
HAL Id: hal-03484355
https://hal.science/hal-03484355

Submitted on 20 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

A review of adaptive neural control applied to proton
exchange membrane fuel cell systems

Christophe Lin-Kwong-Chon, Brigitte Grondin-Perez, Amangoua
Jean-Jacques Kadjo, Cédric Damour, Michel Benne

To cite this version:
Christophe Lin-Kwong-Chon, Brigitte Grondin-Perez, Amangoua Jean-Jacques Kadjo, Cédric
Damour, Michel Benne. A review of adaptive neural control applied to proton exchange membrane
fuel cell systems. Annual Reviews in Control, 2019, 47, pp.133 - 154. �10.1016/j.arcontrol.2019.03.009�.
�hal-03484355�

https://hal.science/hal-03484355
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


A review of adaptive neural control applied to proton exchange membrane fuel cell
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Abstract

Proton exchange membrane fuel cell systems are promising technologies for the integration of renewable energy. They pave the
way for further emission-reduction and energy autonomy initiatives. However, widespread commercialization still faces several
challenges to extend their durability, improve their reliability while reducing their cost. Control strategies included information
about the state of heath are among promising levers to tackle these challenges. In this context, an active fault tolerant control
strategy based on three modules is introduced. Firstly, a fault diagnosis tool identify the system state of health and detect abnormal
conditions. Then, a decision process based on diagnosis results, manages to find a fault strategy mitigation. Finally, a set of
controllers, or a re-configurable controller, are used to apply the decision strategy. This third module has to be suited to the real-
time specifications of the system. In this context, neural networks-based controllers with adaptive learning appear to be especially
appropriate methods for system state of health consideration. For this reason, this paper aims to bring a literature review for adaptive
neural-based control applied on proton exchange membrane fuel cell systems. Based on this overview of recent works available,
propositions are made to fill the resource gaps about fuel cell control and give some answers to the aforementioned issues.

Keywords: Proton exchange membrane fuel cell, Active fault tolerant control, Adaptive neural control, Learning Algorithms

1. Introduction

Storing intermittent energies, like solar or wind, is an impor-
tant aspect in the expansion of renewable energies. Proton Ex-
change Membrane Fuel Cell (PEMFC) and hydrogen fuel have
undeniable advantages compared to gasoline engine or batter-
ies. The hydrogen fuel produced from electrolysis and carbon-
free electricity can eliminate greenhouse gases over the whole
cycle [1]. Moreover, hydrogen has one of the highest energy
density and the fuel required for the PEMFC operation can be
stored in external tanks. Whatever the storage forms, new fa-
cilities developing to improve safety, refueling and high volu-
metric energy density criteria [2–5]. Recent studies focused on
Membrane Electrode Assembly (MEA), which is the main part
of the system, with the aim of continuously improving its per-
formance [6, 7]. The latest investigations on the conception and
manufacture of the Gas Diffusion Layer (GDL) provide a rise
of the current density and extend the cell lifespan [8–10]. Like-
wise, there is growing interest concerning the end life strategies
of the PEMFC system. The intended benefits lie in recovering
of valuable catalysts (platinium and ruthenium) while allowing
the additional recovery of other relevant materials such as the
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membrane or the carbon support [11]. Some others technolog-
ical locks persist, such as their degradations and failure modes
[12, 13], prognosis and lifespan [14], corrosion protection [15]
and many others. To improved the system reliability one main
solution lay in the fault-tolerance control, in order to bring cor-
rection to performance degradation and prevent the system to
fail [16].

The fuel cell control must considerate its State Of Health
(SOH) [17]. For this purpose, two main ways are available [18].
Firstly, through the use of control tools incorporating knowl-
edge of degrading health conditions that needed to be compen-
sated, named Passive Fault-Tolerant Control (PFTC) [19–22].
PFTC is able to take the necessary actions to maintain the con-
trol performance, whatever the change of state of the system.
This ability to be robust is severely restricted to knowledge
brought to the controller. Secondly, through the development
of an Active FTC (AFTC) strategy [19, 23–25]. An AFTC in-
cludes a diagnostic tool able to determine the system SOH, a
decision process to find a fault strategy mitigation and a con-
troller to maintain the control performance. Strong cause and
effect relationships exist between the input variables and events
of PEMFC systems [24], the change of one input has direct
or indirect consequences. For example, the temperature nat-
urally affects water evaporation [26], ohmic membrane resis-
tance, water transport, condensation in flow channels [27], cell
performance [28]. Gas flow rates affect the amount of reactant
gases, but also water ejection if it is sufficiently high, water ac-
cumulation if it is too low [29], slug formation [30], membrane
humidity [31] and cell performance [32]. Certain events are at
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the origin of more or less important fuel cell fault that can be
reversible, partially reversible or even irreversible degradation.
This naturally leads to the development of adaptive strategies
allowing, as the name indicates, to real time adaptive control
and leading to better performance [33].

Neural Networks (NNs) are well known for their approxi-
mation capacity and are widespread in literature through re-
search, such as modeling applications [34–37], speech recog-
nition [38], control [39–43], etc. Neural network models have
proven their compatibility with the control domain and their
better performance compared to other methods, such as Propor-
tional Integral Derivative (PID) controller [44–46], fuzzy logic
controller [47], or sliding-mode controller [48]. Historically,
it exists a close connection between machine learning, artifi-
cial neural network and control [49]. Indeed, learning meth-
ods trace its origins to some techniques in linear systems the-
ory. Learning algorithms increase the intelligence of control
and create various autonomous systems. A significant amount
of research has been conducted on the adaptive neural con-
trol [23, 39, 50, 50–77]. Moreover, thanks to recent years of
technological advances, significant progress allows neural ma-
chine learning to enjoy a particular international notoriety with
the use of deep learning and reinforcement learning approaches
[78–82], offering new creative tools in control design [83, 84].
Recently, several reviews about adaptive neural control have
been conducted. Jiang et al. [85] have devoted a paper about
summarizing recent progress on neural network learning and
control for robot applications. Yousefian et al. [86] have pro-
posed a review on machine learning control for power system
rotor angle.

This paper provides a review of recent years Adaptive Neural
Control (ANC) applied to PEMFC. The study was conducted
by a classification of control structures in order to determinate
which one is more appropriate according to the fault type and
the command variables. Several gaps exist and need to be iden-
tified. In order to reduce them, an extended scoping research
in systems, such as other fuel cell types, mechanical actuators,
chemical and biological reactions, vehicles and photovoltaic
systems will allow to take knowledge of the current techniques
and to bring an enrichment to PEMFC control.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly introduce the PEMFC operation, its various health
states, and the control needs. Section 3 presents some NN
models with classical learning techniques. Section 4 gives
the structures relative to adaptive neural control applied for
PEMFC. The investigation starts with the direct NN approach,
then with dynamic programming strategy, and ends with dy-
namic equation-based NN control. Articles about PEMFC neu-
ral control design covered in this review are detailed in the Ap-
pendix A and a summary of article results is completed in the
Appendix B. A discussion about the analysis of actual and gap
research on PEMFC ANC is given in Section 5. Finally, Section
6 provides the conclusion.

Nomenclature - Abbreviations

AE Absolute Error
AFTC Active Fault-Tolerant Control
BP Back Propagation
ESN Echo State Networks
GD Gradient Descent
GDL Gas Diffusion Layer
IIR Infinite Impulse Response
ITAE Integral of Time-weighted Absolute Error
LS Least Square
MEA Membrane Electrode Assembly
ML Multi-Layer
NN Neural Network
PI Proportional Integral
PID Proportional Integral Derivative
PTFC Passive Fault-Tolerant Control
RBF Radial Basis Function
RE Relative Error
SOH State Of Health

2. PEMFC system

Fuel cells can be grouped considering the electrolyte that is
employed. PEMFC systems use a thin proton conductive poly-
mer membrane (≤ 50µm) [87]. The operating temperature is
also specific to each FC type. This study concerns systems
that nominally work in a low temperature range between 50 and
100 ◦C [88]. Depending on power demand, MEA is stacked in
multiple series [11]. In industry, the mono-cells are a minor-
ity compared to stacks, nevertheless they remain useful for the
research activities. [89, 90]

2.1. Working principle
The most important component is the MEA which consists

in an electrolyte membrane adjoining on either side by one cat-
alyst layer. The membrane is impermeable to gases, but it con-
ducts protons. In fig.1, the incoming hydrogen is oxidized at the
anode H2 → 2H+ + 2e−, in which it is stripped of its electron.
The products of this reaction are hydrogen protons and free
electrons, which fill the anodic chamber. Protons travel directly
through the hydrated membrane, whereas the electrons travel
through electrically conductive collector plates, and passed to
an external electrical circuit before continuing to the cathodic
chamber. At the cathode, oxygen reaction reduces with hydro-
gen protons and free electrons 1

2 O2 +2H+ +2e− → H2O. Water
is generated as a product, and pushed out of the cell with the
excess flow of gas. The operating of PEMFC implies several
auxiliaries [87]. There are different modes to ensure pressures,
temperature or humidity regulation. One of them is presented
in the fig.2, which is composed of five subsystems: a mass flow
controller, a thermal system, a humidifier system and a power
converter. This configuration offers a simple control and a faster
system reaction [91].

2.2. Operation conditions
The PEMFC fully exploits its capabilities on an optimal op-

erating point depending on command variables such as temper-
ature, gas pressures, gases flow rates, and inlets gas humidity
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Figure 1: Representation of PEMFC operation.
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Figure 2: PEMFC auxiliaries.

[92]. The polarization curve characterizes its performance. The
change of the operating point ensues the change of system dy-
namics, which can reduce its efficiency. Typically, this point
can be methodologically determined with statistical analysis
methods [93] or by neural networks [34, 94]. Not respecting
the nominal operating point, depending on commands involved,
can lead to the appearance of faults.

2.3. Performance degradation and failure mode

Two classes of faults can occur and affect reversibly or irre-
versibly the PEMFC dynamic operation and performance. Each
fault has its own dynamics, and therefore a different response
time, ranging from a few microseconds to several days [95].
Thus, the fault dynamics must be taken into account during the
design of the controller. Some examples are provided below.

Common reversible faults are related to:
- Reduction of catalyst active sites through obstruction of

catalyst layers pores by excess water [95] (response time:
100 − 103 s).

- Poisoning by hydrocarbons as the result of lower purity of
reactive gases [96] (101 − 105 s).

Irreversible degradation are related to:
- Corrosion of carbon surface caused by fuel starvation [97]

(10−3 − 101 s).
- Oxidation of catalyst as the result of platinum migration and

agglomeration [29] (< 2000 h).

- Conductivity loss and creation of pinholes due to the mem-
brane drying out [98] (100 − 103 s).

- The presence of cracks or deformation of the membrane [99]
that can be caused by excessive differential pressures be-
tween anode and cathode, inhomogeneous compression, vi-
brations, etc.

- Start-stop cycles [100] and extreme environment [101] also
promote the reduction of membrane lifetime.

An experimental example of fault influence is given in this pa-
per. Fig.3 shows the evolution of the polarization curve from
a mono-cell that is subjected to cathodic flooding recurrences
(from 1 to 10 recurrences). All polarization curves are achieved
on the same operating point after each same flooding scenario.
The flooding recurrences causes an obvious premature loss of
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Figure 3: Performance degradation on the polarization curve after several flood-
ing events.

performance, especially the PEMFC ability to hold high cur-
rents.

2.4. Commands variables and control strategies

One controlled variable can be driven by several command
variables, which implies as many actuators. There are 3 main

Table 1: Controlled variables and actuators on PEMFC.

Controlled variable Actuator
Fluidic Stoichiometry (λ) Gas flow controller [33, 74]

Current load, purge valve [102]
Difference pressure Pressure regulator [21, 103]
Relative humidity Boiler and pre-heater [104, 105]

Air blower [106]
Gas flow controller [107]

Thermic Temperature Gas electric heater [72]
Cooling pumps [108]
Gas flow controller [60]
Air blower [106]

Electric Power Pressure regulator [21, 109]
Backpressure regulator [110]

types of controlled variables about the PEMFC, namely fluidic,
thermic and electric, all presented in Tab.1. To be efficient in
fault mitigation, a controller’s response time must be consistent
with the response time of the corresponding fault.

The stoichiometry control regulates the ratio of inlet flow rate
according to the reacted flow rate. The continuous gas delivery
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is crucial to maintain the stability of electrochemical reactions,
either the supply of the electrical load. This prevents global or
local starvation that can cause irreversible degradation on the
MEA. The action response time must be within a very short
time 10−3 − 101 s, but it will generally be imposed by the gas
flow controller settling time < 50 − 300 ms [111, 112]. Un-
dershoots in setpoint tracking have directly harmful impact on
the MEA’s SOH. The adopted controller must allow the mini-
mum of stoichiometry undershoots. The gas flow is also used
to evacuate the excess water, in this case the actuator has a re-
sponse time compatible with the flooding fault 100 −103 s. The
same is true for the evacuation of excess heat generated by the
PEMFC [106], the thermal response time being more important
than the fluidic response time. Faults leading to evolution of
system characteristic, performance or behavior, such as chan-
nels flooding or actuator faults justifying the use of adaptive
control.

The anode/cathode difference pressure control ensures a me-
chanical equilibrium to the membrane avoiding the deformation
and the perforation of it. Here large overshoots, higher than
30 kPa [91], have ruinous consequences on the integrity of the
latter. The compressor with a purge valve is a common config-
uration where the response time of such an actuator is generally
less than 1 s [113]. To avoid membrane fatigue and wear, the
stability of the pressures and thus the stability of the controller
should be considered. For power generation, the PEMFC air
pressure tracks the required power setting and is therefore sub-
ject to the same issue about reactive gas starvation. Pressure
controller have typical response time of < 1 s.

The stack temperature influences the humidification of the
reactants and therefore the water content. The control of this
variable is commonly carried out via the cooling flow rate. Usu-
ally, the anode and cathode inlet gas temperatures are regulated
to the fuel cell operating temperature by heat exchangers. This
to avoid condensation phenomena at the system inlet, and the
temperature balance between the incoming gases and the stack.
However, compressor operating cycles coupled with the great
dynamical nonlinearities of these heat exchangers are legitimate
motives for the integration of an adaptive controller [114].

Neural machine learning and adaptive control have a com-
mon vision. The capability to adapt itself to changing condi-
tions. The modularity of this tool in this domain brings creativ-
ity in the design of autonomous intelligent systems, in particu-
lar by its universal approximation capacity and real-time learn-
ing ability. Neural networks are particularly suitable for non-
linear control with presence of faults, hence the relevant results
present in the literature [55, 65, 66, 71].

3. Neural modeling and learning algorithms

This section briefly presents different neural network topolo-
gies, learning techniques and stability analysis commonly em-
ployed in adaptive control.

3.1. Different neural network topologies
3.1.1. Multi-layer neural network

The most emblematic neural model is the Multi-Layer (ML)
topology with three layers, including one hidden layer, as il-
lustrated in fig.4. Each node is associated with an activation

Hidden layer  
                    whid

Input layer 
win

Output layer 
                   wout

x1

x2

xi

y1

y2

.

.

.

yo

Figure 4: Multi-layer neural network.

function, and each connection possessed a specific weight. A
hidden node is computed as follows:

hl
n = f

( m∑
i=1

win
i xi + bias

)
(1)

where l denotes the number of hidden layers m the number
of input nodes and f the activation function. This operation
is repeated for n neurons to get the hidden layer computation
h1

n : (h1
1, h

1
2, ..., h

1
n). A deep NN structure contains several hid-

den layers, the first hidden layer computation is then repeated
for each of them. Finally, output layer is calculated in the same
way:

yo = f
( n∑

i=1

wout
i hl

i + bias
)

(2)

where o is the number of output nodes. All the weights of the
layers (win, whid, wout) are elements to be tuned during the so-
called training phase.

3.1.2. Radial Basis Function neural network
Radial Basis Function (RBF) neural network is commonly

used to approximate unknown functions or uncertainties [77,
115–118]. The architecture is similar to a three-layer net-
work. The only difference is its activation function which has
Gaussian-like characteristics, the neuron response decreases or
increases gradually with distance from a center point. A com-
mon form is taken with:

hn(x) = exp
(
− ‖ x − cn ‖

2

b2
n

)
(3)

where cn denotes the nth center vector and bn denotes the width
of the nth hidden nodes. These two parameters and the weights
of the layers are elements to be adjusted. Compared with a
ML model, the RBF model generates fewer errors [119] but
they suffer from the curse of dimensionality, as the dimension
of vector gets high resulting in longer training time.
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3.1.3. Reservoir Computing
Two similar independent approaches have been proposed by

Jeager et al. [120] and Maass et al. [121], respectively Echo
State Networks (ESN) and Liquid State Machines, both based
on two basic ideas that are a fixed recurrent dynamic reservoir
of neurons and a training phase that only occurs at the output
layer. The ESN model is illustrated in fig.5. These approaches

u1

u2

ui

y1

.

.

.

Reservoir 
              wres

Input layer 
win

Output layer 
                   wout

yo

.

.

Figure 5: Echo State Networks.

imply memory capacity which is computed by the excitation of
reservoir units as follows:

x̃(n) = f
(
W inu(n) + Wresx(n − 1)

)
(4)

x(n) = (1 − α)x(n − 1) + αx̃(n) (5)

where x(n) ∈ <n denotes the vector of neurons activation,
x̃(n) ∈ <n denotes its update, W in ∈ <n×m denotes the input
weights matrix, Wres ∈ <n×n denotes the reservoir weights ma-
trix, 0 < α ≤ 1 denotes the leaking rate, a memory term. Then,
the output is calculated by:

yo(n) = Wout
(
ui(n), x(n)

)
(6)

where Wout ∈ <o×(m+n+o) denotes the output weight matrix.
Reservoir computing models are well known to have superior
performance in time series prediction [122–126] than tradi-
tional neural network models. The training phase is performed
only on the output layer, which reduces the time and computa-
tional loads. The main difficulty with this type of model is the
optimization of its hyper-parameters.

3.2. Optimization for parameters and hyper-parameters
Model global parameters are related to two groups, hyper-

parameters and parameters. The hyper-parameters correspond
to model structure, such as the number of hidden layers, the
number of neurons, the choice of the activation function, the
memory term, etc. Recently presented in [127], a solution to
automatically find the adequate number of neurons is based on
an online incrementation of the neuron number in the hidden
layer until to meet the expected performance. In the case of a
large number of neurons, an effective dimensionally reduction
was proposed in this recent patent [128] with transformed meth-
ods such as principal components analysis, random projections
or linear reconstruction.

Parameters denote to neural weights or coefficients that are
automatically obtained by learning algorithms. Four learning
algorithms emerge from research reading about PEMFC, all
based on the computation of a cost function. Usually it takes
a quadratic form, also known as the Mean Square Error:

J =
1
2

m∑
i

(
target(i) − output(i)

)2
(7)

3.2.1. Gradient descent
Gradient Descent (GD) is a first-order iterative minimization

method. Following step by step a negative gradient, the algo-
rithm allows to find an optimal point, which can be a global or
local minimum. The adaptation law of neural weights follows
this:

wnew = wold + ∆w
∆wh = −η ∂J

∂wh

(8)

where η denotes a learning rate that manages the adaptation
amplitude. Back Propagation (BP) is a common technique that
used GD method to adjust one by one each layer of a ML model.
Based on two actions, a forward pass tests the model, and a back
pass adapts layers weights.

3.2.2. Least-square
Least Square (LS) is an approach of linear regression, where

the objective is to minimize the error. In an ideal situation, with
perfect neural weights, the outputs are obtained as follows:

Y target = WoutX (9)

where Y target = [y1, y2, ..., ym] ∈ <m×o denotes the desired out-
puts and X = [x1, x2, ..., xn] ∈ <n×m is the outputs of the pre-
vious layer. In practice, the best solution can be obtained by
solving the quadratic problem:

Ŵout = arg min S (W) (10)

where S (W) =‖ Y − XW ‖2 denotes the objective function.
Then, new weights are obtained by the resolution of the nor-
mal equation:

Ŵout = Y targetXT (XXT )−1 (11)

where XT is the transpose of X. The method is particularly
appropriate for ESN model where only one layer is adjusted
Wout [129].

3.2.3. Differential evolution
The differential evolution approach is based on an iterative

search of a candidate solution, here represented by W within a
population Pg where g denotes the stage of a generation. Evo-
lutionary method is based on principles of mutation, selection
and generation [130]. In an area of possible solutions, sev-
eral candidates are initialized and randomly positioned as Pg =

(W1,g,W2,g, ...,Wi,g), where i denotes the index of the popula-
tion. Each candidate is evaluated and only the best applicants
are selected. A mutation and crossover are processed on se-
lected applicants to obtain a new population Pg+1. The iteration

5



is repeated until the satisfaction of the cost function. Consid-
ering the random nature of the algorithm, differential evolution
does not guarantee the best result, but allows to cover a larger
domain and the tests of unexpected combinations. The main
advantages are the no restriction on the regularization meth-
ods [131], and the possibility to obtain better performance with
a same comparable computation time than traditional methods
[132].

3.2.4. Reinforcement learning
Reinforcement learning, within the class of actor-critic

method, is a learning algorithm that works directly on the poli-
cies. It is an intentional way to guide the learning process to-
wards a better performance depending on the benefit of the ac-
tion taken, whether positive or not. A class of discrete-time
nonlinear systems and its associated cost function can be de-
scribed respectively by:

x(k + 1) = F
(
x(k), u(k)

)
(12)

J
(
x(k), u(k)

)
=

α∑
k=1

γi−kU
(
x(k), u(k)

)
(13)

where x(k) is the state vector, u(k) is the control vector, F is
a nonlinear function, U

(
x(k), u(k)

)
is called the utility function

(7) and 0 < γ ≤ 1 is the discount factor. Eq. (13) is equivalent
to:

J
(
x(k), u(k)

)
= U

(
x(k), u(k)

)
+ γJ

(
x(k + 1), u(k + 1)

)
(14)

The process is mainly based on the search of solutions of
Hamilton-Jacobi-Bellman equation by an optimization method
[64]. According to Bellman, an optimal control signal u∗(k) that
minimizes cost function J is expressed by:

u(k) = argmin
(
J(x(k), u(k)

)
(15)

In control design, two neural networks are regularly designed
for approximating the cost and optimal control functions. The
optimization problem is regularly solved by the GD method.

3.3. Stability and convergence in NN control
Stability and convergence are paramount criteria in controller

design, even more, true for NN design in closed-loop control.
The validity of model or controller is commonly derived under
the assumption that states x(t) remains in some compact set Ω,
only ensuring a local stable. Conventional methods, such as
gradient techniques do not guarantee system stability and result
in problems as overtraining, local minimum trapping, slow con-
vergence or bad transient behavior [133]. That is why, research
must provide proofs of rigorous global stability, convergence
analysis and repeatable design techniques [134].

A common analysis requires the use of the Lyapunov
method. The stability proof of a controller is directly obtained
in three steps [135, 136], first a derivative of the tracking error
equation, second the selection of a proper Lyapunov function,
and third its derivation. The equilibrium of time-varying sys-
tems is asymptotically stable if the derivative of the Lyapunov
function is negative along the target trajectory.

Another method based on a Lyapunov function is performed
in [137], which applied the theorem on the discrete-time dy-
namics NN equations with continuous states. The resulting sta-
bility is described by several conditions, including the existence
of the positive diagonal solutions of the Lyapunov equations in
the discrete-time domains.

In [138, 139], a modified BP algorithm imposing the derived
stability condition is used to adjust the NN weights of the con-
troller. The stability is achieved by the proof of the negative
derivative Lyapunov function with the linearization neural con-
troller and its control law.

In a recurrent neural network, such as ESN that possesses
memory capacity, a large information capability involves a sta-
ble equilibrium state. It must ensure that the effect of initial
conditions could vanish as time passes. The global asymptotic
stability of neural networks implies the Schur stability of the
synaptic weight’s matrix [140]. The W matrix is called stable
Schur diagonally if there exists a definite positive symmetric
matrix P > 0 such that WT PW − P is negative definite.

Small variations or corrupted data in the input of neural mod-
els, especially deep networks, may cause significant instabil-
ity. In order to force the model to deliver the same output for
healthy and perturbed inputs [141], a method consists to incor-
porate small variations directly in the training phase.

4. Adaptive neural control for PEMFC

This section presents the content of the scoping review. Sev-
eral adaptive neural control structures employed in PEMFC are
presented and the performances are identified. Throughout the
articles, comparisons are made with the PEMFC needs of the
section 2, and a bibliographic investigation about other systems
informs technological advances and provides perspectives.

4.1. Neural feed-forward control

The inverse neural controller is a feed-forward structure that
requires no knowledge of the studied system. As shown in fig.6,
the aim is to identify an output-input model of a system and
make an inversion. One prior condition is to ensure the re-
versibility of the system. This step is regularly omitted, but
some recent publications continue to include it. Such as [142]
that used reversibility derivation to prove the existence of the
inverse neural network controller for active car suspension con-
trol. For PEMFC system, a study has been conducted on the
inversion-model based principle [143] which naturally guaran-
tees the reversibility of the relations between commands and
variables. The performance of an inverse controller depends di-
rectly on the database and the state of the system when acquir-
ing data, thus limiting the validity of control into a predefined
operating range. Adding an adaptive feature could extend this
validity range.

To prevent oxygen starvation, Li et al. [39] propose a stoi-
chiometry control via the compressor voltage. The controller is
a recurrent fuzzy NN. The fuzzy logic method offers the ability
of dealing with issues such as reasoning on a higher level. Feed-
back connections are added in its structure to provide memory
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Figure 6: Neural feed-forward controller.

capacity, expanding the ability of capturing dynamic response.
Fuzzy learning rates and neural weights are adjusted by a GD
method. Simulation results show good robustness to abrupt
external current load disturbances, and performs much better
compared to the Proportional Integral (PI) controller. The cath-
ode pressure is tightly tracked by the anode pressure ensuring
physical integrity for the membrane. Four steps of current dis-
turbances 0.1 − 0.3 A/cm2 are tested and some undershoots are
visible 0.4 − 0.1 λO2 with transient times of up to 10 seconds.
The method is interesting for maintaining anode/cathode differ-
ence pressure but has significant response times for stoichiom-
etry control.

Sedighizadeh and Rezazadeh [50] proposed to regulate the
output power of a 1 kW PEMFC by changing the hydrogen hu-
midity. This article develops a wavelet NN with a local infi-
nite impulse response (IIR) block in series to estimate the sys-
tem output. The wavelet NN is similar to a RBF model with
wavelet transform embedded in the hidden units. In the wavelet
concept, a super wavelet is a linear combination of daughter
wavelets. This feature allows the wavelet shaping to identify
complex nonlinear system. A set of 8 Morlet type wavelet is
used in this study. The IIR block creates a double local network
architecture, providing a fast learning and convergence of the
model. The IIR coefficients are fixed and the neural weights are
adapted by LS method. The trajectory tracking is effective, the
presence of overshoots and oscillations is probably related to
the choice of the control variable.

Instead of using a single duplicate NN model, another
method used two separate models. For nonlinear systems with
high uncertainties, Shafiq [51] recently proposed a direct in-
verse controller based on two different ML models. A first ML
is used to estimate the system model and generate an estima-
tion of the system output. The error output is used to adjust
the weights of the ML controller using a BP algorithm. Then,
the output of this first model is used as a residual error for the
second model. This configuration gives robustness properties
against disturbances and model mismatches. Simulation results
show a good performance, smooth tracking, stabilization, and
a good disturbance rejection on one Hammerstein system. A
mathematical model that can be able to describe many chemi-
cal and other industrial processes. The controller reaches a very
small convergence time 0.15 s in this application. On the other
hand, this method presents a strong overshoot at the first mo-
ment. Stability and convergence of the controller are separately
covered by authors in a subsequent article [144]. The conver-
gence of the error to zero and the boundedness of the controller

parameters are provided with the Schur stability verification of
polynomial theorem.

A solution that presents few overshoots have been recently
developed by Jordanou et al. [52]. It consists in control of a
bottom-hole pressure for an oil well with one direct ESN model.
The control objectives are pressure setpoint tracking and distur-
bance rejection. An ESN-learning is adjusted with a recursive
LS method, then the output layer is duplicated into an ESN-
controller. The LS method avoids the problem of local min-
ima. Simulation results show the capability to cope with larger
changes of pressure and the good disturbance rejection. Simu-
lation results show the tracking capability with no oscillations
or larger overshoots. It is noted, however, that five random trials
were needed to find working initials neural weights.

As seen above, the inverse neural structure is particularly
suited for control of nonlinear system with uncertainties. How-
ever, the method has large command signals and has rather high
response times. Thanks to the use of advanced neural models,
some works have been done to reduce overshoot, while increas-
ing the robustness against disturbances. For example, presented
here, the least-squares based learning methods for the tracking
capability, or the addition of a second NN model for the antici-
pation action to reduce the controller convergence time.

4.2. Neural hybrid feedback feed-forward control
The combination of the inverse neural control with a feed-

back controller brings a second support yielding a more ad-
vanced control. As shown in Fig.7, the feed-forward controller
extends its bandwidth for steady state disturbances [145], while
the feedback control reduces the residual error, ensuring com-
pensation for disturbances and modeling errors.
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Figure 7: Neural hybrid feedback feed-forward controller.

Rakhtala et al. [53] developed a combination of inverse ML
model and a PID controller for a 6kW PEMFC voltage control
via the inlet air pressure. The control objective is to improve
stability and reduce transient time of current changes in order
to limit the membrane degradation. The learning algorithm is
based on a GD method. Simulation results show fewer fluc-
tuations in the transient response of the voltage. Compared to
a PID controller, the proposed method allows a smoother air
pressure. Voltage overshoots with an intensity of 0.03 V/cell
are present for a setpoint of 0.87 V/cell.

Rezazadeh et al. [54] presented a methane flow control for a
5kW PEMFC. The controller is based on an inverse RBF neural
network and a PID to generate the command signal. Stability
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is ensured using the Lyapunov theory and RBF weights are ad-
justed with an adaptation law. Simulation results show an ac-
ceptable robustness with variance of 1 % in the presence of an
additive load current noise with a standard deviation of 0.2 %.

A situation of auxiliary degradation was achieved in the same
year by Ragb et al. [55] for oxygen stoichiometry control via
the compressor voltage. The controller is designed with the
same structure, a RBF neural network and a PID controller.
When a residual error occurs, the PID controller output in-
creases. That is when neural weights must be adapted, it is
achieved at each sample time by a recursive training algorithm
based LS method. The validation of the adaptive controller
is realized with a situation of loss compressor gain 30 % and
time varying currents. Simulation results show the ability of
the proposed controller to provide approximately the same per-
formance for a healthy system and a faulty condition. Some
overshoots are noticed 0.2 − 0.8 λO2 for an oxygen stoichiom-
etry setpoint of 2 λO2 , furthermore, the convergence time is ac-
complished in a few seconds.

The previous articles highlight the contribution of smooth-
ness in trajectory tracking and command variables, improving
system stability. Recently, the same structure was used for the
angular control of a pneumatic artificial muscle actuator. Son et
al. [56] have implemented an inverse nonlinear auto-regressive
network with exogenous inputs NN with a PID controller. Neu-
ral weights are offline trained with a modified differential evo-
lution algorithm and online adjusted following a fuzzy logic
method. This offline training is a promising globally stochastic
optimization method with advantages as simplicity and better
performance. The major disadvantage is the slow convergence
time, that is why it is offline computed. When an error appears,
the PID controller generates a command that is compared to the
neural command. The residual and its derivative are encircled
by several levels of intensity, and in accordance with fuzzy logic
method, for each a learning rate would be associated. Thus,
neural weights are more or less adjusted, or not at all. The pro-
posed method rejects the steady state error, and obtains better
adaptability and precision.

The hybrid NN controllers provide effective performances on
the PEMFC. Nevertheless, in this structure, the use of a fixed
traditional controller can acts as a passive FTC. It limits the con-
trol to a specific system state, and it will not be aware of others
system states, such as faulty or degraded states. Recent work
has shown a real interest in improving accuracy and adaptabil-
ity of this control structure.

4.3. Neural feedback control
The feedback neural-based model possesses the residual er-

ror signal that modifies its function of inverse dynamics into
a pure controller. As can see in Fig.8, the learning phase of
this structure is generally reached online, therefore, a learning
period is necessary during which the controller performance re-
fines gradually.

Sanchez et al. [57, 58] worked on an air stoichiometry con-
trol for a PEMFC using a B-Spline neural network [146]. The
main advantage of this kind of model is its smoothness out-
put that is due to the basis functions. B-Spline technique is
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Figure 8: Neural feedback controller.

based on a data transformation by the application of several ba-
sis smoothly functions before the computation of input data into
neuron layers. The input vector becomes sparse, information
is stocked locally following the weighting of basis functions.
Therefore, only a few numbers of basis functions participate in
the controller output thus reducing the computational effort and
time execution. Neural weights are estimated online using an
instantaneous rule based GD method. Simulation results show,
under load current steps, fewer oscillations and overshoot re-
duction on the compressor voltage with the proposed adaptive
approach than a fixed PI controller. In addition, the neural con-
troller reaches a convergence time of 1.4 s, which is interest-
ing for fault mitigation, such as flooding or dying out. Some
overshoots are still present, with a maximum of 0.7 λO2 for an
oxygen stoichiometry setpoint of 2 λO2 .

Dong et al. [59] presented a PEMFC temperature control via
the hydrogen, oxygen and water cooling flow rates. The effect
of these flow rates is different from each other, this is why a
divided-area control is established. For a maximum error of
4 ◦C, the control variables are the gas flow rates. For a larger
error, the control variable becomes the water cooling flow rate.
The activation functions of the NN are fuzzy logic type. The
Sugeno fuzzy logic system is applied to the identification of the
controller. The 5-layers NN coefficients are adapted by a BP
method. The controller is tested with a start-up condition to
regulate the temperature rise from 50 ◦C to 80 ◦C, and 50 ◦C
to 100 ◦C. The simulation results show very smooth flow rates
control and few fluctuations over the transition period.

Another article works on temperature regulation. Tao et al.
[60] designed a learning fuzzy neural network to maintain the
PEMFC temperature via the gas flow rate. The neuron-fuzzy
controller regulates the anode and cathode flows to regulate
temperature of the stack. The control of temperature via the
gas flow has consequences on the flow rates of reactant gases.
But the influence is small here with systems using low flow
configurations. Two fuzzy NN models are used, the first is to
identification model and the second is a multi output feedback
controller. The controller is adjusted by a BP algorithm and
based on the residual temperature error. The proposed method
is tested in a start-up simulation and reached the desired tem-
perature 80 ◦C smoothly and rapidly, in addition, fluctuations
are also low.

Another way for neural adapting is based on the Jacobian
information, the sensitivity of the system output to each con-
trol input ∂y/∂u. Shirzadeh et al. [61] proposed a control
for a quadrotor type aerial robot that is in pursuit of a mov-
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ing target. One feed-forward model is used for identification of
the Jacobian information and the second model is designed for
the generation of the control signal. Neural identifier weights
are adapted following the residual error, and neural controller
weights are adapted following the Jacobian information. Con-
vergence of the neural network identifier and controller is en-
sured by a proper selection of the learning rate. In spite of the
presence of disturbing forces and torque, simulation results dis-
played a good performance.

More recently, a combination of feedback neural model with
a compensator controller was investigated by Jon et al. [62] for
a tracking control of senseless permanent magnet synchronous
motor servo drive. In this case, neural weights and learning
rate are adjusted online by adaptive laws-based GD method and
derived from Lyapunov theorem to ensure the stability and the
convergence of the controller. Simulation results show a con-
vergence speed greater than a PID controller 150 to 40 ms and
the suppression of transient vibration. In this article, the proper
selection of learning rate ensures an optimal compromise be-
tween convergence speed and instability.

Adaptability and convergence time are the main assets of
this control structure, thus limiting oscillations during transient
phases. For the air supply control, the fast convergence time of
the neural feedback controller allows further control research
under flooding or drying out faults. Just as the inverse con-
troller, stability must be ensured as it is done in literature. In-
evitably a proper selection of the learning rate is a key to im-
prove control performances.

4.4. Dynamic Programming
Dynamic programming is an algorithmic method to solving

optimization and optimal control. The method is based on the
concept of reward and punishment (13) to iteratively compute
the optimal policy. An actor model is in charge to deliver the
correct policy while a critic model evaluates a cost function and
adapts the actor model. Revealing in these recent years, the
combination of dynamic programming, neural networks and re-
inforcement learning [147, 148] offers many tools for approxi-
mation of the critic and action functions [149].

Almeida et al. [63] proposed an optimal PEMFC voltage
control via the gas pressure. The control is based on the para-
metric cerebellar model arithmetic computer NN. This neural
network has three layers: a fuzzy input layer, an internal long
memory layer represented by parametric equations and an out-
put short-memory layer. A solution to avoid local minimum
is composed of two parts. A first offline training is based on
a PID controller that initialized the long-term weights, which
are the coefficients of parametric equations. Then, the online
adaptation occurs only on short-term weights, which are out-
put weights. Two NNs are used in the control structure, an
identification NN and a NN controller. The involved structure
is based on the neural optimal control method that is roughly
similar as a simplified dynamic programming method without
a critic neural model, which is substituted by a cost function.
Output system is affected by some immeasurable uncertain-
ties, which represent temperature variation, actuators and sen-
sor nonlinearities. A healthy reference model is implemented

to be compared with the system output. This residual error and
the identification NN output are used to compute the cost cri-
terion. Then, this performance will adjust controller weights
with a GD method. The proposed controller is compared to
PID controllers under changes of current. Simulation results
show a clear advantage of the proposed algorithm, better accu-
racy with a mean square error from 0.99 to 0.24 and four times
smaller variations on gas pressure command. The main advan-
tage is the automated tuning phase through the minimization of
the cost criterion function.
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Figure 9: Adaptive dynamic programming controller.

With the aim of anticipating consequences of the actions
taken by the actor module, a prediction module could be
envisaged in the control design. Bo et al. [64] lately proposed
a control for an application of dissolved oxygen concentration
in wastewater treatment process. The method used belongs
to the heuristic dynamic programming class. Organic matter
degradation is strongly nonlinear with large uncertainties, time
varying parameters and significant environment perturbations.
The control structure is based on three ESN models that are
Critic ESN, Actor ESN and Predict ESN. The algorithm of
ADP shown in fig.9 is described by seven steps:

Algorithm: Adaptive dynamic programming
1 Initialize all NN weights
2 for k = 1 to N do
3 ACTOR computes a command variable u(k).
4 CRITIC evaluates the control effect u(k) by

J
(
x(k), u(k)

)
.

5 Utility evaluates the one-step cost of control
U

(
x(k), u(k)

)
.

6 MODEL predicts the state x(k + 1).
7 ACTOR compute a command variable u(k + 1) accord-

ing to x(k + 1).
8 CRITIC evaluates the control effect of u(k + 1) by

J
(
x(k + 1), u(k + 1)

)
.

9 Parameters of all ESN modules are adjusted.
10 end

ESN weights are online adjusted with a derivation of LS
method. At the startup of the control, a time of adaptation is
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necessary. After a while, the weights of ESNs stabilize and
the residual error of the cost function gradually decreases even
in the presence of rain or stormy weather. A comparison with
PID controller is achieved. Simulation results show a smoother
control and smaller deviation. Under interference environment,
overshoots and adaptability of the proposed controller are bet-
ter than a PID controller. Adjusting time is also shorter, from
0.65 days for a PID controller to 0.45 days for the proposed
controller.

In recent years, dynamic programming methods based on
deep NN model have emerged that can offer better learning and
faster convergence [150]. The dynamic programming controller
offers a great versatility, flexibility, and operational robustness.
However, it requires an important computational effort. More-
over, this control structure requires a stable state of the system
to be initialized, which could be a brake to control integration.
The dual dynamic programming class is one of the solutions to
overcome the need to have a stable state when initializing the
controller.

4.5. Proportional Integral Derivative
The traditional PID controller is without a doubt the most

widely used controller in industry [151]. Based on a residual
error, a control law (16) delivers a corrective signal to the sys-
tem. This method requires the adjustment of three parameters:
a proportional term kp, an integral term ki and a derivative term
kd. Traditionally, manual trial-error or heuristic method [152]
are adopted for tuning PID controller parameters, but these pro-
cedures must be repeated for each change of system state. To
remedy this situation some self-tuning methods are investigated
in the literature [153], such as fuzzy logic method or neural net-
work.

upid(t) = kpe(t) + ki

∫ t

0
e(τ)dτ + kd

de(t))
dt

(16)

An approach to adapt the PID controller parameters with the
generalized minimum variance NN-based algorithm was per-
formed by Lebreton et al. [65] and Damour et al. [66]. The au-
thors proposed to improve the resilience of PEMFC air feeding
by implementing an auto-tuning PID controller. A ML NN is
established as a dynamic model of the system and used to pre-
dict oxygen stoichiometry. Neural weights are offline trained
and fixed. Starting from this neural network, PID coefficients
are online determined by two steps. Foremost neural weights
are extracted and linearized using the first-Taylor development.
Afterward a generalized minimum variance algorithm is used
to minimize a goal function in order to determine new PID co-
efficients. At each sample time, PID parameters are recom-
puted. The proposed controller is tested under two scenarios,
one healthy system and one faulty oxygen flow controller with
an offset of −200 sccm. Experimental results show a good
performance with the proposed controller compared to a tradi-
tional PID controller, maximum relative errors are respectively
+140 % and +30 %. For the adaptive neural PID controller, the
global error decreases by 50 % to 20 %. During the faulty time
and under disturbances, a constant error is presented with the
traditional PID controller 15 %, which is not the case with the

proposed controller. A reduction of overshoots is noticeable for
an oxygen stoichiometry set up at 5 λO2 , from 2 λO2 for a PID
controller to 1 λO2 for the proposed controller. Nevertheless,
under the healthy scenario, the PID controller is more respon-
sive and converges faster.

In this other article [23], authors combined this control
method with an AFTC strategy, including neural model-based
fault diagnosis and a reconfiguration mechanism. Voltage and
cathode difference pressure of the PEMFC system are com-
pared with a healthy ML network. According to several er-
ror thresholds, fixed by experience, the diagnosis of flooding
or membrane drying out fault is given. Next, a switch is used
to change the desired output for the self-tuning PID controller
following predefined values.

The Jacobian information is also used to adapt PID parame-
ters. Recently, Xu et al. [67] used a constrained self-tuning PID
based on a RBF for a solid oxide fuel cell control. The control
is oriented on fuel flow to improve control performance face
time-varying characteristics. The RBF is used to estimate the
Jacobian information, while PID parameters are adjusted with
a GD method. Comparison with a PID controller shows fewer
overshoots under change of current load, but brings small oscil-
lations in transitional periods.

Another means of adaptation is directly based on system vari-
ations. Sedighizadeh and Rezazadeh [68] proposed a power
control of a 1 kW PEMFC via the inlet reactants. The authors
developed a wavelet-IIR NN model and its output is used to
adapt the PI controller. The proposed controller is provided
with 57 Morlet wavelets. Under a power variation per unit
of 0.8-1 the proposed controller performs effective trajectory
tracking compared to a inverse wavelet NN. Small fluctuations
are present in the static period, and the convergence time is a
few seconds.

In another articles, the same authors [50] established a
PEMFC power control via the hydrogen humidity. The con-
troller is a combination of a wavelet-IIR NN with a PID con-
troller. Here, the NN retains the role of system dynamic esti-
mator. This output is used by adaptive laws GD-based to deter-
minate the PID parameters. Here, the number of Morlet wavelet
is fixed as K = 8 to identify the unknown PEMFC model, this
parameter is optimized by trial and error. A test with noise on
the output port of the system is performed. The proposed con-
troller demonstrates a robust and fast capacities of trajectory
tracking. Some overshoots and oscillations are present on the
power signal.
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As can see in fig.10, PID parameters can also be directly esti-
mated by a neural model. A direct approach was undertaken by
Guoai et al. [69] to develop a power control of a 60kW PEMFC
via the air pressure. The controller is a self-tuned neural-PID
based on Elmann-type NN. Two NNs are implemented into two
loops, at time t and t + 1. The neural identifier is used to pre-
dict the future air pressure, and a neural controller is used to
estimate the PID parameters. The predicted pressure is used to
adapt the neural controller, which allows to anticipate its action
and adapt the PID controller. All neural weights are adjusted
by BP algorithm. Simulation results show a good adjustment
in real time of air pressure following the output power changes.
The change is more stable and has a better tracking control ef-
fect.

Variations of this control structure exist, in particular those
adding constraints on the control signal. For example, Ji et
al.[70] recently presented a constraint fuel flow control for a
solid oxide fuel cell. The compensator signal essentially deals
with control fuel utilization that must be constrained to protect
FC components and actuators. All weights of RBF NN are on-
line adapted by GD method. An asymptotic convergence the-
orem is defined for selecting appropriated learning rate and its
proof by a Lyapunov method. Under changes of load current,
simulation results achieved good performance.

An interesting hybrid AFTC is recently employed by Huang
et al. [71] to control a mars entry via an adaptive RBF neural
network. In normal condition, the vehicle is regulated by PID
controller, while input commands and system variables are used
to train the neural network. A feedback neural network is used
to fault detection. When a fault appears, the control is switched
from the PID controller to the neural PID controller. As it is dif-
ficult to achieve the desired effect under actuator failures when
using the traditional PID controller. In this proposed controller,
the PID parameters are adjusted directly by the RBF neural net-
work. Convergence and stability of both neural networks are
verified and analysis by Lyapunov theory. Simulation results
show lower overshoots with the proposed controller.

Neural networks could also directly simulate the PID con-
troller as a PID-like.
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Figure 11: PID-NN with 3 hidden nodes.

As can see in fig.11, this neural structure is a multi-layer with
three hidden nodes. Each node corresponds at each PID param-

eters with its proper weight. The output layer is composed by
a unique summation that directly delivers the control laws. A
12W PEMFC temperature control was achieved by Li et al. [72]
with this method. The method is performed on a low-power sys-
tem. Temperature is controlled by a gas heating resistance. PID
parameters vary over time, they are adapted following residual
errors via a GD method. Experimental results and a compari-
son with a PID show less overshoot and a better stability for the
proposed controller. However, the temperature converge time
is slower and the PID reached the desired temperature 1 minute
ahead of time.

One approach allows a compromise between robustness and
speed of adaptation. Recently, Zribi et al. [73] proposed the
same control method for a thermal nonlinear process with an
adaptive momentum tuning method to manage acceleration or
slow down the adaptation of PID parameters. In this way, the
proposed controller has a better tracking performance.

The PID controller tends to generate oscillations and fluctu-
ations if it is poorly tuned. Presented in previous articles, the
adaptive neural PID structure offers a satisfactory performance,
a rapid convergence, less overshoot, while remaining simple to
implement. It also has the advantage of having been tested on
system failure, flooding and drying out faults. The neural model
brings a great flexibility to the three parameters, whether they
are adapted directly or not. To protect the system, constraint
modules can be added while maintaining good performance.
The use of Jacobian information with two NN model allows
the reduction of overshoots. And a stability analysis, too often
omitted, can be undertaken with Lyapunov’s theorem.

4.6. Linearization

The feedback linearization approach allows to generate a
control law from a dynamic model. It requires the existence
of characteristic equations and the possibility of quantifying
states by means of sensors or estimators. The objective is to
linearize the map between input and outputs variables [154], to
transform a nonlinear system into an equivalent linear system
with the aim of applying linear control techniques. Then, using
the nonlinear mapping to transform back to the linear controller
into the original space. A complete knowledge of system states
is necessary to compute control laws; however, some uncertain-
ties term could be included in dynamic models. To deals with
it and provide perfect model matching [136], adaptive laws are
designed from error equation to estimate controller uncertain
parameters, such as manufacturing variation, temperature dis-
tribution [155], disturbances [75], or degradation.

A first approach for maximum power tracking of PEMFC via
oxygen stoichiometry was proposed by Zhang et al. [74]. The
controller design is based on a hybrid controller between space-
state equations to generate a control law and a ML model to pre-
dict the stack voltage. The employed linear model is obtained
from linearization of the ninth-order dynamic model [156] and
neural weights are adjusted by BP method. Simulation results,
under changes of current load, show an accurate and fast re-
sponse time 1 s. Some overshoots are noticed 0.2 − 0.5 λO2 for
a desired stoichiometry of 2 λO2 , but they are small amplitudes.
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Abbaspour et al. [75] recently developed a control of anodic
and cathodic pressures in order to avoid membrane degrada-
tion. Some uncertainty parts are unknown in the feedback lin-
earization. To tackle this problem, a ML model is developed
to estimate the dynamic model error of PEMFC system. The
neural output is a compensation signal for the nonlinearities,
such as a disturbance. The proposed controller is tested under
load resistance variation and in disturbing scenario. A com-
parison with a PI controller, under the situation of disturbance
rejection, shows a reduction of 2.6 times of oscillations with
the proposed method. Moreover, a reduction of the computa-
tion time up to 41 % compared to a nonlinear controller. Under
uncertainties scenarios and compared to a nonlinear controller,
the neural adaptive control demonstrates a decreasing of oscil-
lations for anodic and cathodic pressures, respectively 20 % and
40 %. In this last scenario, PI controller demonstrates inability
to regulate pressures.

The fuzzy neural model offered a major interest in litera-
ture, including overshoots mitigation. Mumtaz et al. [76] lately
proposed a maximum power point tracking control for a pho-
tovoltaics system consisting on a feedback linearization-based
neuro fuzzy controller. The system is in a grid connection with
other energy and backup sources, like batteries, electrolyzer, or
a 260kW fuel cell. To track the maximum power point at all en-
vironmental conditions, the fuzzy approach seems an adequate
candidate to perform under fluctuations. A six-layered neuro
fuzzy identifier is used to estimate unknown nonlinear func-
tions of the state vector, while its parameters are adjusted by GD
method. The proposed controller is compared to several incre-
mental conductance methods based on adaptive direct/indirect
neuro fuzzy, and adaptive PID controllers. Simulation results
show the best performance with the proposed controller, a small
steady state error of 2, 5 kW and an undershoot of 1 %, while
other controllers reach errors of 19.7−105 kW and undershoots
of 5 − 60 %.

The state-feedback linearization controller equipped with
sensors is a powerful control tool, but requires a greater finan-
cial cost. In return, it offers a better performance. The imple-
mentation of neural models allows to deals with complex ap-
proximation problems, while being online data-driven updated.
With a such controller, weight updating law, stability and con-
vergence of the closed-loop system are rigorously established.

Here, the choice of an advanced neural network, such as a fuzzy
network, seems to improve function estimation and helps to re-
duce the phenomenon of overshoots.

4.7. Backstepping
The backstepping design is based on the decomposition prin-

ciple of a complex system in a succession of reduced one-order
subsystems. It associated feedback control laws and Lyapunov
functions in a systematic manner. Each degree of the nonlinear
model is divided into a cascade closed-loop form, and treated
one by one to design pseudo-control laws, named virtual control
laws. From the known stable subsystem, a recursive processing
stabilizes each other subsystems. Finally, all pseudo-controllers
are integrated to retrieve the global control law. As can see in
fig.(13), neural models are used for their ability to approximate
nonlinear functions, system states that cannot be measured or
even unknown variables, which resulting in alleviated control
design.

A comparison of backstepping controllers and inverse-based
controllers were investigated by Departure et al. [157] for a
velocity control of Electric Vehicle powered by a 1.2kW fuel
cell. The backstepping is established from a second order trac-
tion model and the inverse model is deducted from an ener-
getic macroscopic representation. Comparison results show
that backstepping admits a lower overshoot during acceleration
phases, which ensues to a better tracking performance.

PEMFCGlobal 
controller

+

-

u(k) y(k)

Complex 
model

Virtual 
controller i

Adaptive 
laws

x(k)

αi(k)

yd(k)

Neural 
network

Figure 13: Backstepping.

A work about oxygen excess ratio for a 75kW PEMFC was
involved by Li et al. [77]. The controller is designed to reg-
ulate oxygen stoichiometry via the compressor voltage. First,
a Taylor series expansion method is used to transform a non-
affine function into an affine function. Then, the controller is
designed using backstepping procedures on the affine model. A
dynamic surface technique, which is a linear filter is proposed
to avoid the tedious derivatives of the virtual control. Finally,
unknown terms are approximated using a RBF with parameters
adaptive laws. A theoretical stability analysis is performed to
guarantee the final output tracking accuracy and transient per-
formance. Adaptive laws for RBF parameters are updated by
dead-zone projection adaptive law, this assures ultimate uni-
form boundedness. The proposed controller is compared to a
feedback controller and a PID controller under a series of step
load current. The adaptive controller shows fewer oscillations
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than a PID controller and a better settling time 0.05 s than a
feedforward > 0.30 s. Overshoot values 0.5 λO2 are slightly
inferior to those obtained with the PID controller.

In literature, this approach is widespread and provides
roughly the same performance. The backstepping controller is
well suited to the regulation of fuel cell inlet gases, surpassing
most conventional methods. The benefits are many, including
the global asymptotic stability and the use of a neural model
for the state system estimation. The real difficulty lies only in
the derivative of virtual control law and the variable changes
according to the number of states n− 1 of the system. The con-
tribution of the neural model as adaptive gain offers a simple
solution to estimate immeasurable variables, reduce the chat-
tering phenomenon and increase the control accuracy. Experi-
mentation tests with fault conditions would allow this controller
to be tested and its performance to be further evaluated.

5. Discussion

A large number of methods are invested and developed in
the literature. Among those established to regulate the PEMFC
systems some main purpose is identified as follows:

- Stability improvement in the presence of disturbances [54,
75].
- Maintain performance at any set point [50, 57–60, 63, 68, 69,
72, 74, 77].
- Maintain performance in the presence of an auxiliary fault
[55, 65, 66].
- Prevent fault [39, 53].
- Fault mitigation [23].

A wide panel of NN types and adaptive mechanism are imple-
mented for the PEMFC, allowing a diversity conducive to a dis-
cussion.

In summary, significant progress of NN-based controllers
have been conducted for PEMFC. Three main control variables
emerge from this paper, the mass flow, the pressure and the
temperature. The gas flow rate requires a fast action to serve
efficiently the amount of reactant. It is a control of stoichiome-
try gases, which must be a rigorous regulation in order to limit
the duration of starvation due to low stoichiometry. The same
applies to the excess of water evacuation due to high stoichiom-
etry. The best way to achieve this is the backstepping approach
that perform a response time less than one second, while be-
ing robust to disturbances limiting the oscillations that can be
detrimental to the stability of the system. Neural-PID type con-
troller is also a relevant approach, having already proven them-
selves in cases of system fault recovery, such as flooding, ordry-
ing out and auxiliary failures, such as compressor or mass flow
controller losses. The anode pressure must be controlled fol-
lowing the changes to the cathode pressure to keep null the
pressure difference between the membrane sides. An insuf-
ficient control generates variation of pressure, which causes
mechanical stress on the membrane and instability on output
voltage. A study about the presence of unknown disturbances
and parameter uncertainties is greatly performed with a feed-
back neural-linearization approach. It demonstrates the ability

to eliminate undershoots and overshoots in normal condition.
Effects of disturbance rejection of the controller are illustrated
in the online neural adaptation. Indeed, weights converge to
zero after disturbances disappeared, thus the neural network
perfectly compensates for disturbance. Furthermore, it is ob-
served less errors amplitude and oscillations under the presence
of parameter uncertainties. Temperature control is an impor-
tant aspect in the operation of the fuel cell. Controlling the
temperatures of the boilers, the distribution pipes or the stack,
ensure a good reaction of the chemical species and manage-
ment of relative humidity. To the best of authors knowledge,
only few adaptive neural approaches have been developed for
a dynamic temperature control and precisely on the stack tem-
perature. The neural-PID controller presents the best control
tracking for high current with relatively low overshoots. For
low currents, the neural-feedback gives a good performance. To
improve the performance and adaptability, some future devel-
opments can be provided. Firstly, the backstepping controller
with neural observer appear as an approach to determine non-
measurable states, such as uncertainties and faults conditions.
Then, an adaptation by fuzzy logic method seems an alternative
to dealing with overshoot mitigation and system states consider-
ation. Finally, dynamic programming approach with reinforce-
ment learning could be an interesting line of research, while
implementing advanced neural model such as deep structures.
Anyhow, these control approaches must retain those primary
aims:

- Generation of a command action with a response time in ade-
quacy with nature of the fault. Ensuring a correct convergence
and mitigation time.
- Implementation of an actualization mechanism for controller
parameters, in online and real-time operation.
- Maintaining stability system even under faulty or disturbance
conditions.

Development of control strategies considering explicitly the
SOH of the system appears to be mandatory to extend dura-
bility and improve reliability of PEMFC systems. After a great
deal of separately works on diagnosis, decision and control, fu-
ture works should be developed under interactive association
between these modules and focus on AFTC strategies. Indeed,
experimental validations are few and limited to only faults of
flooding, membrane drying out and system failure. This is
mainly due to the difficulty of setting up other faults, whether
in simulation or experimental.

6. Conclusion

In this paper, a detailed review about adaptive neural con-
trol is carried out on the proton exchange membrane fuel cell
system. This study outlined some relevant controllers for each
main regulation variables, such as the backstepping controller
for flow rate, the feedback-linearization neural-based controller
for pressure and the neural-proportional integral derivative con-
troller for the temperature. These control structures offered
good performance compared to others controller, which con-
stantly ensures to maintain optimal operation under tracking

13



trajectory, presence of external disturbances or existence of
auxiliary failure. Nevertheless, few of them are tested under
conditions of system faults, which are still main responsible
for performance degradation and lifespan reduction. More-
over, they can be further improved with the aim to imple-
ment a real-time regulation. Some emerging topics, such as
the use of advanced neural networks, implementation of neural
network-based observers or reinforcement learning approach
could present some interesting control features. Furthermore,
future researches should include experimental validation, reg-
ulation in faulty condition and stability analysis of the neural
controller. In addition, the many tools that have so far been
developed for diagnosis, decision, control and adaptive control
should be commingle for further implementation of active fault
tolerant control strategy.

Acknowledgments

This project has received financial support from the Reunion
Island Region and the European Union - European Regional
Development Fund (ERDF) OP 2014-2020.

14



Appendix A.

Table A.2: A summary of adaptive neural controllers applied for PEMFC.

Control
method

Application Sample
time

Neural
type

Neural
input(s)

Neural
output(s)

Adaptive
strategy

Set point(s)
Test case

Neural-Inverse Prevents oxygen star-
vation via compressor
voltage [39]

- Recurrent
fuzzy

Required air supply
manifold flow
Previous required air
supply manifold flow

Compressor voltage Recurrent fuzzy param-
eters by BP based GD

Set λO2 = 2
Load current
1.2 − 2 kJ/A
Test duration 100 s

Power regulation via
hydrogen humidity [50]

- Wavelet Power p-u Hydrogen humidity Neural weights by LS Set P = 0.5 − 1 pu
Test duration 150 s

Neural-Hybrid Stabilize stack voltage
via air partial pressure
[53]

2 s ML Desired voltage Air partial pressure ML weights by GD Set voltage 57 V
Load current 18 − 33 A
Test duration 500 s

Stabilize voltage via
methane flow rate [54]

- RBF Desired voltage Methane flow rate RBF output weights by
adaptive laws

Set voltage 53 V
Load current 70 − 90 A
Noise load current 1 %
variance
Test duration 150 s

Maintain oxygen stoi-
chiometry via compres-
sor voltage [55]

0.1 s RBF Previous compressor
voltage
Load current
Previous load current
Previous stack voltage
Previous net power
Previous oxygen
stoichiometry

Compressor voltage RBF widths and
weights

Set λO2 = 2
Load current
100 − 300 A
Compressor gain
−30 %
Test duration 30 s

Neural-
Feedback

Maintain oxygen stoi-
chiometry via compres-
sor voltage [57, 58]

0.002 s B-Spline Oxygen stoichiometry
error

Compressor voltage B-Spline parameters by
instantaneous learning
rule

Set λO2 = 2
Load current 100 −
300 A
Test duration 30 − 45 s

Temperature control via
hydrogen, oxygen and
water cooling flow rates
[59]

2 s Fuzzy Stack temperature error
Time delay temperature
error

Hydrogen flowrate
Oxygen flowrate
Water cooling flowrate

NN weights by BP Set T =

80 ◦C & 100 ◦C

Temperature control via
anode and cathode flow
rates [60]

2 s Fuzzy Stack temperature error
Previous stack tempera-
ture error

Anode gas flow rate
Cathode gas flow rate

Fuzzy parameters by
BP

Set temperature 80 ◦C
Test duration 600 s

Dynamic
Programming

Optimal voltage control
via hydrogen and oxy-
gen partial pressures
[63]

- Parametric
cerebellar

Voltage error Hydrogen partial pres-
sure
Oxygen partial pressure

Parametric cerebellar
weights by GD

Set voltage 24 − 28 V
Load current 5 − 25 A
Test duration 300 s

Continue on the next page

15



Control
method

Application Sample
time

Neural
type

Neural
input(s)

Neural
output(s)

Adaptive
strategy

Set point(s)
Test case

Proportional
Integral Deriva-
tive

Maintain oxygen stoi-
chiometry via air mass
flow rate [23, 65, 66]

3 s Non-linear
auto-regressive

Previous air stoichiom-
etry
Previous air mass flow
rate

Predict air stoichiome-
try

PID parameters by gen-
eralized minimum vari-
ance

Set λO2 = 2 − 5
Load current 15 − 25 A
Test duration 750 −
3000 s

Power tracking via inlet
reactants [50, 68]

- Wavelet Inlet reactants Derivative power p-u Neural weights by LS Set P = 0.8 − 1 pu
Test duration 50 s

Power tracking via air
inlet pressure [69]

- Elmann

Elmann

Output power
Air mass flow
Air temperature
Predicted air pressure
error
Change of air partial er-
ror

Predict air pressure

PID parameters

Elmann weights by BP
and predicted air pres-
sure error

Set Pair = 0 − 1 kPa
Load current 20−100 %
Test duration 4 s

Temperature control via
gas heating resistance
[72]

- ML Desired temperature
Measured temperature

Gas heating device in-
put

Neural weights by BP Set T = 40 ◦C
Test duration 30 min

Linearization Maintain oxygen stoi-
chiometry via compres-
sor voltage [74]

- ML Oxygen mass flow
Hydrogen mass flow
Nitrogen mass flow
Current

Stack voltage ML weights by BP Set λO2 = 2
Load current 25−140 A
Test duration 30 s

Stabilize partial pres-
sure via anode and cath-
ode gas flow rates [75]

- ML Disturbed gas pressure
Error gas pressure

Compensation for the
nonlinearities and accu-
racy

ML weights by sigma
law

No set information
Load resistance 0.145−
4.123 Ω

Test duration 45 s
Backstepping Maintain oxygen stoi-

chiometry via the com-
pressor voltage [77]

- RBF Air pressure of the sup-
ply manifold
Rotational speed of the
compressor

Non-affine function of
air supply subsystem

RBF parameters by
dead-zone projection

Set λO2 = 2
Load current 100 −
270 A
Test duration 30 s
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Appendix B.

Table B.3: A summary of adaptive neural controllers applied for PEMFC gas flow.

Flow Control

Neural-Inverse Neural-Hybrid Neural-Feedback Neural-PID Neural-Linearization Neural-Backstepping

[39] Paper(s) results
Convergence faster
than PI, less errors
(ITAE 162 to 70.1)
Robust to external
load disturbances.
Stabilize com-
pressor efficiency
(72% − 76%)

Observation(s)
Stability is not en-
sured
Some overshoots (0.4
for λO2 = 2)

[53–

55]

Paper(s) results
Adaptive to compres-
sor gain fault (MAE
0.0078 to 0.0062)
Robust to external
load disturbances
(standard deviation
0.2% to noise vari-
ance of 1%)
Stability is ensured

Observation(s)
Some overshoots (0.8
for λO2 = 2)

[57,
58]

Paper(s) results
Less oscillations
and overshoots than
PI(0.8 to 0.6 for
λO2 = 2)
Best tracking than
static controller

Observation(s)
Stability is not en-
sured

[23,
50,
65,
66,
68]

Paper(s) results
Adaptive to mass flow
controller fault (Mean
RE 13.71 to 1.35)
Less overshoots (2 to
1 for λO2 = 5) and
better tracking than
PID (Mean RE 5.75
to 1.84)

Observation(s)
Stability is not en-
sured
Small variations on
static periods

[74] Paper(s) results
Accurate and fast
control response time

Observation(s)
Stability is not en-
sured
Some overshoots (0.5
for λO2 = 2)

[77] Paper(s) results
Smaller settling time,
tracking error and
overshoots (0.7 to
0.4 for λO2 = 2) than
feed-forward
Less oscillations than
PID, rejects distur-
bances effectively
Stability ensured

Observation(s)
Tedious derivatives of
the virtual control

Table B.4: A summary of adaptive neural controllers applied for PEMFC gas pressure.

Pressure Control

Neural-Inverse Neural-Hybrid Neural-DP Neural-PID Neural-Linearization

[39] Paper(s) results
Tight pressure track-
ing

Observation(s)
Stability is not
analyzed

[53] Paper(s) results
Convergence applied
in very short time,
less errors (MSE 0.81
to 0.78)
Fewer fluctuations
than PID

Observation(s)
Stability is not
analyzed

[63] Paper(s) results
Less variations and
better tracking than
PID

Observation(s)
Stability is not
analyzed

[69] Paper(s) results
Shorter response time
and smaller response
error than PID

Observation(s)
Stability is not
analyzed

[75] Paper(s) results
Eliminates overshoots
More robust to exter-
nal load disturbances
(error 16% to 6%) and
against uncertainties
(reduce oscillation by
40%) than PI

Observation(s)
Consecutive differ-
entiation of system
output
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Table B.5: A summary of adaptive neural controllers applied for PEMFC temperature.

Temperature Control

Neural-Feedback Neural-PID

[59,
60]

Paper(s) results
Good tracking
(278 − 279.2 ◦K)
(±4 ◦C)
Rapid convergence
Few oscillations on
transient periods
Smooth command
variables

Observation(s)
Stability is not analyzed

[72] Paper(s) results
Less overshoots 2.4 K
for a set at 330 K.
Faster response time
than PID in load varia-
tions.
Maintain stability.

Observation(s)
Temperature ascended
a little slowly compared
to a PID

Table B.6: A summary of adaptive neural controllers applied for PEMFC humidity.

Humidity Control

Neural-PID

[50] Paper(s) results
Some overshoots and
oscillations on static
period
Convergence time is a
few second

Observation(s)
Stability is not analyzed
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