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Abstract— This paper addresses an unknown input observer
design to estimate simultaneously the 3D depth of a tracked
image feature and the camera linear velocity using a low cost
monocular camera and inertial sensor. The camera kinematic
model is at first, augmented via the dynamic extension approach
then described as a quasi-Linear Parameter Varying (qLPV)
model. Further, the qLPV system is transformed into Takagi-
Sugeno (T-S) form with unmeasured premise variables. The
error convergence analysis is performed based on Lyapunov
theory and Input to State Stability (ISS) property to ensure the
boundedness of the state estimation error. Gains that guarantee
the asymptotic stability of the estimation error can be properly
computed by means of Linear Matrix Inequalities (LMIs).
Finally the proposed approach is validated using synthetic data.

Keywords: Unknown Input Observer (UIO), Input to
State Stability (ISS), qLPV Systems, Structure from Motion,
LMI constraints, Lyapunov Theory

I. INTRODUCTION

Over the years, there has been significant interest in recove-
ring the 3D structure of a scene from 2D pixels considering
a sequence of images. Several solutions have been proposed
in the literature for this issue. In robotics community, this
problem can be referred to as Monocular Simultaneous
Localization And Mapping (SLAM) and in computer vision
community, it has been addressed as Structure from Motion
(SfM) problem. Many researchers utilize the terms interchan-
geably [15] since both schemes aim at recovering the 3D
structure of the scene.
Recent studies have developed a number of novel techniques
to solve SfM problem using filtering schemes. For instance
an Extended Kalman Filter (EKF) based approaches have
been proposed in [1]–[3]. One can find in [4] and [5] the
implementation of Unscented Kalman filter. Usually, the
main drawback of filtering strategies is that they require a
proper initialisation of the iterative process and they imply
a certain degree of linearisation. Furthermore, many works
have adopted deterministic nonlinear observers based ap-
proaches to recover the 3D structure of the tracked features.
Among the first contribution one can cite work of Deluca and
al. [6], where a nonlinear observer is designed to estimate
the depth information with precise knowledge of the camera
displacement.
It is thoroughly addressed in literature that the camera trans-
lational motion has a strong effect on the performance of 3D
structure estimation [6], [7] and it is commonly known that
estimating the depth is impossible if the camera is moving
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along the feature projection ray. In this context, particular
attention has been devoted to active structure estimation
from motion strategy where the camera trajectory is suitably
chosen to optimize the convergence rate of the estimation
error. A common methodology consists on imposing a de-
sired transient response to the estimation error by acting on
the camera linear velocity as addressed in [7]. This idea is
extended to include other geometrical primitives such as lines
[8], spherical and cylindrical targets [9] and moments [21].
Generally, when dealing with the SfM problem, a precise
prior knowledge of the camera velocity is required to recover
the 3D structure of the viewed scene. Measuring the camera
velocity might be achieved if the camera is attached on an
end effector of a robot manipulator fixed to the ground or by
using dedicated sensors like Doppler effect radars. However,
it is not a trivial task if the camera is mounted on a mobile
or flying robot. In this respect, many works attempted to
overcome the explicit dependence of the camera velocity
on the estimation performance. For instance, in [10] and
[11], a rotation-free active SfM algorithm scheme is designed
considering some rotational invariant visual features obtained
from spherical-projection model.
With respect to the existing literature and to the best to the
authors knowledge, few works have addressed the problem of
estimating the depth and the linear velocity simultaneously.
One can cite [22], where a nonlinear observer is designed to
estimate the depth, linear velocity, and the attitude based on
horizontal plane assumption which means that this approach
fails in case of inclined planes. Moreover, in [23], the authors
developed a reduced order observer that only needs one
camera linear velocity and corresponding acceleration to
asymptotically estimate the depth information of the feature
point attached to an object and the remaining camera veloci-
ties. Nevertheless, they assume a known uncertain dynamic
model of the linear velocity.
The purpose of this work is to exploit images and Inertial
Measurements, to eventually estimate the depth information
of a fixed point feature in the scene and also to recover the
linear velocity of the camera within its reference frame in
order to overcome real time availability of the linear camera
velocity. The nonlinear projection model of a perspective ca-
mera of a point feature is formulated as a qLPV system. The
idea to immerse the given system dynamic into an augmented
model [16] that has an appropriate structure to build an Unk-
nown Input observer. The nonlinearities of the system under
study are in function of the measured/unmeasured bounded
states of the system. The stability analysis is discussed based
on Lyapunov theory and ISS property. the LMIs constraints
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are established with minimized ISS gain based on the H∞

norm to ensure an explicit bound of the estimation error.
The remaining of this paper is organized as follows: Section
II reviews the camera projection model and introduces basic
definitions and notations. Section III deals with the qLPV
representation of the vision system. The observer design
is demonstrated in Section IV. Section V illustrates the
performance of the proposed approach using synthetic image
sequence. Finally, conclusions and remarks are given in
Section VI

II. BACKGROUND

A. Notations and basic definitions
Throughout the paper, we adopt the following notations:
matrices will be represented in upper case bold letters X

and vectors in lower case bold letters x. X = X⊺ refer
to the symmetric matrix. (.)−1 is the inverse of a given
square matrix. X ≻ 0 (resp.X ≺ 0) means that X is a
definite positive (resp. negative) matrix. 0 and I refers to
zero and identity matrices with appropriate dimensions. [.]×
denotes the skew-symmetric matrix of a given vector and
∥(.)∥ represents the Euclidean norm. The infinity norm is
designated by ∥(.)∥∞.

In the subsequent, we recall some definitions to demonstrate
the observer design procedure.

Definition 1:
● A scalar continuous function α(r), defined for r ∈

[0 , a) belongs to class K if it is strictly increasing
and α(0) = 0.

● A scalar continuous function β(r , s), defined for r ∈
[0 , a) and s ∈ [0 , ∞) belongs to class KL if for each
fixed s, the mapping β(r , s) belongs to class K with
respect to r and for each fixed r, the mapping β(r , s)
is decreasing with respect to s and β(r , s) → 0 as
s→∞.

Definition 2: Given a system:
ẋ(t) = f (x(t) , u(t)) (1)

The system (1) is Input to State Stable if there exist a
function βKL ∈ KL and βK ∈ K such that the trajectory
associated for each initial condition x(0) and each input u(t)
satisfying ∥u(t)∥∞ <∞ fulfills the following expression:

∥(x(t))∥ < βKL (∥(x(0))∥ ) + βK (∥(u(t))∥∞ ) (2)

Lemma 1: For every matrix G=GT > 0, X and Y with
appropriate dimensions, the property below is satisfied:

XTY +YTX ≤XTGX +YTG−1Y (3)

Lemma 2 (Schur complement lemma): Consider the follo-
wing convex nonlinear inequalities:

R > 0, T − SR−1ST > 0 (4)

where the matrices T = TT , R = RT and S are of
appropriate dimension. Hence, the previous inequalities is
equivalent to:

[ T S
ST R

] > 0 (5)

B. Conventional Camera Model
Let the 3D point p represented in the camera frame with
the coordinates p = (X Y Z)⊺. Its projection onto the image
plane is expressed by the homogeneous coordinates vector
m as:

m = (x y 1)⊺ = 1

Z
p (6)

The derivative of p is related to the spatial velocity of the
camera u by the following equation:

ṗ = −υ + p × ω = (−In [p]×) u (7)

where u = (υ⊺ ω⊺)⊺ with υ = (υx υy υz)⊺ and ω =
(ωx ωy ωz)⊺ are respectively, the instantaneous linear and
angular velocity of the origin of the camera expressed in
its local frame.
Let us define the measurable variables of the state vector as
s = (x y)⊺. Consequently one can derive from (6) and (7) the
following expression:

ṡ = (−
1
Z

0 x
Z

xy −(1 + x2) y
0 − 1

Z
y
Z

(1 + y2) −xy −x) u (8)

Applying dynamic extension allows to built a new system
with less nonlinear variables in order to reduce the number
of subsystems when considering the polytopic form.
We denote 1

Z
and υz

Z
as χ and η respectively and we

consider the state vector defined as x = (s⊺ ζ⊺)⊺ where
ζ = (χ η)⊺ is the unmeasurable data to be estimated.

Remark 1. In the proposed work we consider the camera
and the IMU are mounted very close by in a way that
both their local frames axes are parallel. Therefore, we
assume that both the proper acceleration and the angular
velocity provided by the IMU expressed in its local frame
are approximately the same measurements expressed in the
camera local frame.

The accelerometer provides the measurement αs expressed
in the following equation [14]:

αs = [ω]×υ + υ̇ + gR⊺ez (9)

which is the sum of the gravitational field and the linear
acceleration of the sensor, where αs ∈ R3 represents the
proper acceleration of the camera with respect to the inertial
frame, expressed in the camera local frame, ω ∈ R3 is the
angular velocity measured by the gyroscope and expressed
in the camera frame, gR⊺ez is the gravity measurement
expressed in the local frame where R denotes the rotation
matrix of the local frame with respect to the world frame
and g is the gravity constant expressed in the inertial frame
and ez is a unit vector collinear with the gravitational field.
We introduce acceleration due to motion αacc =
(αaccx αaccy αaccz)⊺, by subtracting the gravity offset
as follows:

αacc = αs − gR⊺ez (10)

Remark 2. In order to compute the acceleration due to
motion, an estimation of the attitude is necessary. Many
works have addressed the attitude estimation, as in [12],
where the attitude is estimated assuming a negligible linear
accelerations compared to gravity. Also, in [13], a partial (tilt
observation) and complete attitude estimators are presented.



Then the equation (9) is equivalent to:

υ̇ = −[ω]×υ + αacc (11)

The dynamics of χ and η are deduced from (7) and (11) as
follows:

χ̇ = χη + y χωx − xχωy (12)
η̇ = αaccz χ − ωy υx χ + ωx υy χ + η2 − y η ωx + xωy η

The equations (8) , (12) are arranged in the following form:

{ ṡ = fm(s,u) +Ω(s,u) ζ
ζ̇ = fu(s, ζ,u) (13)

where Ω⊺(s,u) ∈ R2, fm(s,u) ∈ R2×1, and fu(s, χ,u) ∈ R2×1

defined in (14) are sufficiently smooth w.r.t their arguments.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fm(s,u) = ( xy −(1 + x2) y
1 + y2 −xy −x) ω

Ω(s,u) = (−υx x
−υy y

)

fu(s, χ,u) =
⎛
⎜⎜⎜
⎝

−χη − y χωx + xχωy

αaccz χ − ωy υx χ + ωx υy χ + η2−
y η ωx + xωy η

⎞
⎟⎟⎟
⎠

(14)

For readability sake, the time dependency is omitted and
parameter dependency is represented as a subscript.
In the next section, the system in (13) will be described in
a qLPV representation in order to design the observer.

III. QUASI-LPV MODEL

The objective of this work is to estimate the depth in-
formation χ and recover the linear velocity υ during the
camera motion using a nonlinear unknown input observer.
For this aim, the system (13) is written in a qLPV state
space representation, described by:

{ ẋ = Ax,u x +By ω +Fu d
y = Cx

(15)

where Ax,u ∈ R4×4, By ∈ R4×3, and Fu ∈ R4×2. The following
vectors x ∈ R4, ω ∈ R3, d ∈ R2, and y ∈ R2 are respectively the
state vector, the angular velocity, the unknown input vector
and the output vector, assumed to be bounded.
The matrices defined in the system above have the following
form:

Ax,u =
⎛
⎜⎜⎜
⎝

0 0 0 x
0 0 0 y
0 0 yωx − xωy + η 0
0 0 αaccz yωx − xωy + η

⎞
⎟⎟⎟
⎠

By =
⎛
⎜⎜⎜⎜
⎝

xy −(1 + x2) y
1 + y2 −xy −x

0 0 0
0 0 0

⎞
⎟⎟⎟⎟
⎠

Fu =
⎛
⎜⎜⎜
⎝

−1 0
0 −1
0 0
ωy −ωx

⎞
⎟⎟⎟
⎠

d = (χυx
χυy

) C = (1 0 0 0
0 1 0 0

)

We address in the next section the observer design following
the conventional unknown input observer scheme for qLPV
systems, considering the same framework demonstrated in

[18] where the Linear Parameter Varying (LPV) system
representation is kept unchanged until establishing the LMI
conditions in order to overcome this difficulty of imposing
a structure for the gain matrices.

IV. OBSERVER DESIGN
After transforming the system into qLPV form, this section
deals with the observer design, in this context we adopt the
following assumptions
Assumption 1: For a frozen values of the variables, we
consider that [24]:

1) The state vector and the system inputs are considered
bounded.

2) rank (CFu) = rank(Fu).

3) The pair (Tu AX,u + Ṫu,u̇,C) is observable (or at
least detectable). Where the matrix Tu is computed
as follows:

{ Eu = Fu (CFu)−1
Tu = I −Eu C

(16)

A. Observer Structure
Let us define the following observer:

⎧⎪⎪⎨⎪⎪⎩

ż = Nx̂,u z +Gy ω +Lx̂ y

x̂ = z −Eu y
(17)

where z ∈ R4 is the state of the observer and x̂ ∈ R4 the
estimated state and the matrices Nx̂, Gy, Lx̂ and Eu are gain
matrices that guarantee the stability of the state estimation
error.
The estimation error is expressed by the following form:

e = x − x̂

= Tu x − z (18)

where: Tu = I +Eu C
Then the dynamics of the estimation error is given by:

ė = Tu ẋ − ż (19)
= Nx̂,u e + (Tu Ax̂,u −Kx̂,u C −Nx̂,u + Ṫu,u̇ )x +

Tu Fu d + (Tu By −Gy)ω +Tu δ%,u

with δ%,u = (Ax,u−Ax̂,u) X, % = (x̂,x) and Kx̂,u = Nx̂,u Fu−
Lx̂.
Under the following conditions:

1) Tu Ax̂,u −Kx̂,u C −Nx̂,u + Ṫu,u̇ = 0

2) Tu By −Gy = 0

3) Tu Fu = 0

The dynamics of the estimation error becomes:

ė = Nx̂,u e +Tu δ%,u (20)

Hence the following equations can be obtained:

Nx̂,u = Γx̂,u −Kx̂,u C (21)

Eu = Fu (CFu)−1 (22)
Gy = Tu By (23)

where: Γx̂,u = Nx̂,u = Tu Ax̂,u + Ṫu,u̇

Eu =
⎛
⎜⎜⎜
⎝

−1 0
0 −1
0 0

−ωy ωx

⎞
⎟⎟⎟
⎠

Tu =
⎛
⎜⎜⎜
⎝

0 0 0 0
0 0 0 0
0 0 1 0

−ωy ωx 0 1

⎞
⎟⎟⎟
⎠



Ṫu,u̇ =
⎛
⎜⎜⎜
⎝

0 0 0 0
0 0 0 0
0 0 0 0

−ω̇y ω̇x 0 0

⎞
⎟⎟⎟
⎠

Remark 3. Tools aiming to measure the angular acceleration
are not yet popular. But among the works that addressed this
problem, one can cite [19] where sensors, methods, and algo-
rithms available for the measurement of angular acceleration
are given. Also the time derivative of the angular velocity
can be obtained using advanced differentiator designs (see
[20] and references therein).

B. Observer Convergence Study
The error dynamic system (20) can be represented as a
Takagi-Sugeno form as follows:

ė = Nx̂,u e +Tu δ%,u. (24)
= (Γx̂,u −Kx̂,u C)e +Tu δ%,u

=
r

∑
i=1
µi(x̂,x)((Γi −KiC)e +Ti δ%,u)

where Γi ∈ R4×4, Ti ∈ R4×4 and µi(x̂,x), i = 1, . . . ,2n are the
weighing functions satisfying the convex sum property stated
in (25). The T-S model allows to have an exact representation
of the initial nonlinear system described as multiple linear
sub-models, so that for n nonlinearities, we obtain r = 2n

sub-model [17]. In our case, we have 7 nonlinearities, which
makes r = 27 sub-model.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 ⩽ µi(%, u) ⩽ 1
r

∑
i=1
µi(%, u) = 1 (25)

Theorem 1: The error dynamics (24) is ISS with respect to
δ%,u with minimized ISS gain φ2:

∥(x(t))∥
2
< φ1 ∥(x(0))∥2 e

−σ
2
t + φ2 ∥(δ%,u∥∞ (26)

If it exists a positive definite matrix F and a symmetric
positive definite matrix P with the minimal and maximal
eigenvalues denoted respectively by X1 and X2, such that
the following LMIs conditions for a given σ and X1 hold
∀i = 1, . . . , r:

min
P,F

γ (27a)

F ≤ γ I (27b)

(Γ⊺
i P +C⊺W⊺

i +P Γi +WiC + σP PTi

T⊺
i P −F

) < 0 (27c)

with: Wi = PKi, φ1 =
√X2
X1

, φ2 =
√

γ
σX1

, and X1 I ⩽ P ⩽ X2 I

Proof: Considering the quadratic Lyapunov function
given by:

V (t) = e(t)⊺Pe(t) P = P⊺ > 0 (28)

Since Lyapunov function is positive definite, it can be upper
and lower bounded as follows:

X1 ∥(e(0))∥
2 ⩽ V (t) ⩽ X2 ∥(e(0))∥

2
(29)

where X1 and X2 are the minimum and maximum eigenva-
lues of the matrix P.
For shortness we write δ(x̂,x) as δ. Taking the time deriva-
tive of Lyapunov function (28), one obtains:

V̇ (t) = e⊺ (N⊺
x̂,u P +PNx̂,u)e + 2ePTu δ (30)

Taking into consideration lemma 1, yields:

V̇ (t) = e⊺ (N⊺
x̂,u P +PNx̂,u +PTu F−1 T⊺

u P + σP)e +
δ⊺Fδ − σ e⊺Pe (31)

where σ is a positive real constant.
We accept that:

e⊺ (N⊺
x̂,u P +PNx̂,u +PTu F−1 T⊺

u P + σP)e ≤ 0 (32)

Applying lemma 2, and substituting Nx̂,u in (21), the
inequality (32) is equivalent to:

(Γ⊺
i P +C⊺W⊺

x̂,u +P Γx̂,u +Wx̂,uC + σP PTu

T⊺
u P −F

) < 0

(33)
where: Wx̂,u = PKx̂,u

Respecting (33), implies the following new bounding of
Lyapunov function derivative:

V (t) < −σ e⊺Pe + δ⊺Fδ (34)

Integrating the previous inequality (34), yields:

V (t) < V (0) e−σt +F∫
t

0
e−σ(t−s) t∥δ(s)∥2 ds (35)

≤ V (0) e−σt + γ
σ
∥δ(s)∥2∞

Taking into account the bounds of Lyapunov function in
(29), we obtain:

∥(e(t))∥2 < X2

X1
∥(e(0))∥2 e−σt + F

σX1
∥(δ(s))∥2∞ (36)

Also, if we consider the inequality (27b), we get:

∥(e(t))∥2 < X2

X1
∥(e(0))∥2 e−σt + γ

σX1
∥(δ(s))∥2∞ (37)

which yields the following:

∥(e(t))∥ <
√
X2

X1
∥(e(0))∥ e−

σ
2
t +

√
γ

σX1
∥(δ)∥∞ (38)

This inequality verifies the ISS property of the system (20)
with respect to the perturbation δ with minimal ISS gain
ensured by the condition (27a) and explicitly expressed by
φ2 =

√
γ
σX1

.

Minimizing the variable γ will attenuate the effect of the
disturbance δ and ensures a minimal bound of the estimation
error.

C. Unknown Input Reconstruction
Now, we are interested in reconstructing the linear camera
velocity. For this aim, we compute the time derivative of
the equation defining the measurements output in (15),
accordingly:

˙̂y = C (Ax̂,u x̂ +By ω +Fu d̂) (39)

Then the disturbance estimate takes the following form:

d̂ = (CFu)−1 ( ˙̂y −C (Ax̂,u x̂ +By ω) ) ) (40)

Thus, the camera linear velocity υx and υy are deduced
using the following equation :

d̂ = (χ̂ υ̂x
χ̂ υ̂y

) Ô⇒ (υ̂x
υ̂y

) = d̂(t) χ̂−1 (41)



And finally the linear velocity w.r.t the z axis of the camera
υ̂z is obtained directly from the estimated states η̂ and χ̂,
thus:

υ̂z = η̂ χ̂−1 (42)

A recap of the observer design procedure is given in the
following steps:

1) Verify the observability condition of the pair
(Tu AX,u + Ṫu,u̇,C) and the rank condition
rank (CFu) = rank(Fu).

2) Compute the matrices Eu, Tx̂,u directly since they
are all dependent on measured states, as well as the
matrix Gy given by the equations (16) and (23)
respectively.

3) Solve the LMIs constraints (27) for a given positive
scaler σ and X1, and calculate the gains WX̂ and
ΓX̂ as follows:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Wx̂,u =
r

∑
i=1
µi(x̂,x)Wi

Γx̂,u =
r

∑
i=1
µi(x̂,x)Γi

(43)

4) Deduce the observer gain matrices Nx̂,u and Lx̂,u,
using:

{ Kx̂,u = P−1WX̂

Nx̂,u = Tu Ax̂ + Ṫu,u̇ −Kx̂ C
(44)

5) Finally, use the equations (42) and (41) to obtain the
estimated camera linear velocity.

In the next section simulation results are reported to demons-
trate the proposed approach.

V. SIMULATION RESULTS

This section reports the simulation results in order to illus-
trate the applicability of the proposed approach. For this aim,
synthetic data set of images is generated at a rate of 33 fps
using a known camera angular and linear velocities ω and υ
given below in (45). The orientation matrix R of the sensor
with respect to the world frame is obtained by integration,
and the accelerometer signal αs is computed using equation
(9).
For X1 = 10−12 and σ = 10−2 , the result obtained from solving
the LMIs in (27) using Yalmip toolbox in Matlab are given
by:

γ = 9.5492 ⋅10−13

P = ⎛
⎝

0.0034 −2.0580 ⋅ 10−8 0.0 0.0

−2.0580 ⋅ 10−8 0.0034 0.0 0.0

0.0 0.0 9.8857 ⋅ 10−13 0.0

0.0 0.0 0.0 1.6109 ⋅ 10−13

⎞
⎠

We assume that the camera is calibrated and it is initially
at a position of 1 meter (Z = 1) from the tracked point,
chosen to be the center of the image.

The camera linear and angular velocities are given by:

υx = 0.05 sin (π
5
t), υy =

1

(t + 5)
, υz = −0.3 e−0.02 t − 0.1 sin(π

6
t);

ωx = 0.05 cos (π
4
t), ωy = −0.06 cos (π

2
t), , ωz = 0 (45)

The observer initial conditions are: z = (1, 2, 4, −1.6)⊺.

a) Case 1: considering known measurements: Simulations
in Fig. 1 and Fig. 2 are given considering known measure-
ments. These figures show that the variables χ, η and the
linear velocity are successfully estimated.
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Fig. 1: The estimation error eχ = χ − χ̂ in solid blue line and the
estimation error eη = η − η̂ in solid red line
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Fig. 2: Real (solid bleu line) and estimated (dashed red line) linear
velocities: (a) υx, (b) υy and (c) υz .

b) Case 2: taking into account measurements uncertainties:
Now, In order to reassess the robustness of the observer
to measurements uncertainties, the values shown in table I,
quantifies the error performance based on the Root Mean
Squared Error (RMSE) for different scenarios. In each scena-
rio a random number of pixels within the considered interval
is added to the exact position of the tracked pixel in each
iteration.
The RMSE formula for a variable κ is given as:

RMSE =
√

1

n
Σn
i=1(κ − κ̂)2i (46)

Where: n is the number of κ error samples.

TABLE I: Comparison of the estimation error for different scenarios
based on RMSE

χ η υx υy υz
0 0.2350 0.0917 0.0516 0.0848 0.0139

[−2, 2] 0.2319 0.0937 0.5483 0.9726 0.0196
[−4, 4] 0.2319 0.0937 1.1204 1.9462 0.0198
[−8, 8] 0.2321 0.0938 2.2697 3.9192 0.0199

The table I indicates that the RMSE values of the estimation
error of the unmeasured states (χ and η) depict a small
variations. Same observation for the RMSE values of estima-
ted velocity υz , Hence, we can say that the observer shows



a robustness to measurements uncertainties and it ensures
an accurate state estimation. That is basically due to the
optimization of the bound of the estimation error. In this
case the uncertainties of the measurements will be added
to the perturbation vector δ%,u during the design procedure.
Then, the same previous study is performed. Consequently,
the estimation error will have another optimized bound
different than the one obtained when considering known
measurements. It should be noted that the ISS property is
more effective comparing to other stability properties like L2

stability or the Input to State practical Stability (ISpS) [25].
On the other hand, one can notice that the RMSE values
for the reconstructed velocities υx and υy are increasing,
meaning that they exhibit a noisy convergence. That is
essentially resulting from the amplification of the noise due
to the differentiation of the measured state in equation (41)
to reconstruct both velocities. However, we could have had
better performance using data filtering techniques.

VI. CONCLUSION

In this paper, the design of an unknown input observer
for qLPV systems with unmeasured premise variables is
proposed, to estimate the depth information and the linear
camera velocity. The considered system is obtained by a
dynamic extension of a vision camera system. Necessary and
sufficient conditions are provided to ensure the existence of
the observer. The convergence of the estimation error is in-
vestigated based on the ISS property and Lyapunov analysis.
The observer gains are computed by solving LMI constrains.
Finally, simulations are carried out using synthetic data to
validate the proposed observer. The estimation performances
are quantified with the RMSE criteria and tested for different
scenarios.
The presented approach gives an interesting solution for
linear velocity estimation which is very hard to measure,
using only an Inertial Measurement Unit and a low cost
camera. Also our approach shows a good performance in esti-
mating of the depth information without strong assumptions
comparing to other existing work which requires a known
geometry of the observed object or full knowledge of the
camera velocity.
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