore, Theorem 1.2 yields that M ′ is the product of two U 2 -matrices.

Hence, in any case M is u-adjacent to the product of two U 2 -matrices, and we conclude that M is the product of three U 2 -matrices. Proposition 5.13. Assume that F has characteristic not 2 and let i ∈ F satisfy i 2 = -1. Let q be a positive integer, N ∈ GL n (F) be a very-wellpartitioned invertible matrix, and let α and β be distinct nonzero scalars such that (αβ) q det N = ±i. Assume furthermore that (αβ) k ∈ {±1, ±i} for all k ∈ [ [1, q]]. Then, M := N ⊕ αI q ⊕ βI q ⊕ iI 1 is the product of three involutions, and it is also the product of one involution and two U 2 -matrices.

Proof. Set π := -αβ. We will prove that M is i-adjacent to a matrix that is the product of two U 2 -matrices. This will yield the claimed results. Case 1: There is no integer k ∈ [[0, q -1]] for which -iπ -k = iπ k+1 , i.e. π 2k+1 = -1.

Then, by Lemma 5.3,

αI q ⊕ βI q → i q-1 k=0 C 1 (-iπ -k ) ⊕ C 1 (iπ k+1 ) .
Besides, since -iπ -q = 1, the Adaptation Theorem shows that

N → i C (t -1) n-1 (t + iπ -q ) ≃ C n-1 (1) ⊕ C 1 (-iπ -q ).
Hence,

M → i M ′ := C n-1 (1) ⊕ C 1 (i) ⊕ C 1 (-i) ⊕ q k=1 C 1 (-iπ -k ) ⊕ C 1 (iπ k ) .
The matrix M ′ is obviously similar to its inverse. Moreover, the assumptions show that -1 is no eigenvalue of M ′ . Hence, M ′ is the product of two U 2matrices.

Case 2: There is an integer k ∈ [[0, q -1]] for which -iπ -k = iπ k+1 . Let us take the least such integer a. Then, 1 ≤ a < q. Setting b := q -a, we have 1 ≤ b < q. Note that π Besides, -iπ -a , π -b , and 1 are pairwise distinct and hence the Adaptation Theorem shows that N is i-adjacent to

C (t -1) n-2 (t + iπ -a )(t -π -b ) ≃ C n-2 (1) ⊕ C 1 (-iπ -a ) ⊕ C 1 (π -b ).
We conclude that M is i-adjacent to

M ′ := C n-2 (1) ⊕ C 1 (i) ⊕ C 1 (-iπ -a ) ⊕ a-1 k=0 C 1 (-iπ -k ) ⊕ C 1 (iπ k+1 ) ⊕ C 1 (π -b ) ⊕ C b,1 (π) ,
which is similar to

C n-2 (1)⊕ C 1 (i)⊕C 1 (-i) ⊕ a k=1 C 1 (-iπ -k )⊕C 1 (iπ k ) ⊕ C 1 (π -b )⊕C b,1 (π) .
Hence, M ′ is similar to its inverse. We claim that -1 is no eigenvalue of it. Indeed, the starting assumptions on π show that π k = -1 for all k ∈ [[-b, b]], and π k = ±i for all k ∈ [[-a, a]].

We conclude that M is the product of one involution and two U 2 -matrices, and by Theorem 1.2 it is also the product of three involutions. Proof. Noting that -C 2 (1) ≃ C 2 (-1) and that C 2 (1) is a U 2 -matrix, we see that -I 2 is u-adjacent to C 2 (-1). Besides, C 2 (-1) is the product of two U 2 -matrices, by Theorem 1.2. This yields the claimed result. Lemma 6.2. Assume that F does not have characteristic 2. Let α belong to F {0, -1}. Let n ∈ N * be an odd integer such that α n = 1. Then, αI n ⊕(-I n-1 ) is the product of three U 2 -matrices. Lemma 7.6. Let α, β be distinct nonzero scalars. Assume that, in the group F * , the element (-αβ) has order 4q for some q > 0. Then, αI q ⊕ βI q ⊕ (iI 1 ) is the product of three involutions, and it is also the product of one involution and two U 2 -matrices.

Proof. Set π = -αβ, which has order 4q. In particular π 2q = -1 (otherwise the order of π would divide 2q), and hence π q = -εi for some ε ∈ {-1, 1}. Moreover, there is no odd integer l such that π l = -1 (otherwise the order of π would divide 2l), and hence iπ k+1 = -iπ -k for every integer k. By Lemma 5.6, it follows that αI q ⊕ βI q → i q-1 k=0 C 1 (-εiπ -k ) ⊕ C 1 (εiπ k+1 ) , and hence

αI q ⊕ βI q ⊕ iI 1 → i B := C 1 (εi) ⊕ q-1 k=0 C 1 (-εiπ -k ) ⊕ C 1 (εiπ k+1 ) .
Noting that εiπ q = 1, we extract two blocks and we obtain

B ≃ C 1 (1) ⊕ C 1 (εi) ⊕ C 1 (-εi) ⊕ q-1 k=1 C 1 (-εiπ -k ) ⊕ C 1 (εiπ k ) .
This shows that B is similar to its inverse. Moreover, -1 is no eigenvalue of B: indeed, there can be no integer k such that |k| < q and π k = ±i, otherwise π 4k = 1 would yield k = 0 which is absurd. Hence, B is the product of two U 2 -matrices. The conclusion ensues.

For the case of products of three involutions, we can generalize the previous result as follows: Lemma 7.7. Let α, β be distinct nonzero scalars, and p be a non-negative integer such that (-αβ) p = ±i. Then, αI p ⊕ βI p ⊕ iI 1 is the product of three involutions.

Proof. Set π := -αβ. Since the subgroup generated by π contains an element of order 4, the order of π is a multiple of 4, which we write 4q for some q > 0. Since π 4p = 1 and π 2p = -1, we find that p is a multiple of q but not of 2q. Hence, p = 2qm + q for some integer m ≥ 0, and we deduce that αI p ⊕ βI p ⊕ iI 1 is similar to the direct sum of αI q ⊕ βI q ⊕ iI 1 and of m copies of αI 2q ⊕ βI 2q . Since (-αβ) q = ±i and (-αβ) 2q = -1, all those summands are products of three involutions (by Lemma 7.6 for the first summand, and by Lemma 7.1 for the remaining ones), and the conclusion ensues. product of two U 2 -matrices. Therefore, M is the product of one involution and two U 2 -matrices.

Case 2: q is odd. If q = 1, then α = -i and M is the product of two U 2 -matrices. In the remainder of the proof, we assume that q > 1.

Let us write q = 2p + 1 for some positive integer p. Note that (iπ p+1 ) 2 = π. Hence, Lemma 5.1 shows that iI 1 ⊕ αI 1 → i C 2 (iπ p+1 ). Moreover, Lemma 5.4 shows that

iI 2p-2 ⊕ αI 2p-2 → i p-1 k=1 C 2 (-iπ -k ) ⊕ C 2 (iπ k+1 ) .
It follows from Lemma 9.4 that

M → i B := C 1 (i)⊕C 1 (-i)⊕C 2 (iπ)⊕C 2 (iπ p+1 )⊕ p-1 k=1 C 2 (-iπ -k )⊕C 2 (iπ k+1 ) .
Reorganizing the terms and noting that iπ p+1 = -iπ -p , we obtain

B ≃ C 1 (i) ⊕ C 1 (-i) ⊕ p k=1 C 2 (-iπ -k ) ⊕ C 2 (iπ k ) .
Hence, B is similar to its inverse and has no Jordan cell of odd size for the eigenvalue -1 (in fact, one can prove that -1 is no eigenvalue of B). Thus, B is the product of two U 2 -matrices, and hence M is the product of one involution and two U 2 -matrices. This completes the proof of Theorem 1.13.

Optimality issues

Here, we briefly discuss the optimality of our results. For example, if we refer to Theorem 1.7, the problem is the following one: Given a positive integer n, what is the minimal integer k ≥ 0 such that, for any field F any matrix A ∈ GL n (F) with determinant ±1, the matrix A ⊕ I k is the product of three involutions? It turns out that the solution n is not optimal but very close to optimality. This is due to the fact that there is room for improvement in the lemmas that deal with matrices of the form αI q ⊕ βI q : there, we tried to keep things as general as possible and in particular we seldom cared about the value of β. Yet, if we assign a specific value to β, say β = 1 for Theorem 1.7, then there is room for improvement, as we will now see.

Here, we state the optimal results without proof:

• For every integer n ≥ 2 and every A ∈ SL n (F), the matrix A ⊕ I n-2 is the product of three U 2 -matrices. However, if n ≥ 3 then for every α ∈ F {0} of order n, the matrix αI n ⊕ I n-3 is not the product of three U 2 -matrices.
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 22 Polynomial fit lemma). Let A ∈ M n (F) and B ∈ M m (F) be cyclic matrices, and p(t) be a monic polynomial of degree n + m such that N (p) = (det A) (det B).

  M ∈ M n (F) is called block quasi-companion (in abbreviated form: BQC) whenever there are quasi-companion matrices D 1 , . . . , D N with respective sizes d 1 , . . . , d N , and nonzero scalars β 1 , . . . , β N -1 such that
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 25 Let A ∈ GL n (F) be an invertible BQC matrix, and (d 1 , . . . , d N ) be an associated characteristic list. Then: (a) The d 1 -th vector of the standard basis of F n is cyclic for A. (b) The (n -d N + 1)-th vector of the standard basis of F n is cyclic for A T . Proof. Throughout the proof, we denote by (e 1 , . . . , e n ) the standard basis of F n . For k ∈ [[0, N ]], set
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 k=1 k , and let U ∈ M a,b (F). We can rewrite
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 37 Let p ∈ F[t] be a monic polynomial with norm ±1. Let k ∈ {0, 1, 2}. Then, C(p) is the product of k unipotent matrices of index 2 and 3 -k involutions. Moreover, if p has norm 1 then C(p) is the product of three U 2 -matrices. Proof. Denote by d the degree of p. By Lemma 3.4, C(p) is u-adjacent to C(q)
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 11 2k+1 = -1 for all k ∈ [[0, a -1]]. Moreover, π does not have odd order because -1 ∈ π , whence π 2k+1 = 1 for k ∈ [[0, b -1]].Hence, it follows from Lemma 5.3 thatαI a ⊕ βI a → i a-iπ -k ) ⊕ C 1 (iπ k+1 ) and αI b ⊕ βI b → i C b,1 (π).
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 621 Products of three unipotent matrices of index Additional results on diagonal matrices Lemma 6.1. The matrix -I 2 is the product of three U 2 -matrices.

  Then, F 1 , . . . , F n do not cover F . Proof of Lemma 4.6. The result is obvious if F is void. Assume now that it is not. We prove the result by induction on the dimension of F . If it is less than or equal to 1, then the result is obvious (the F i 's being either void or singletons). Assume now that the dimension of F is at least 2. We choose an affine hyperplane H of F that includes F 1 . Assume first that some affine hyperplane H ′ that is parallel to H is included in none of the F i 's. Then, F 1 ∩ H ′ , . . . , F n ∩ H ′ are proper affine subspaces of H ′ and hence by induction they do not cover H ′ ; hence, F 1 , . . . , F n do not cover F .

see that C(p i ) → u C(q i ) for all i ∈ [ [1, r]]. Hence, A := C(q 1 ) ⊕ • • • ⊕ C(q r ) ⊕ B is well-partitioned and M → u A.

Case 2: s = 0. Then, r > 1. Using Lemma 4.5, we find, for each i ∈ [ [2, r]], a monic polynomial q i such that N (p i ) = N (q i ), deg(q i ) = deg(p i ) and q i has no root in {1, N (p 1 )}. Set q 1 := (t -1) d-1 (t -N (p 1 )), where d := deg p 1 . Then, q 1 is coprime to q 2 , . . . , q r , and hence A := C(q 1 ) ⊕ • • • ⊕ C(q r ) is well-partitioned. Yet, by Lemma 3.5, we have C(p i ) → u C(q i ) for all i ∈ [ [1, r]]. Hence, M → u A, which completes the proof.

Concluding the proof of Theorem 1.5

We are now ready to complete the proof of Theorem 1.5. Let M ∈ SL n (F). We prove that M is the product of four U 2 -matrices. It is known by Lemma 4.2 if M is scalar, and by Proposition 3.7 if M is cyclic (because in that case M is the product of three U 2 -matrices). Assume now that M is neither scalar nor cyclic. Then, by Proposition 4.4, there is a wellpartitioned matrix A ∈ GL n (F) such that M → u A. Hence, det A = det M = 1. Then, by Proposition 3.8, A is the product of three U 2 -matrices, and hence M is the product of four U 2 -matrices.

Next, let M ∈ GL n (F) be such that det M = ±1. Let k ∈ {1, 2, 3}. We wish to prove that M is the product of k unipotent matrices of index 2 and 4 -k involutions. Again, it is known by Lemmas 4.1 and 4.3 if M is scalar, and by Lemma 3.7 if M is cyclic (in that case M is the product of k -1 unipotent matrices of index 2 and 4 -k Assume now that M is neither scalar nor cyclic. Then, by Proposition 4.4, M → u A for some well-partitioned matrix A ∈ M n (F). Hence, det A = det M = ±1. Then, by Proposition 3.8, A is the product of k -1 unipotent matrices of index 2 and 4 -k involutions, and hence M is the product of k unipotent matrices of index 2 and 4 -k involutions.

In particular, M is the product of two U 2 -matrices and two involutions, and we deduce from Theorem 1.2 that it is also the product of four involutions. Hence, Theorem 1.5 is now proved.

Common results for the stable length 3 problem

In the present section, we gather some technical results that are more or less common to all four cases in the stable length 3 problem. Most of our results are concerned with matrices of the form αI n ⊕ βI n with distinct nonzero scalars α and β.

Adjacency results on specific diagonal matrices

Lemma 5.1. Let α, β, γ, δ be nonzero scalars, with α = β, and let x ∈ F {0}. Set π := αβγδ. Let n be a positive integer. Then, there is a matrix S ∈ GL 2n (F) that is annihilated by the polynomial (t -γ)(t -δ) and such that S (αI n ⊕ βI n ) ≃ C (t -x) n (t -πx -1 ) n .

A general result on simple diagonal matrices

Lemma 5.9. Let α and β be distinct nonzero scalars. Let ε ∈ {1, -1} be such that (εαβ) p = 1. Set A := αI p ⊕ βI p .

(i) If ε = 1 then αI p ⊕ βI p is the product of three U 2 -matrices, and also of one U 2 -matrix and two involutions.

(ii) If ε = -1 then αI p ⊕ βI p is the product of three involutions, and also of one involution and two U 2 -matrices.

Proof. Set π := εαβ and q := ⌊p/2⌋. Assume that ε = 1 (respectively, ε = -1). By Lemma 5.5, the matrix αI 2q ⊕ βI 2q is u-adjacent (respectively, i-adjacent) to C q,2 (π). If p is even then the last statement of Lemma 5.7 shows that C q,2 (π) is the product of two U 2 -matrices.

Assume now that p is odd, so that π -q = π q+1 . Then, αI 1 ⊕ βI 1 is uadjacent (respectively, i-adjacent) to C 2 (π -q ). Hence, αI p ⊕ βI p is u-adjacent (respectively, i-adjacent) to B ′ := C 2 (π -q ) ⊕ C q,2 (π). Once more, by Lemma 5.7, the matrix B ′ is both the product of two involutions and the product of two U 2 -matrices.

The conclusions follow.

More general decompositions

Proposition 5.10. Let N ∈ GL n (F) be an invertible well-partitioned matrix with n ≥ 3. Let q be a positive integer and α, β be distinct nonzero scalars. Set M := N ⊕ αI q ⊕ βI q and assume that det M = 1. Assume also that (αβ

Then, M is the product of three U 2 -matrices.

Proof. We will prove that M is u-adjacent to the product of two U 2 -matrices.

To this end, we set π := αβ. Case 1: q is even. We write q = 2p. By Lemma 5.5,

Note that π -p = 1 and det N = π -2p . Hence, the Adaptation Theorem yields

and the latter matrix is the product of two U 2 -matrices by Lemma 5.7 and Theorem 1.2.

Case 2: q is odd. We write q = 2p + 1. Subcase 2.1: q > 3.

Then, det N = π -1 (π -p ) 2 and we note that the assumptions show that π -1 , π -p and 1 are pairwise distinct (indeed p ≥ 2). As n ≥ 3, the Adaptation Theorem yields

On the other hand,

The matrix M 1 is similar to its inverse. Moreover, the assumptions show that π 2 = 1 (as q ≥ 2) and hence π is distinct from -1. It follows from Theorem 1.2 that M 1 is the product of two U 2 -matrices. Subcase 2.2: q = 3. In particular, the assumptions show that π 2 = 1. By Lemma 5.1,

where the last similarity comes from having π = 1. Note that det N = π -3 and π -1 = 1. Hence, as n ≥ 3 the Adaptation Theorem shows that

We note that the latter matrix is similar to its inverse and -1 is no eigenvalue of it, and we conclude that it is the product of two U 2 -matrices. Subcase 2.3: q = 1 and π = -1.

Note that the assumptions show that

and as π = -1 the latter matrix is the product of two U 2 -matrices. Subcase 2.4: q = 1 and π = -1. Note that det N = -1. The matrix αI 1 ⊕ βI 1 is cyclic with characteristic polynomial t 2 -(α + β)t -1, whence Proposition 3.5 yields

Besides, since 1 is not a root ot t 2 -t -1, the Adaptation Theorem yields

i-adjacent (respectively, u-adjacent) to C a,1 (π), whereas αI b ⊕ βI b is i-adjacent (respectively, u-adjacent) to

Finally, since 1, π -a , ηπ -b are pairwise distinct, the Adaptation Theorem shows that N is i-adjacent (respectively, u-adjacent) to

Hence, M is i-adjacent (respectively, u-adjacent) to

The matrix M ′ is obviously similar to its inverse, and if η = 1 then -1 is no eigenvalue of M ′ . Hence, M ′ is the product of two involutions, and it is also the product of two U 2 -matrices if ε = -1. Subcase 2.2: b = a and η = 1. Hence, det N = ±(π -a ) 2 , and more precisely η det N = (π -a ) 2 if ε = 1. Assume that ε = -1 (respectively, ε = 1). Then, the Adaptation Theorem shows that N is i-adjacent (respectively, u-adjacent) to

Moreover, since q = 2a, we find that αI q ⊕ βI q is i-adjacent (respectively, uadjacent) to C a,2 (π). Hence, M is i-adjacent (respectively, u-adjacent) to

a matrix which is the product of two U 2 -matrices.

Hence, in any case we deduce that M is the product of one involution and two U 2 -matrices, as well as the product of one U 2 -matrix and two involutions. By the former, M is also the product of three involutions.

We finish with two variations of the previous two results that are relevant to unnatural extensions. Proposition 5.12. Assume that the field F does not have characteristic 2. Let p, q be integers with p > 0 and q ∈ {p -1, p}. Let α ∈ F {0, -1}. Let N ∈ GL n (F) be a well-partitioned matrix with n ≥ 3. Set M := N ⊕αI p ⊕(-I q ). Assume that det M = 1 and that there is no integer k ∈ [ [1, q]] such that α k = ±1. Then, M is the product of three U 2 -matrices.

Proof. If p = q, the result follows directly from Proposition 5.10. Hence, in the remainder of the proof we only consider the case when q = p -1.

Assume first that α = 1. Then M ≃ (N ⊕ (-I q ) ⊕ I q ) ⊕ I 1 . Moreover, det(N ⊕ (-I q ) ⊕ I q ) = 1, and hence, either by Proposition 5.10 if q > 0, or by Proof. We note that α has odd order, and we denote by m its order. We start by proving that αI m ⊕ (-I m-1 ) is the product of three U 2 -matrices.

Note that -1 has even order (because F does not have characteristic 2), and hence it cannot be a power of α. It follows that -α has even order. Therefore, Lemma 5.6 yields

Noting that α(-α) m-1 = α m = 1, we obtain B ≃ B -1 . Moreover, we claim that -1 is no eigenvalue of B. Indeed, assume that (-α) k = -1 for some integer k such that |k| < m. Then, α k = (-1) k+1 , and since -1 is not a power of α this yields α k = 1. Then, k = 0 because of the definition of m, which is absurd. Hence, B is the product of two U 2 -matrices, and we conclude that αI m ⊕ (-I m-1 ) is the product of three such matrices.

If n = m, we are done. Otherwise we write

Note that (-α) n-m = 1. Therefore, by Lemma 5.9, αI n-m ⊕ (-I n-m ) is the product of three U 2 -matrices. Therefore, so is αI n ⊕ (-I n-1 ).

Lemma 6.3. Assume that F does not have characteristic 2. Let α ∈ F {0, -1}.

Let n ∈ N * be an even integer such that α n = -1. Then, αI n ⊕ (-I n-1 ) is the product of three U 2 -matrices.

Proof. Since n is even, one of the powers of α is a square root of -1, which has order 4, and hence the order of α is a multiple of 4.

Denote by m the order of α, and write m = 4q, so that α 2q = -1. Note that 4q ≤ 2n, whence n ≥ 2q. The element -α does not have odd order otherwise α 2k = 1 for some odd integer k, and 4q would then divide 2k! Hence, with the same line of reasoning as in the previous lemma, we find

and, as α(-α) 2q-1 = 1, we note that B is similar to its inverse. Assume now that -1 is an eigenvalue of B. Then, (-α) k = -1 for some integer k such that |k| < 2q, and hence α 2k = 1 with |2k| < m. It ensues that k = 0, which leads to a contradiction. Therefore, -1 is no eigenvalue of B, and we conclude that B is the product of two U 2 -matrices.

From there, by splitting

one concludes with exactly the same line of reasoning as in the proof of Lemma 6.2.

Natural extensions

Here, we prove Theorem 1.8. Let A ∈ SL n (F). We wish to prove that the matrix M := A ⊕ I n is the product of three U 2 -matrices.

We start by applying Proposition 3.3: there exist non-negative integers p, q, r such that p + q + r = 2n, a matrix N ∈ GL p (F) and a scalar α ∈ F {1} such that M ≃ N ⊕ α I q ⊕ I r and q ≥ r, and either N is very-well-partitioned, or N -I p is nilpotent and q = 0, or N is void. Since I r-q is the product of three U 2 -matrices, it suffices to prove that M ′ := N ⊕ αI q ⊕ I q , which has determinant 1, is the product of three U 2 -matrices. If q = 0, then det N = 1 and the result follows directly from Theorem 1.2 if N -I p is nilpotent, whereas it follows from Proposition 3.8 if N is very-wellpartitioned.

In the rest of the proof, we assume that q > 0.

If N is void then α q = det M ′ = 1 and the result follows directly from Lemma 5.9.

Assume finally that N is very-well-partitioned and that q > 0. Note that α ∈ {0, 1} since M ′ is invertible. Note also that p ≥ 3 because N is very-wellpartitioned. If there is no integer k ∈ [ [1, q]] such that α k = 1, then the result follows directly from Proposition 5.10. Assume finally that there is an integer k ∈ [ [1, q]] such that α k = 1, and denote by a the greatest such integer. Then,

and we note that det M ′ 2 = α a = 1 and hence det M ′ 1 = 1. By Proposition 5.10 if q -a > 0, and by Proposition 3.8 otherwise, the matrix M ′ 1 is the product of three U 2 -matrices; so is M ′ 2 by Lemma 5.9. We conclude that M ′ is the product of three U 2 -matrices.

This completes the proof of Theorem 1.8.

Unnatural extensions: additional results

In this section and in the following one, we assume that the field F does not have characteristic 2. Here, we establish preliminary results for the proof of Theorem 1.12 (which will be performed in the next section). Lemma 6.4. Let N ∈ M n (F) be nilpotent. Denote by s the number of its Jordan cells of odd size. Then, (-I n + N ) ⊕ (-I s ) is the product of three U 2 -matrices.

Proof. For a scalar λ and a positive integer k, we denote by J k (λ) := λI k +C(t k ) the (transposed) Jordan cell of size k associated with the eigenvalue λ.

For every non-negative integer k, the matrix J 2k (-1) is the product of two U 2 -matrices (by Theorem 1.2), and hence it is also the product of three such matrices.

In order to conclude, it suffices to prove that for every non-negative integer k, the matrix (-I 1 )⊕ J 2k+1 (-1) is the product of three U 2 -matrices. Let k be such an integer, and denote by U the transvection matrix of GL 2k+2 (F) with entry -1 at the (2, 1)-spot. One checks that U ((-I 1 ) ⊕ J 2k+1 (-1)) = J 2k+2 (-1), and the latter matrix is the product of two U 2 -matrices. Noting that U is a U 2 -matrix, we conclude that (-I 1 ) ⊕ J 2k+1 (-1) is the product of three U 2 -matrices. Lemma 6.5. Let A ∈ GL n (F) be such that det A = ±1, and k be a positive integer such that (-1) k = det A. Assume that A is similar to a direct sum of companion matrices, all with size greater than 1, and that -1 is no eigenvalue of A. Then, A ⊕ (-I k ) is the product of three U 2 -matrices.

Proof. Since -I 2 is the product of three U 2 -matrices, it suffices to consider the case when k ∈ {1, 2}.

If k = 1, we see that A⊕(-I 1 ) is similar to a well-partitioned matrix, and we deduce from Proposition 3.8 that A ⊕ (-I 1 ) is the product of three U 2 -matrices.

Assume now that k = 2, so that det A = 1. If A is cyclic then Proposition 3.7 shows that it is the product of three U 2 -matrices. Since so is -I 2 (see Lemma 6.1), so is A⊕(-I 2 ). Assume finally that A is non-cyclic. The assumptions allow us to split A ≃ B 1 ⊕ • • • ⊕ B p , where B 1 , . . . , B p are companion matrices with size at least 2, and p ≥ 2. If all the B i 's have determinant 1, then they are all products of three U 2 -matrices, and hence so is A. Assuming otherwise, we lose no generality in further assuming that det B 1 = 1. Then, we set A 1 := (-I 1 ) ⊕ B 1 and

We also note that A 1 and A 2 are both well-partitioned. The Adaptation Theorem shows that

) for some positive integers r and s. Then,

) , a matrix that is similar to its inverse and of which -1 is no eigenvalue. Hence A ⊕ (-I k ) is the product of three U 2 -matrices. Lemma 6.6. Let A ∈ GL n (F) be a very-well-partitioned matrix such that det A = -1. Then, A ⊕ (-I 1 ) is the product of three U 2 -matrices.

Proof. Set M := A ⊕ (-I 1 ). We denote by p 1 , . . . , p r , q 1 , . . . , q s the polynomials that are attached to A as a well-partitioned matrix. Without loss of generality, we can assume that p 1 , . . . , p r are all coprime with t + 1. If deg(q s ) > 1, then M is well-partitioned with determinant 1 and we deduce from Proposition 3.8 that it is the product of three U 2 -matrices. Assume now that deg(q s ) = 1 and q s = t + 1. Then, C(q s ) ⊕ (-I 1 ) ≃ C (t + 1)q s and hence M is similar to a wellpartitioned matrix (with attached polynomials p 1 , . . . , p r , q 1 , . . . , q s-1 , (t+1)q s ). Again, M is the product of three U 2 -matrices in that case.

Assume that q s = t + 1 and s > 1. As A is very-well-partitioned, the matrix

) is well-partitioned with determinant 1. Hence, B is the product of three U 2 -matrices, and so is M = B ⊕ (-I 2 ).

Assume finally that q s = t + 1 and s = 1. Then,

) is the direct sum of companion matrices with size at least 2 and -1 is no eigenvalue of B. We deduce from Lemma 6.5 that M = B ⊕ (-I 2 ) is the product of three U 2 -matrices.

Unnatural extensions: proof of Theorem 1.8

Here, we complete the proof of Theorem 1.8. We assume that F does not have characteristic 2. Let A ∈ GL n (F) be such that det A = ±1, and let m ≥ n be an integer such that (-1) m det A = 1. We wish to prove that M := A⊕(-I m ) is the product of three U 2 -matrices.

By Proposition 3.3, there are non-negative integers p, q, r, a matrix N ∈ GL p (F), and a scalar α ∈ F {-1} such that M ≃ N ⊕ αI q ⊕ (-I r ) and r ≥ q, and either N + I p is nilpotent and q = 0, or N is void, or N is very-wellpartitioned. Moreover, when q = 0 and N + I p is nilpotent, we can assume that N has no Jordan cell of size 1 (otherwise we put all those cells in the last -I r block).

Assume first that N is void. If q = 0, then r is even and it follows directly from Lemma 6.1 that M is the product of three U 2 -matrices. Assume now that q > 0. If r-q is even, we write that M is similar to the direct sum of αI q ⊕(-I q ) and of copies of -I 2 , and we conclude by combining Lemmas 5.9 and 6.1. If r -q is odd, we write that M is similar to the direct sum of αI q ⊕ (-I q-1 ) and of copies of -I 2 , and we conclude by combining Lemma 6.1 with one of Lemmas 6.2 and 6.3.

Assume now that q = 0 and that N + I p is nilpotent. Then, r is greater than or equal to the number s of Jordan cells of odd size of N , and r -s is even because det M = 1. It follows from Lemmas 6.1 and 6.4 that M is the product of three U 2 -matrices.

Assume finally that N is very-well-partitioned. If q = 0 and r is even, then det N = 1 and we combine Proposition 3.8 with Lemma 6.1 to obtain that M is the product of three U 2 -matrices. If q = 0 and r is odd, the same conclusion is reached by combining Lemmas 6.6 and 6.1. In the remainder of the proof, we assume that q > 0. Using Lemma 6.1 once more, we choose m ∈ {q -1, q} that equals r modulo 2, and we find that it suffices to prove that M ′ := N ⊕ αI q ⊕ (-I m ), which has determinant 1, is the product of three U 2 -matrices.

], then Proposition 5.12 directly yields that M is the product of three U 2 -matrices. Assume now that α k = ±1 for some k ∈ [ [1, m]], and denote by a the greatest such integer. Hence,

• Assume first that (-α) a = 1. Then, we resplit

and we note that det M 1 = 1. If q -a > 0 then Proposition 5.12 shows that M 1 is the product of three U 2 -matrices. If q -a = 0 then Proposition 3.8 shows that M 1 is the product of three U 2 -matrices. Moreover, M 2 is also the product of three U 2 -matrices, by Lemma 5.9. Hence, so is M ′ .

• If (-α) a = -1 and m = q -1, then we resplit

and this time around we conclude by combining one of Propositions 3.8 and 5.10 with one of Lemmas 6.2 and 6.3.

• If (-α) a = -1, m = q and q > a, then we resplit M ′ ≃ (-I 2 ) ⊕ N ⊕ αI q-a ⊕ (-I q-a-1 ) ⊕ αI a ⊕ (-I a-1 ) , and we conclude as in the preceding case, with Proposition 5.12 instead of Proposition 5.10, and by using Lemma 6.1.

• Assume finally that (-α) a = -1 and m = q = a. Then, we split

and we combine one of Lemmas 6.2 and 6.3 with Lemma 6.6 to conclude that M ′ is the product of three U 2 -matrices.

The proof of Theorem 1.8 is now complete.

Products of three involutions

If F has characteristic 2 then the involutions in GL n (F) are the U 2 -matrices, and our results are just consequences of Theorem 1.8. Hence, in the present section (and also in the following two), we assume that the characteristic of F is not 2.

Natural extensions

We start with an additional preliminary lemma: Lemma 7.1. Let α and β be distinct nonzero scalars, and let q be a positive integer such that (-αβ) q = ±1. Then, the matrix αI q ⊕ βI q is the product of three involutions.

Proof. Set π := -αβ. If π q = 1, the result is already known by Lemma 5.9.

Assume now that π q = -1. As F does not have characteristic 2, this yields that π has even order in the group F * , and it ensues that π 2k+1 = 1 for every integer k. Hence, by Lemma 5.6, αI q ⊕ βI q is i-adjacent to C q,1 (π). Besides, π q = ±1, and hence the last statement in Lemma 5.8 shows that C q,1 (π) is the product of two involutions. We conclude that αI q ⊕ βI q is the product of three involutions. Now, we can prove Theorem 1.7. Let A ∈ GL n (F) have determinant ±1. Then, M := A ⊕ I n satisfies the conditions of Proposition 3.1, and hence we have non-negative integers p, q, r, a matrix N ∈ GL p (F) and a scalar α ∈ F {1} such that M ≃ N ⊕ α I q ⊕ I r , r ≥ q, and either N is very-well-partitioned, or N -I p is nilpotent and q = 0, or N is void. Noting that I r-q is the product of three involutions (say, three copies of itself), we see that it suffices to consider the case when r = q.

If N is void and q > 0, then α q = det M = ±1 and we directly deduce from Lemma 7.1 that M is the product of three involutions. If N is void and q = 0, then the result is obviously true.

If N -I p is nilpotent and q = 0, then M is triangularizable with sole eigenvalue 1, and we deduce from Theorem 1.2 that it is the product of two involutions, and hence it is also the product of three involutions.

In the rest of the proof, we assume that N is very-well-partitioned. If there is no integer k ∈ [ [1, q]] such that α k = ±1, then Proposition 5.11 readily yields that M is the product of three involutions.

Assume now that there is a integer k ∈ [ [1, q]] such that α k = ±1, and take the greatest such integer a. Note that

Note that det M 2 = ±1, and hence det M 1 = ±1. By Lemma 7.1, the matrix M 2 is the product of three involutions. By Proposition 5.11 if q -a > 0, and by Proposition 3.8 otherwise, M 1 is the product of three involutions. We conclude that M is the product of three involutions.

Theorem 1.7 is now established.

Unnatural extensions : additional results on simple matrices

Here, we assume that there exists an element i of F such that i 2 = -1, and we fix such an element. Lemma 7.2. Let k be a positive integer. Then, iI 1 ⊕ C 2k-1 (i) is the product of three involutions, and also the product of one involution and two U 2 -matrices.

Proof. Note that det C 2k-1 (i) = ±i. By Proposition 3.4,

and hence

The latter matrix is obviously similar to its inverse and -1 is no eigenvalue of it, and hence it is both the product of two involutions and the product of two U 2 -matrices. The conclusion ensues.

Corollary 7.3. The matrix iI 2 is the product of three involutions, and also the product of one involution and two U 2 -matrices.

Lemma 7.4. Let k be a positive integer. Then, C 2k (i) is the product of three involutions, and also the product of one involution and two U 2 -matrices.

Proof. Set K := 1 i 0 -1 and L := -i 1 0 i , and define

with k copies of K in the definition of A, and k -1 copies of L in the one of B.

Then, one sees that AB is upper-triangular with all its diagonal entries equal to i, and for every pair (u, v) ∈ [[1, 2k]] 2 such that v = u + 1, the entry of AB at the (u, v)-spot is nonzero. Hence, AB -iI 2k is nilpotent with rank 2k -1, and we deduce that AB ≃ C 2k (i). Obviously, A is an involution, and B is similar to its inverse and -1 is no eigenvalue of B. Hence, B is the product of two U 2 -matrices. The conclusion ensues that C 2k (i) is the product of one involution and two U 2 -matrices, and hence it is also the product of three involutions. Lemma 7.5. Let N ∈ GL n (F) be a very-well-partitioned matrix such that det N = ±i. Then, N ⊕ iI 1 is the product of three involutions, and it is also the product of one involution and two U 2 -matrices.

Proof. Indeed, the Adaptation Theorem shows that N is i-adjacent to C (t -1) n-1 (t + i) , and hence

a matrix which is similar to its inverse and of which -1 is no eigenvalue. Hence, B is both the product of two U 2 -matrices and the product of two involutions, and the conclusion ensues.

Unnatural extensions: completing the proof

We are ready to conclude the proof of Theorem 1.11. Assume that F contains an element i such that i 2 = -1. Let A ∈ GL n (F) and k ≥ n. Set M := A ⊕ iI k and assume that det M = ±1. We shall prove that M is the product of three involutions.

By Proposition 3.3, there are non-negative integers p, q, r, a matrix N ∈ GL p (F), and a scalar α ∈ F {i} such that M ≃ N ⊕ αI q ⊕ iI r and r ≥ q, and either N -iI p is nilpotent and q = 0, or N is void, or N is very-wellpartitioned. Moreover, when q = 0 and N -iI p is nilpotent, we can assume that N has no Jordan cell of size 1 (otherwise we put all those cells in the last iI r block).

Assume first that q = 0 and that N -iI p is nilpotent with no Jordan cell of size 1. By the construction of M , we see that r is greater than or equal to the number s of Jordan cells of odd size of N . Then, 1 = det M = ±i r+s , and hence r -s is even. By Corollary 7.3, the matrix iI r-s is the product of three involutions. We note that M is similar to the direct sum of iI r-s , of s matrices of the form C 2k+1 (i)⊕ iI 1 for some positive integer k, and of Jordan cells of even size for the eigenvalue i. By Lemmas 7.2 and 7.4, each one of those matrices is the product of three involutions, and hence so is M .

In the remainder of the proof, we assume that N is either void or very-wellpartitioned. Since iI 2 is the product of three involutions, we further reduce the situation to the one where r ∈ {q, q + 1}. Assume that N is void. Then, either r = q and (-iα) q = ±1, in which case we use Lemma 7.1 to see that M is the product of three involutions, or r = q + 1 and (-iα) q = ±i, in which case the same conclusion is reached by applying Lemma 7.7.

It remains to deal with the case when N is very-well-partitioned and r ∈ {q, q + 1}.

Assume first that q = 0. If r = 0 then we deduce from Proposition 3.8 that N is the product of three involutions. If r = 1, we get from the Adaptation Theorem that

and hence

Assume finally that N is very-well-partitioned, r ∈ {q, q + 1} and q > 0. We split the discussion into two cases, whether r = q or r = q + 1. Case 1: r = q. If (-iα) k = ±1 for all k ∈ [[1, q]], then we readily deduce from Proposition 5.11 that M is the product of three involutions. Assume now that (-iα) k = ±1 for some k ∈ [ [1, q]], and denote by a the greatest such integer. Note that (-iα

and note that det M 2 = ±1, and hence det M 1 = ±1. Then, by Proposition 5.11 if q -a > 0, and by Proposition 3.8 otherwise, we find that M 1 is the product of three involutions. Lemma 7.1 shows that M 2 is the product of three involutions, and we conclude that so is M .

Case 2: r = q + 1. If (-iα) 4k = 1 for all k ∈ [ [1, q]], then we directly deduce from Proposition 5.13 that M is the product of three involutions. Assume now that (-iα) 4k = 1 for some k ∈ [ [1, q]], and denote by a the greatest such integer. Note then that (-iα) 4l = 1 for all l ∈ [[1, q -a]].

• Assume that (-iα) a = ±1. Then, we split

Note that det M 2 = ±1 and hence det M 1 = ±1. Then, M 1 is the product of three involutions, by Proposition 5.13 if q -a > 0, and by Lemma 7.5 otherwise. Besides, M 2 is the product of three involutions by Lemma 7.1.

• Assume that (-iα) a = ±i. Then, we split

Again, det M 4 = ±1 and det M 3 = ±1. Then, M 3 is the product of three involutions, by Proposition 5.11 if q -a > 0, and by Proposition 3.8 otherwise. Besides, M 4 is the product of three involutions by Lemma 7.7.

In any case, we conclude that M is the product of three involutions. This completes the proof of Theorem 1.11.

Products of two involutions and one unipotent matrix of index 2

In this short section, we assume that the field F does not have characteristic 2, and we prove Theorem 1.9, which we restate below:

Let A ∈ GL n (F) be such that det A = ±1. Then, the matrix A ⊕ I n is the product of one U 2 -matrix and two involutions.

The strategy is identical to the one of the proof of Theorem 1.8 given in Section 6, and hence we see that it suffices to prove the following result: Lemma 8.1. Let α ∈ F {0, 1} and q be a positive integer such that α q = ±1. Then, αI q ⊕ I q is the product of one U 2 -matrix and two involutions.

Proof. If α q = 1, the result is already known as part of Lemma 5.9. In the rest of the proof, we assume that α q = -1.

Since -1 is a power of α, we find that α has even order in the group F * . In particular α k+1 = α -k for every integer k. Hence, Lemma 5.6 shows that αI q ⊕ I q → u C q,1 (α).

Since α q = -1, Lemma 5.8 shows that C q,1 (α) is the product of two involutions. The conclusion ensues.

Hence, Theorem 1.9 is proved.

Products of one involution and two unipotent matrices of index 2

In this section, we assume that the field F does not have characteristic 2.

Natural extensions

Before we can prove Theorem 1.10, we need two consecutive lemmas.

Lemma 9.1. Let α ∈ F {0, 1}. Assume that -α has even order 2q in the group F * . Then, αI q ⊕ I q is the product of one involution and two U 2 -matrices.

Proof. Set π := -α and note that π q = -1. Since π has even order, we have π 2k+1 = 1 for every integer k. Hence, Lemma 5.6 yields that αI q-1 ⊕ I q-1 is i-adjacent to C q-1,1 (π). Noting that π -(q-1) = -π = α, we deduce that

We know from Lemma 5.8 that C 1 (π -(q-1) ) ⊕ C q-1,1 (π) is similar to its inverse, and hence so is B. Moreover, we see that -1 is no eigenvalue of B: indeed, otherwise π k = -1 for some k such that |k| < q, which would yield π 2k = 1 and then k = 0 because |2k| < 2q, leading to a contradiction. Hence, B is the product of two U 2 -matrices. The conclusion ensues.

Lemma 9.2. Let α ∈ F {0, 1}, and q be a positive integer such that (-α) q = ±1. Then, the matrix αI q ⊕ I q is the product of one involution and two U 2matrices.

Proof. Set π := -α. If π q = 1, then the result readily follows from Lemma 5.9. Assume now that π q = -1. Hence, π has even order, which we denote by 2p, and as π 2q = 1 we find that p divides q. Hence, αI q ⊕ I q is similar to the direct sum of copies of αI p ⊕ I p , a matrix which is the product of one involution and two U 2 -matrices by Lemma 9.1. Hence, αI q ⊕ I q is the product of one involution and two U 2 -matrices.

From there, the proof of Theorem 1.10 is essentially similar to the one of Theorem 1.7. The only difference is that one uses Lemma 9.2 instead of Lemma 7.1.

Unnatural extensions

Here, we let i be an element of F such that i 2 = -1. In order to prove Theorem 1.13, we can adapt the strategy of the proof of Theorem 1.11, and we see that it suffices to prove the following result. Lemma 9.3. Let α ∈ F {0, i}, and let q be a positive integer such that (-iα) q = -1. Then, αI q ⊕ iI q is the product of one involution and two U 2matrices.

In order to prove this result, a basic lemma is required:

We see that S is an involution and that A ≃ 2 ⊕ iI 1 . Moreover,

This yields the claimed result.

Proof of Lemma 9.3. Set π := -iα, so that π q = -1. Set M := αI q ⊕ iI q . We split the discussion into two cases, whether q is even or odd.

Case 1: q is even.

We write q = 2p. As (π -p ) 2 = -1, we find π -p = εi for some ε ∈ {1, -1}. By Lemma 5.4, we have

Combining this with Lemma 9.4, we deduce that

Noting that (επ p-1 )(iπ) = 1, we see that B is similar to its inverse. Moreover, B has no Jordan cell of odd size for the eigenvalue -1, and hence it is the

• For every integer n ≥ 2 and every A ∈ GL n (F) having determinant ±1, the matrix A ⊕ I n-1 is the product of one U 2 -matrix and two involutions. However, for every α ∈ F {0} of order 2n, the matrix αI n ⊕ I n-2 is not the product of one U 2 -matrix and two involutions.

• For every even integer n ≥ 4 and every A ∈ GL n (F) having determinant ±1, the matrix A ⊕ I n-2 is the product of one involution and two U 2matrices; however for every α ∈ F {0} of order 2n, the matrix αI n ⊕ I n-3 is not the product of three involutions.

• For every odd integer n ≥ 3 and every A ∈ GL n (F) having determinant ±1, the matrix A ⊕ I n-1 is the product of one involution and two U 2matrices; however for every α ∈ F {0} of order 2n, the matrix αI n ⊕ I n-2 is not the product of three involutions.

In those results, the positive statement can be proved by the same techniques we have resorted to in the present article (using cycles of small companion matrices), whereas the negative statement requires a deep understanding of the structure of products of two quadratic matrices (see [START_REF] De Seguins Pazzis | The sum and the product of two quadratic matrices[END_REF]). Now, let us turn to unnatural extensions. Assume that F does not have characteristic 2, let n > 2 be an integer, and let A ∈ GL n (F). We start with decompositions into the product of three U 2 -matrices.

• If det A = 1 and n is even, then A ⊕ (-I n-2 ) is the product of three U 2matrices. If n is even and not a multiple of 4, then for any α ∈ F {0} of order n 2 , the matrix αI n ⊕(-I n-4 ) is not the product of three U 2 -matrices. If n is a multiple of 4, then for any α ∈ F {0} of order n, the matrix αI n ⊕ (-I n-4 ) is not the product of three U 2 -matrices.

• If det A = -1 and n is odd, then A ⊕ (-I n-2 ) is the product of three U 2 -matrices. If n is odd then, for any α ∈ F {0} of order 2n, the matrix αI n ⊕ (-I n-4 ) is not the product of three U 2 -matrices.

• If det A = -1 and n is even, then A ⊕ (-I n-1 ) is the product of three U 2 -matrices. If n is even, then for any α ∈ F {0} of order 2n, the matrix αI n ⊕ (-I n-3 ) is not the product of three U 2 -matrices.

• If det A = 1 and n is odd, then A ⊕ (-I n-1 ) is the product of three U 2matrices. If n is odd then, for any α ∈ F {0} of order n, the matrix αI n ⊕ (-I n-3 ) is not the product of three U 2 -matrices.

We finish with decompositions into the product of one involution and two U 2 -matrices (or three involutions). To this end, we let i be an element of order 4 in F {0}.

• If det A = ±i and n is odd, then A ⊕ iI n is the product of one involution and two U 2 -matrices. However, if n is odd, then for any α ∈ F {0} of order 4n such that -iα is of order 2n, the matrix αI n ⊕ iI n-2 is not the product of three involutions. Note that such a scalar α exists in the field of complex numbers: it suffices to choose a complex number π of order 2n, and to take α := iπ.

• If det A = ±i and n is even, then A⊕iI n-1 is the product of one involution and two U 2 -matrices. However, if n is even, then for any α ∈ F {0} of order 4n, the matrix αI n ⊕ iI n-3 is not the product of three involutions.

• If det A = ±1 and n is odd, then A⊕iI n-1 is the product of one involution and two U 2 -matrices. However, if n is odd, then for any α ∈ F {0} of order 2n, the matrix αI n ⊕ iI n-3 is not the product of three involutions.

• If det A = ±1 and n is even, then A⊕iI n-2 is the product of one involution and two U 2 -matrices. However, if n is even and greater than 2, then for any α ∈ F {0} of order 2n such that -iα is not of order n 2 , the matrix αI n ⊕ iI n-4 is not the product of three involutions. Note that such a scalar α exists in the field of complex numbers: either n 2 is odd, and then it suffices to start from an element π of order n and to take α := iπ, or n 2 is even and it suffices to choose α of order 2n.