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Abstract

We propose two hardware architectures for the modular multiplication over
a finite field Fp using the Adapted Modular Number System (AMNS). We
present their optimized implementations, with low latency. Our results are
promising as we obtain very competitive timings. According to the size of
the modulus p, our fastest multiplication is performed in 0.07µs for 128 bits,
0.146µs for 256 bits, and 0.172µs for 512 bits.

Keywords: Modular multiplication, Hardware implementation, FPGA,
Adapted modular number system

1. Introduction

Nowadays, cryptography primitives are implemented for miscellaneous
uses and the efficiency of their implementation on small embedded system
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devices is important. Most of the public key cryptographic protocols involve
modular arithmetic; indeed. This family of cryptosystem which includes
RSA Rivest et al. (1978b) and elliptic curve cryptography (ECC) Hanker-
son and Menezes (2011), relies on it A. Menezes (1997). Hence, the most
efficient is the modular arithmetic implementation, the most reduced is the
execution time. The most critical operation is the modular multiplication.
Many algorithms for the binary representation have been proposed in the lit-
erature Barrett (1987); Montgomery (1985); Taylor (1981); Blakely (1983);
Takagi (1992).

Beside the algorithmic solutions, it is possible to improve their efficiency
by choosing unusual number representations. In Bajard et al. (2004), a new
number system called the Adapted Modular Number System (AMNS) is pro-
posed in order to speed-up the modular operations. Its main characteristic
is that its elements are polynomials with small coefficients. In Didier et al.
(2020) the theoretical background of AMNS present with a software imple-
mentation of the modular multiplication in this system. They show how to
build an efficient AMNS that allows modular multiplications that can be
more efficient than the classical Montgomery modular multiplication.

In this paper, we present a FPGA architecture for modular multiplica-
tion using AMNS and analyze its behavior. This paper gives guidelines to
the material fitting of such a structure, namely two methods are presented
and a suitable material model is identified. In order to evaluate the perfor-
mances and the costs (in number of slices register and DSP blocks) of our
architectures, we compare our results with the state of the art of modular
multiplications in binary, signed-digits and RNS representation. Various ar-
chitectures have been built for the finite field Fp, where p is a prime integer,
to provide a scalable implementation on FPGA. Our results are very promis-
ing as our implementations provide the most efficient modular multiplication
compared to binary implementations with the same size of the modulus p
and on the same FPGA target (see Table 8). The work presented is done in
continuation of Chaouch et al. (2019).

The paper is organized as follows. In Section 2, we present the background
of the modular multiplication and the AMNS. We describe our hardware
architectures in section 3 and in section 4. Our results and a comparison
with the state of the art are presented in section 5 and in Section 6. We
conclude in section 7.
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2. The Adapted Modular Number System

The Adapted Modular Number System (AMNS) is a number system that
was introduced in Bajard et al. (2004), in order to speed-up modular arith-
metic. The main characteristic of the AMNS is that its elements are poly-
nomials. This characteristic gives to the AMNS many advantages for both
efficiency and safety. In Didier et al. (2020), the authors give a method to
generate many AMNS for any prime integer in order to perform modular
operations efficiently. They present software implementation results which
highlight that the AMNS allows to perform modular multiplication more effi-
ciently than well known libraries like GNU-MP and OpenSSL. In this section,
we give an overview of this number system and of modular operations in it.

In this paper, we do not deal with the generation process of the AMNS,
since it requires a consequent mathematical background that is out of the
scope of this article and is quite long. See Bajard et al. (2004); Didier et al.
(2020). The authors of Didier et al. (2020) provide an implementation of
the AMNS generation process 5 that uses SageMath library Stein and al.
(2018). In the same location, there is also a C code generator. Given all the
parameters of an AMNS, this generator outputs a software implementation
in C language that allows to efficiently perform arithmetic operations in that
AMNS.

The AMNS is a subclass of the Modular Number System (MNS). So, we
start by first presenting the MNS.

Definition 1. Let p > 3 be a prime integer. A modular number system
(MNS) is defined by a tuple B = (p, n, γ, ρ), such that for every integer
0 6 x < p, there exists a vector V = (v0, . . . , vn−1) such that:

x ≡
n−1∑
i=0

viγ
i (mod p) ,

with |vi| < ρ, ρ ≈ p1/n, and 0 < γ < p.
In this case, we say that the polynomial V (X) = v0+v1X+· · ·+vn−1Xn−1

is a representation of x in B and we denote V ≡ xB.

For a MNS to be an AMNS, the parameter γ should meet a requirement
which is essential for arithmetic operations.

5https://github.com/arithPMNS/generalisation_amns
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Definition 2. An Adapted Modular Number System (AMNS) is defined by
a tuple B = (p, n, γ, ρ, E) such that (p, n, γ, ρ) is a MNS and γ is a root
modulo p of the polynomial E(X) = Xn − λ, with λ a very small nonzero
integer (for instance, λ = ±1, ±2 or ±3).

Example 1. Let p = 19. The tuple B = (19, 3, 7, 2, E), with E(X) = X3−1,
is an AMNS. Indeed, Table 1 gives a representation of each element of Z/19Z.
This shows that the tuple B = (19, 3, 7, 2) is a MNS. Moreover, we have
γn = 73 ≡ 1 (mod 19), which is very small.

0 1 2 3 4

0 1 −X2 −X + 1 X2 −X − 1 X2 −X

5 6 7 8 9

X2 −X + 1 X − 1 X X + 1 −X2 + 1

10 11 12 13 14

X2 − 1 X2 X2 + 1 −X + 1 −X2 +X − 1

15 16 17 18

−X2 +X −X2 +X + 1 X2 +X − 1 −1

Table 1: The elements of Z/19Z in B = (19, 3, 7, 2)

It can be checked in Table 1 that any representation A of an element a ∈
Z/19Z is such that: deg(A) < 3, ‖A‖∞ < 2 and A(γ) ≡ a (mod p). For
instance, γ2 − γ + 1 = 49− 7 + 1 = 43 ≡ 5mod 19 shows that X2 −X + 1 is
a representation of 5 in B.

Like in usual number systems, the main arithmetic operations in the
AMNS are the addition and the multiplication. Since elements are polyno-
mials in the AMNS, the addition (resp. the multiplication) is an addition
(resp. the multiplication) of polynomials. However, additional operations
have to be done in order to obtain the result in the AMNS. This is explained
by the following:
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Let x, y ∈ Z/pZ be two integers. Let V ≡ xB and W ≡ yB be their
representations in B. The polynomial T = VW satisfies T (γ) ≡ xy (mod p).
However, T might not be a valid representation of xy in B, because its degree
could be greater than or equal to n. To keep the degree lower than n, the
product VW has to be computed modulo the polynomial E. This operation
is called the external reduction. Notice that since E(γ) ≡ 0 (mod p) and
T = VW (mod E), we have T (γ) ≡ xy (mod p) and deg(T ) < n.

Even if deg(T ) < n, T might not be a representation of xy (mod p) in B,
because its coefficients could be greater than or equal to ρ. To have the result
in B, a specific primitive called the internal reduction has to be applied.

The same reasoning can be applied for the addition, S = V +W satisfies
S(γ) ≡ (x + y) (mod p) and deg(S) < n. Here also, S might not be a valid
representation in B, since its coefficients could be greater than or equal to ρ.
Hence, the same internal reduction might be required to retrieve the result
in B.

2.1. Some notations and conventions.
Before presenting the arithmetic operations with the reduction methods,

we need to establish some notations and conventions for simplicity and con-
sistency. For consistency, we assume that p > 3 and n, γ, ρ > 1.

Let Zn[X] be the set of polynomials in Z[X] of degree smaller than n:

Zn[X] = {C ∈ Z[X], such that: deg(C) < n}.

If V ∈ Zn[X] is a polynomial, we assume that V (X) = v0 + v1X + · · · +
vn−1X

n−1.

2.2. The external reduction.
The external reduction is a polynomial modular reduction. The goal

of this operation is to keep the degree of the AMNS representations lower
than n. Let C ∈ Z[X] be a polynomial. The external reduction consists in
computing a polynomial C ′ such that:

C ′ ∈ Zn[X] and C ′(γ) ≡ C(γ) (mod p).

The Euclidean division of C by E computes Q and C ′ so that:

C = Q× E + C ′,
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with deg(C ′) < n and Q ∈ Z[X]. Since E(γ) ≡ 0 (mod p), one has C ′(γ) ≡
C(γ) (mod p). So, the external reduction is done as: C ′ = C mod E. The
polynomial E is called the external reduction polynomial.

Let A ∈ Zn[X] and B ∈ Zn[X]. Let C = AB be a polynomial. Then,
deg(C) < 2n − 1. Since E(X) = Xn − λ, with λ very small, the external
reduction can be done very efficiently. The function RedExt (Algorithm 1)
proposed by Plantard in Plantard (2005) can be used to perform this opera-
tion.

Algorithm 1 RedExt - External reduction Plantard (2005)
Require: C ∈ Z[X] with deg(C) < 2n− 1 and E(X) = Xn − λ
Ensure: C ′ ∈ Zn[X], such that C ′ = C mod E

1: for i = 0 . . . n− 2 do
2: c′i ← ci + λcn+i

3: end for
4: c′n−1 ← cn−1

5: return C ′ # C ′ = (c′0, . . . , c
′
n−1)

Remark 1. In Bajard et al. (2004), the authors show that the output C ′ of
Algorithm 1 is such that:

‖C ′‖∞ < n|λ|‖A‖∞‖B‖∞,

with C = AB and A,B ∈ Zn[X]; cf. Section 3 of that paper.

2.3. The internal reduction.
The aim of the internal reduction is to ensure that the coefficients of

polynomials are lower (in absolute value) than ρ. Let C ′ ∈ Zn[X] be a poly-
nomial, with ‖C ′‖∞ > ρ. This operation consists in computing a polynomial
S such that S ∈ B and S(γ) ≡ C ′(γ) (mod p).

Several methods have been proposed to perform this operation Bajard
et al. (2004, 2005); Negre and Plantard (2008). If the value of the modulus p
is not imposed but only its approximate bit-size, then the proposal in Bajard
et al. (2004) might achieve the best efficiency. However, if the value of p is
already given, then the proposal in Negre and Plantard (2008) is currently
the best and is the one this paper focuses on.
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In Negre and Plantard (2008), Negre and Plantard propose a Montgomery-
like reduction method to perform the internal reduction. In their proposal,
they combine the multiplication operation with their Montgomery-like inter-
nal reduction. In this paper, we split the multiplication process from the
internal reduction, because the internal reduction is also essential for other
operations like the addition and the conversions from Z/pZ to the AMNS
(and vice versa). RedCoeff (Algorithm 2) corresponds to the internal reduc-
tion process included in Algorithm 1 of Negre and Plantard (2008).

Algorithm 2 RedCoeff - Coefficient reduction Negre and Plantard (2008)
Require: B = (p, n, γ, ρ, E), C ′ ∈ Zn[X], M ∈ B such that M(γ) ≡ 0

(mod p), φ ∈ N \ {0} and M ′ = −M−1 mod(E, φ).
Ensure: S(γ) = C ′(γ)φ−1 (mod p), with S ∈ Zn[X]

1: Q← C ′ ×M ′ mod (E, φ)

2: R← (Q×M) mod E

3: S ← (C ′ +R)/φ

4: return S

Notice that this Montgomery-like reduction method requires three addi-
tional parameters: a non-zero integer φ and two polynomials M and M ′.
These polynomials are such that: M ∈ B, M(γ) ≡ 0 (mod p) and M ′ =
−M−1 mod(E, φ). The polynomial M is called the internal reduction poly-
nomial.

Since this algorithm involves many reductions modulo φ (line 1) and many
exact divisions by φ (line 3), it is necessary to take φ being power of two
for this algorithm to be efficient. However, taking φ as a power of two while
ensuring the existence of the polynomialsM andM ′ is not obvious. In Negre
and Plantard (2008), the authors do not provide a generation process which
allows that. In El Mrabet and Gama (2012), El Mrabet and Gama give such
a generation process but for the special case E(X) = Xn + 1.

In Didier et al. (2020), the authors propose a generation process which
ensures this requirement for E(X) = Xn − λ, with λ ∈ Z \ {0}. In the
same paper, they also give a generation process for all the others parameters
along with a complete set of algorithms to perform arithmetic and conversion
operations in the AMNS. Here, we only present the multiplication algorithm
since it is the purpose of this paper. One should read the works done in Didier
et al. (2020) for more details.
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2.4. The modular multiplication.
As explained above, the authors in Negre and Plantard (2008) suggest a

modular multiplication method which includes the Montgomery-like reduc-
tion method. Algorithm 3 corresponds to their proposal, except that it is
split here in a set of algorithms.

Algorithm 3 Modular multiplication in AMNS Negre and Plantard (2008)
Require: A ∈ B, B ∈ B and B = (p, n, γ, ρ, E)

Ensure: S ∈ B with S(γ) ≡ A(γ)B(γ)φ−1 (mod p)

1: C ← A×B
2: C ′ ← RedExt(C)
3: S ← RedCoeff(C ′)
4: return S

In Negre and Plantard (2008), Negre and Plantard show that if the parame-
ters ρ and φ are such that:

ρ > 2n|λ|‖M‖∞ and φ > 2n|λ|ρ,

then, the output S of the Algorithm 3 is such that ‖S‖∞ < ρ (i.e. S ∈ B);
cf. Theorem 1 in Negre and Plantard (2008). This requirement is assumed
for φ and ρ in the Algorithm 3.

In Didier et al. (2020), the authors prove that it is always possible to
generate an AMNS for any prime integer p > 3 where the parameter E is
such that E(X) = Xn − λ, with λ = ±2i. This makes the internal and the
external reductions faster since these operations involve many multiplications
by λ. As already mentioned, φ should be a power of two; i.e. φ = 2t, with
t ∈ N \ {0}.
Let’s consider a k-bit processor architecture, then the basic arithmetic com-
putations are performed on k-bit words. The cost of the modular multipli-
cation is given in Table 2 with λ = ±2i and φ = 2t. This cost is expressed
as a function of the number of k-bit integer multiplications, additions and
shifts. In that table, M and A respectively denote the multiplication and the
addition of two k-bit integers. We also denote respectively S

y
l and Sy

r a left
shift and a right shift of y bits.
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Simple polynomial multiplication n2M+ (2n2 − 4n+ 2)A

External reduction 2(n− 1)A + (n− 1)Si
l

Internal reduction 2n2M+ (3n2 − n)A+ nSt
r

Total cost 3n2M+ (5n2 − 3n)A+ (n− 1)Si
l + nSt

r

Table 2: Theoretical cost of the modular multiplication, where E(X) = Xn ± 2i and
φ = 2t.

2.5. Some advantages of the AMNS.
Compared to the classical (binary) representation, the AMNS has many

advantages. First, none of the algorithms for arithmetic operations in the
AMNS has a conditional branching. This property is an advantage for effi-
ciency and is also very helpful against side channel attacks, like the Simple
Power Analysis (SPA) attack. Second, because the AMNS elements are poly-
nomials, their coefficients are independent and there is no carry propagation
to deal with, when performing arithmetic operations.

Finally, because its elements are polynomials, arithmetic operations in
the AMNS can be very efficiently parallelized.

3. Methodologies for hardware implementation

In our modular multiplication we use the AMNS (Adapted modular num-
ber system) algorithm. Due to its regularity and simplicity, this algorithms
can be easily implemented in the DSP slices of FPGAs.

Most of the proposed solutions in the literature use complex and expen-
sive algorithms to release these data dependencies and improve computing
performance in multipliers implanted. Due to the complexity of these algo-
rithms, the corresponding fast modular multipliers often consume a signifi-
cant amount of FPGA hardware resources. Thus, we can find in the litera-
ture examples of FPGA implementations of modular multipliers within ECC
cryptosystems using several hundred DSP slices (see for example H. Alrimeih
(2014)). We believe that such a consumption of resources is not reasonable
for material implementations of embedded cryptosystems. We have therefore
decided to propose a different solution based on architectural optimization
rather than algorithms.
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Our constraint is to implement a hight level security of cryptographic
(128 or 256, 512 and 1024) in FPGA, knowing that the hardwired control
units are not big enough for cryptographic sizes. In our target FPGAs, DSP
slices are 18× 25 bits units. Then processing each Fp element would require
many parallel BRAMs and DSP slices. But using many BRAMs is useless
since the number of intermediate Fp elements is small in ECC and HECC
(up to 10 and 20 respectively). To allow hardware design having an efficient
area and frequency on FPGA, we decompose k-bit elements into a a set of
w-bit words so that w is a multiple of 18. The choice can reduce the number
of slice DSP used in the design. We denote n the number of coefficient of
w-bit necessary for each operand with k = nw.

3.1. The system model
Our hardware implementation of the modular multiplication in AMNS is

based on the algorithm 3. This algorithm can be expanded as follows:

Algorithm 4 Modular multiplication in AMNS - Main steps
Require: A ∈ B, B ∈ B and B = (p, n, γ, ρ, E)

Ensure: S ∈ B
C ← A×B

C ′ ← C mod E

Q← C ′ ×M ′ mod (E, 2r)

R← ((Q×M)) mod E

S ← (C ′ +R)/2r

(1)
(2)
(3)
(4)
(5)

We remind that the inputs A, B and C are polynomials of degree n− 1.
Thus, the polynomial A has n coefficients noted ai for i ∈ {0, · · · , n}. The
polynomial M is the internal reduction polynomial and the modular inverse
of its opposite modulo (E, 2r) is M ′. Note that for efficiency reasons, we
choose φ = 2r. The external reduction polynomial E is a sparse polynomial
of the form E(X) = Xn−λ. The polynomials C, C ′ and R are intermediate
polynomials. This algorithm produces the output polynomial S being the
result of the modular multiplication.

The coefficients of the inputs A, B, C and the constants M and M ′ are
stored in the memory. The result is written back in the same memory. The
structure of our architecture is given in Fig. 1. In this figure, the AMNS
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Multiple-Coefficient operator, processes the steps (1), (2), (3), (4) and (5)
of the AMNS multiplication algorithm. It reads the coefficient of each input
value ai, bj,m′j and mj out of the memory, processes the intermediate results
C ′, Q, R, S and store them in dedicated local registers. This allows C ′, Q
and R to be used in the AMNS Multiple-Coefficient operator as intermediate
values that are input for the next cycle. The register dedicated to S supplies
the result to the memory. This unit is controlled with a finite state machine.

Figure 1: System architecture

The target devices have seldom enough input pins in order to get crypto-
graphic-size data in one single cycle. For instance the board used in our tests
has only 220 I/O pin while the modular multiplication data-path is designed
up to 1024-bit. Therefore, the inputs of the top level of the design are
partitioned in 36-bit chunks and serially delivered with the least significant
bits first.
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We detail the several steps processed in the AMNS Multiple-Coefficient
unit for n = 4.

We can directly computes C ′ = A×B mod E as follows:

• c′0 = a0b0 + λ(a1b3 + a2b2 + a3b1),

• c′1 = a0b1 + a1b0 + λ(a2b3 + a3b2),

• c′2 = a0b2 + a1b1 + a2b0 + λ(a3b3),

• c′3 = a0b3 + a1b2 + a2b1 + a3b0.

Note that this step combine the polynomial multiplication (1) and the poly-
nomial reduction (2). Indeed, the external reduction polynomial E = Xn−λ
is a sparse polynomial which property is Xn mod E = λ. Thus the product
C = A × B and the reduction C ′ = C mod E can be combine. The poly-
nomial multiplication is usually implemented using a multiplier-accumulator
(MAC operator) with a fixed operation data width (e.g., 36 bits).

The second step computes Q = C ′ ×M ′ mod (E, 2r) as follows :

• Q0 = c′0m
′
0 + c′1m

′
3 + c′2m

′
2 + c′3m

′
1,

• Q1 = c′0m
′
1 + c′1m

′
0 + c′2m

′
3 + c′3m2,

• Q2 = c′0m
′
2 + c′1m

′
1 + c′2m

′
0 + c′3m3,

• Q3 = c′0m
′
3 + c′1m

′
2 + c′2m

′
1 + c′3m

′
0.

The third step computes R = ((Q×M)) mod E:

• R0 = q0m0 + q1m3 + q2m2 + q3m1,

• R1 = q0m1 + q1m0 + q2m3 + q3m2,

• R2 = q0m2 + q1m1 + q2m0 + q3m3,

• R3 = q0m3 + q1m2 + q2m1 + q3m0.

The last step is simply S = (C ′+R)/2r. Thus the modular multiplication
is processed through four states, such that the final result S is available at
state five. This is illustrated in Fig. 2
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Figure 2: Illustration of modular multiplication operations in AMNS. The notation "*"
represents mod (E), and "**" represents mod (E, φ)

4. Hardware Implementation

In this section, we present two architectures that can be used for com-
puting a modular multiplication in the AMNS on FPGA.

The first is a sequential architecture, which is easy to realize because
the arithmetic operations are performed in the order described in Fig. 3. A
preliminary analysis shows that the sequential architecture uses fewer slices
registers than the semi-parallel architecture but requires more clock cycles for
completing the modular multiplication in the AMNS. The second architec-
ture is semi−parallel architecture which aims to execute the most arithmetic
operations in the same cycle to have a fast design.

In Section 4.1, we present our sequential architecture while our semi-
parallel architecture is presented presented in section 4.2.

4.1. Sequential architecture
In this design the steps described in section 3.1 are scheduled as shown

in figure 3. This figure is an example of the scheduling of a modular multi-
plication in AMNS, which inputs A and B have four 36−bits coefficients and
the modulus p is a 128-bit integer.

In figure 1 the AMNS Multiple-Coefficient block executes the foregoing
algorithm as follows. It inputs the loop variables i and j from the control
state machine and supplies them to the memory as its address input. The

13



Figure 3: Scheduling of the sequential architecture

input values ai, bj,m′j, and mj are arrays of w-bits coefficients. Here w = 36-
bits for ai, bj, w = 39-bits for m′j and w = 40-bits for mj.

The AMNSMultiple-Coefficient block computes the 5 steps of algorithm4.
The step (1) calculates an intermediate variable C Step by Step, from the
least significant coefficient to the most significant coefficient. At each cycle
a new value of c0, c1, c2 and c3 comes out as is illustrated in the Fig. 2.

The process executes step (2) computes another intermediate variable C ′
similarly to step (1). The input C is given serially least-significant coefficient
first in order to compute the least significant coefficient of C ′. The compu-
tation of steps (3) and (4) that compute the intermediate variables Q and R
are performed the same way. Finally, the division in step (5) is performed
by a simple r-bit right shift. The final result is computed at this step.

The steps (1), (3) and (4) requires n states in order to be computed, while
the steps (2) and (5) are performed in one state.

The Fig. 4, Fig. 5, Fig. 6 and Fig. 7 shows the parts of theAMNSMultiple-
Coefficient block that computes steps (1) and (2), (3), (4) and (5). While
these figures do not show it, the AMNS Multiplication architecture includes
a 36− bit wide single port memory, which allows either read or write access
to a single address in one clock cycle. This memory stores the input values
A, B, M and M ′ for computation as well as receives the output value S. It
also serves as temporary storage for intermediate variables C ′, R and Q.

The computation of step (1) and (2) is illustrated in figure 4. Each
72-bit coefficient of C ′ is computed with a 36-bit inputs MAC operator.
For instance, for a 128-bit precision architecture, four MAC operators are
required at this step. Such a data-path requires 3 DSP blocks for each MAC
operator. Each MAC performs a multiplication of coefficients of A and B

14



Figure 4: Sequential architecture, computation of step (1) and (2)

taken from memory and accumulates the result. The final value is stored in
the C ′i registers that can output serially the result. It has to be remarked
that the step (3) which used C ′ has to be computed modulo(E,φ). Thus, in
this example, only 40 bits of the coefficients c′i are needed at the next step.

The architecture of the module that computes the step (3) of the modular
multiplication is similar to the previous module except the size of inputs
and outputs (Fig. 5). In this module, each MAC operator inputs one 39-
bit coefficient of M ′ and one 40-bit coefficient of C ′. Each MAC operator
outputs one 79-bit coefficient of Q, but only 40 bits are kept because step
(3) is computed modulo(E,φ).

Figure 5: Sequential architecture, computation of step (3)

The computation of step (4) is illustrated by figure 6. This module is
similar to the module displayed in figure 4 except the size of the inputs
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and the output. Each MAC operator inputs a 36-bit coefficient of M and a
coefficient of Q that is serially given. Each module outputs a 76-bit coefficient
of R which is stored in a 76-bit register (not displayed in Fig. 6).

Figure 6: Sequential architecture, computation of step (4)

The final step (5) consists of a 76-bit addition and a shift. The module
that computes this step is illustrated in figure 7. Each adder inputs a 72-bit
coefficient of C ′ and a 76-bit coefficient of R. The following shift operator
corresponds to the division in step (5). In this example the divisor is 240.
The 36 bit coefficient of the result S are stored back to the memory.

Figure 7: Sequential architecture, computation of step (5)

Main controller (MC). The controller interface signals are set according to
the synchronous finite state machine (FSM). This FSM is illustrated in Fig 8
for a 128-bit modulus p, where in state S0 is the initial state. Each state of
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our FSM requires two cycles to be completed, except the final state which is
executed in only one cycle. The controller has 14 states. Our basic sequential
architecture requires a total of 28 cycles for computing a modular multipli-
cation for a 128-bit modulus p and 36 bits-coefficients AMNS numbers.

Figure 8: Finite state machine for w = 36 and a 128-bit modulus p - Sequential architecture

The data path consists of eight internal registers, a counter and a com-
parator. The controller remains in the state S0 until the START instruction
is set. When the START signal is set, the ai and bi registers are loaded with
input values, the C00, C10, C20, C30 registers and the counter are reset. The
different states are summarized in table 3. The remaining states work as
follows:

• In the state S1, S2, S3 and S4 the FSM machine execute the steps (1)
and (2) of the algorithm.

• S1, S2, S3 and S4 are waiting to validate the DONE_C ′ signal. Once
the coefficients of the polynomial C ′ are charged in the BRAM register,
the FSM change to the next state.

• In the state S5, S6, S7 and S8 are waiting to validate the DONE_Q
signal. They computes the step (3) in the algorithm. Once the coeffi-
cients the polynomial Q are charged in the BRAM register, the FSM
change to the next state.

• S9, S10, S11 and S12 control the computation of the step (4) of the
algorithm. They are waiting to validate the DONE_R signal. Once
the FSM machine generates the coefficients of the polynomial R and
charges them in the BRAM register, the FSM change to the next state.
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• In the state S13 is waiting to validate theDONE_S signal. It computes
the last step of the algorithm.

Steps Transition Condition
Initialization S0 reset = done

Steps (1) and (2)

S0 → S1
S1 → S2
S2 → S3
S3 → S4

DONE_C = 1
DONE_C ′ = 1

Step (3)

S4 → S5
S5 → S6
S6 → S7
S7 → S8

DONE_Q = 1

Step (4)

S8 → S9
S9 → S10
S10 → S11
S11 → S12

DONE_R = 1

Step (5) S12 → S13 DONE_S = 1

Table 3: State transition table of the FSM

4.2. Our semi−parallel architecture
We present in this section our semi-parallel architecture which aim is

to execute the maximum of intermediate operations in parallel in order to
minimize the number of cycles. As an example, we describe in Fig. 9 a
scheduling of the steps of the algorithm 3, with n = 4 and w = 36.

It appears that it is not necessary to wait for the end of the computation
of the last coefficient of C in step (1) before to start the computation of the
step (2) (Alg.4). Indeed, at step 1, we compute in parallel the terms that
have to be added in order to get c′0. Thus, the computation of the coefficients
C ′0 starts at step 2 (Fig. 9). It is possible to observe the same thing with
step (2) and step (3) and with step (4) and step (5).

As a consequence, our semi-parallel architecture is composed of 4 modules
as detailed in Fig. 10, Fig. 11, Fig. 12 and Fig. 13. Each of them, take in
charge one or two steps of Alg. 3. These modules are:

• Fig. 10: The multiplication ai×bj is done through the cellMULTIPLIER.
The cell ADDER collects the products and computes give c′i.
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Figure 9: Scheduling of the semi-parallel architecture

• Fig. 11: The multiplication c′i ×m′i mod (φ) generates the coefficients
of polynomial Q.

• Fig. 12: The multiplication of the coefficients of Q by M mod E gen-
erate R.

• Fig. 13: The addition C ′ + R, followed by the exact division by Zr,
generates the coefficients of the output S.

The first module in Fig. 10 is in charge of step (1) and (2). The first part
of this module is composed of multipliers that compute the product of the
36-bit coefficients of A and B in one cycle. The resulting 72-bit coefficient is
stored in the registers.

The second part of this module is composed of an Adder operator which
collect the intermediate products and sum them in order to compute one
coefficient of C. In this example: Ci = Ci0 + Ci1 + Ci2 + Ci3. The output
of the Adder is connected to a demultiplexer that output the coefficient as
soon as its computation is completed. In this example, this module requires
5 cycles for completing the computation. It has to be noted that each state
is executed in two clock cycles.

The module in Fig. 11 is designed to compute the step (3) of Alg. 3. It
is composed of MAC operators that input a 39-bit coefficient of M ′ and a
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Figure 10: Semi-parallel architecture, computation of step (1) and (2) with w = 36 and a
128-bit modulus p

coefficient of C ′. This coefficient is input serially. Each operator output a
coefficient of Q that is written back serially to the memory.

The module operator in Fig. 12 computes the step (4). It is composed
of multipliers that input the coefficients of M and Q. The multipliers are
designed to perform the calculation of (40 − bits × 36 − bit integers) and
output 76-bit integers. The result is stored in the Ri−Reg registers that are
input to the adder which computes one 76-bit coefficient of R. The output
is connected to a demultiplexer which outputs all the computed coefficients
of R.

The last module (Fig. 13) computes the last step of the modular multi-
plication in AMNS. It is composed of 76− Addershift operators that input
the 72-bit coefficients of C ′ and the 76-bit coefficients of R. In this step a
division by 2r is performed. Thus, only the 36 most significant bits of the
sum are output.

Main controller (MC). This design is controlled by a synchronous finite state
machine (FSM). For w = 36 and a modulus p of 128 bits, the FSM controlling
our semi-parallel architecture is illustrated in Fig. 14. It is composed of 11
states, the state S0 being the starting state. In this FSM, each state requires
two cycles to be completed, except the final state which is executed in only
one cycle. This leads to a total cost of 21 cycles. The data path of this
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Figure 11: Semi-parallel architecture, computation of step (3) with w = 36 and a 128-bit
modulus p

FSM consists of eight internal registers, a counter and a comparator. The
controller remains in the state S0 until the START signal is set.

Once the START signal is set, the inputs ai and bi are loaded, the
C00, C10, C20, C30 registers and the counter are reset.

Figure 14: Finite state machine for the optimal architecture with w = 36 and a modulus
p of 128 bits

The FSM loops while the DONE is not set. The machine advances to the
next state once it is triggered by a valid transition.

• The first state is an initial state S0. During this state, the coefficients
ai and bi are loaded into the registers.

• Once the states S1, S2, S3 and S4 are completed, DONE_C ′ signal
is set. These state permits the computations of the coefficients of the
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Figure 12: Semi-parallel architecture, computation of step (4) with w = 36 and a 128-bit
modulus p

polynomial C ′ and charge them in the BRAM register. This corre-
sponds to the steps (1) and (2)

• In the state S1 the FSM machine use an MAC operator to execute
equation (1) and (2) of the algorithm 4. In this state the machine
compute the coefficient c0 of the polynomial C ′.

• In the state S2 the machine compute the second coefficient c′1 of C ′.
In parallel it starts the computation the coefficient q0 of polynomial Q.
Once the coefficients value of the polynomial q0 and c′1 are charged in
the BRAM register, the FSM change to the next state.

• The state S3, S4 and S5 aim to validate the DONE_q1, DONE_q2,
DONE_q3, DONE_c′2, DONE_c′3 signals. The FSM use eight MAC
operators in each state to execute step (3). Once all the coefficients of
the polynomial Q are generated, the FSM moves to the next state.

• The state S6 validate the DONE_r0 signal. It computes step (4),
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Figure 13: Semi-parallel architecture, computation of step (5) with w = 36 and a 128-bit
modulus p

• The state S7, S8, S9 aim to validate the DONE_r1, DONE_r2,
DONE_r3, DONE_s0, DONE_s3 and DONE_s2 signals. Dur-
ing these states, the coefficients of Q ×M are computed in parallel.
This corresponds to the step (5).

• The state S10 sets the DONE_s3 signal. It compute the fourth co-
efficient of the polynomial S by using an adder operator and a shift
operator.

5. Experimental results

We completely implemented and validated our semi-parallel and the se-
quential architectures for AMNS on FPGA. We choosed two different fami-
lies of FPGA, in order to confirm our results with two different technologies.
Our designs have been described in VHDL language, synthetized, placed and
routed with ISE 14.7 tools for Xilinx FPGA and Quartus II 12.1 for Intel-
Altera FPGA using the default synthesis option The results are given for 4
FPGA families:

• two low cost FPGA: Aria II GX (EP2A6x45DF2915) and Zynq xc7
(z010-3g400),

• two high performance FPGA: Virtex 6 (X6vlx 75 t-3ff484) and Cy-
clone V (5cgXFC7DF 31 C8ES)
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Below, we report the results for a modular multiplication with different
coefficient sizes w and for different size of p: 128, 256, and 512 bits for FPGA
that are large enough. Here we report the maximum operating frequency of
the architectures, the number of cycles require to completed the modular
multiplication, the total time of the computation, the number of DSP blcks
and LUT needed in the implementation.

Family Xilinx
FPGA Zynq Virtex 6
p size bit 128 256 128 256 512
w bit 36 36 72
Fq(Mhz) 256.5 242.3 238 225.8 191
Cycles 19 33 19 33 33
Time µs 0.074 0.136 0.079 0.146 0.172
DSP 60 56 60 120 236
LUT 1025 12105 1035 2738 18964

Table 4: Semi parallel architecture results on Xilinx FPGA

Family Intel - Altera
FPGA Aria II Cyclone V
p size bit 128 256 128 256 512
w bit 36 36 72
Fq(Mhz) 218.2 194.4 157.1 106.4 101.6
Cycles 19 33 19 33 33
Time µs 0.087 0.169 0.12 0.309 0.324
DSP 70 128 40 80 112
LUT 1722 4173 1201 2747 14670

Table 5: Semi parallel architecture results on Intel-Altera FPGA

In Tab. 4 and 5 respectively, we give a report of the results of our semi-
parallel architecture for Xilinx and Intel-Altera FPGA after placement and
routing. The results of the implementations of our sequential architectures
are reported in figure 6 and 7.

As expected, the semi-parallel architecture records the most efficient
speed of execution while the sequential design achieves the smallest area.
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We observe that Xilinx FPGA provides fastest computations for modular
multiplication in AMNS representation compared to the Altera Family.

Family Xilinx
FPGA Zynq Virtex 6
p size bit 128 256 128 256 512
w bit 36 36 72
Fq(Mhz) 283.2 255.7 309.5 189.7 224.1
Cycles 23 47 23 47 47
Time µs 0.081 0.183 0.074 0.247 0.209
DSP 51 53 51 91 216
LUT 791 2827 791 1740 24763

Table 6: Sequential architecture results on Xilinx FPGA

Family Altera
FPGA Aria II Cyclone V
p size bit 128 256 128 256 512
w bit 36 36 72
Fq(Mhz) 237.3 213.3 157.2 123.4 82.7
Cycles 23 47 23 47 47
Time µs 0.096 0.22 0.146 0.38 0.568
DSP 42 80 28 52 112
LUT 1267 2423 679 1304 14283

Table 7: Sequential architecture results on Intel-Altera FPGA

6. Comparison with the state of the art

To our knowledge our implementation is the first VHDL implementation
of a FPGA architecture of a modular multiplication using AMNS as a number
system. We compared our design to some previously published works:

• The first design we are comparing to is detailed in Ors et al. (2003). It
is a systolic architecture for Montgomery Modular multiplication and
uses binary numbers.
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• The second design is also a systolic architecture that is based on the
CIOS Montgomery modular multiplication by Mrabet et al. (2016). It
also make use of binary numbers.

• The third design is detailed in Bigou and Tisserand (2015). Its orig-
inality is that it uses Residue Number Systems (RNS) as an integer
number system. This architecture is based on cox-rower components
introduced in Kawamura et al. (2000).

• The design published in Rezai and Keshavarzi (2014) uses carry-save
representation in the intermediate results.

• The systolic architecture described in Rezai and Keshavarzi (2016) uses
the binary signed digits representation in order to minimize the number
of non-zero partial product in the modular multiplication.

• Similarly the architecture presented in Rezai and Keshavarzi (2015)
make use of a binary signed digits.

Figure 15: Speed test results

Comparing FPGA design is a challenging task because the technologies
used are heterogeneous. In this comparison we detailed the number of slices,
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the number of DSP blocks, the number of cycles needed to complete the
modular multiplication and the total delay. Some architectures uses DSP
blocks, while some others use only LUT blocks. For the sake of compari-
son, we unified the measure of the area by calculating an estimate value of
LUTeq = nLUT + (nDSP × r), where nLUT is the number of LUT slices,
nDSP is the number of DSP blocks and r is the ratio of number of LUTs
by the number of DSP blocks available on the target device. Thus the is
Area-Delay Product (ADP) is computed as follows: LUTeq × Time(µs).

Architecture FPGA p size DSP LUT Cy-
cle

Time
(µs)

ADP

Semi-parallel

A7
128 60 1563 19 0.077 901.1
256 120 2728 33 0.165 3796.3
512 188 29985 33 0.204 12598.4

V6
128 60 1035 19 0.079 844.9
256 120 2738 33 0.146 3220.4
512 236 18964 33 0.172 9797.1

Sequential

A7
128 51 790 23 0.12 1129
256 91 1718 47 0.242 4137.4
512 176 37138 47 0.258 17255.5

V6
128 51 791 23 0.074 666.1
256 91 1740 47 0.24 3933.8
512 216 24763 47 0.209 12443.6

Mrabet et al.
(2016) A7

128 19 355 33 0.166 591.9
256 33 809 33 0.311 1986
512 87 2650 33 0.507 8797.9

Bigou and
Tisserand

(2015)

K7
192 18 999 58 0.213 864.5
384 41 2111 58 0.324 2942.2
512 56 8757 66 0.374 6835.5

V5
192 15 1447 58 0.295 741
384 42 2256 58 0.467 2446.1
512 57 10877 66 0.536 7999.2

Ors et al.
(2015) V-E

128 - 806 388 1.807 1456.4
256 - 1548 772 7.686 11897.9
512 - 2972 1450 16.17 48057.2
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Rezai and
Keshavarzi

(2014)

V5 512 - 3048 - 0.449 1400

Rezai and
Keshavarzi

(2015)

V5 512 - 6091 - 0.851 5200

Table 8: Comparison of our work with state of the art imple-
mentations for modulus p from 128 bits up to 512 bits.

We present in table 8 the implementation results of our architectures
compared to the state of the art for modulus size between 128 and 512 bits.
Such a modulus size range targets implementations for ECC (Hankerson and
Menezes (2011)). We highlight the area, time and throughput results for two
sizes of the modulus p. The table 9 show the results for 256-bits moduli. This
size targets Elliptic Curve Cryptograhy. In table 10 we show the results for
large cryptographic sizes that target RSA algorithm (Rivest et al. (1978a)).
In this table the target moduli have 1024 bits.

Architecture FPGA LUTeq Time
(µs)

ADP Through-
put

Semi-parallel A7 23008 0.165 3796.32 1544.3
V6 22058 0.146 3220.468 1751.8

Sequential A7 17097 0.242 4137.47 1055.5
V6 16391 0.24 3933.84 1033.5

Mrabet et al. (2016) A7 6386 0.311 1986.04 822.3
Bigou and

Tisserand (2015)
K7 9081 0.324 2942.24 1185.1
V5 5238 0.467 2446.146 820.9

Ors et al. (2003) V-E 1548 7.686 11897.928 33.3

Table 9: Comparison of ADP and throughput result for 256-bit modulus p.

Our semi-parallel implementation achieves a higher throughput than the
sequential. Although the ADP of semi-parallel improve significantly, they do
not approach the minimum of ADP in all technologies. The performance of
semi-parallel architecture is generally better than sequential architecture.
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Figure 16: ADP and throughput results

It appears that our designs faster than the other designs for 256-bit moduli
as well for 1024 moduli. As a consequence, the throughput is the highest for
all moduli size. This is mainly due to the number of DSP blocks that greatly
increase the speed of the architecture, at the price of the area. Compared
to the design described in Ors et al. (2003), our architectures are up to 23
times faster and a ADP up to 1.6 times smaller.

Compared to the architecture of Mrabet et al. (2016) which is a systolic
hardware architectures of Montgomery modular multiplication, our design is
a bit faster with a better throughput and a bit higher.

The design of Bigou and Tisserand (2015) is an original design that make
use of Residue Number Systems as number system. Compared to this ar-
chitecture, our designs remain faster but larger. The throughput of our
architecture is is higher.

Considering the comparison with the modular multiplication architec-
tures described in (Rezai and Keshavarzi (2016)), )Rezai and Keshavarzi
(2014)) and (Rezai and Keshavarzi (2015)), our sequential design is faster at
the cost of a larger number of slices. We can see that the throughput achieved
by these implementations is significantly smaller than what we are able to
achieve with our proposed semi-parallel and sequential implementations.

Regardless to the size of the modulus p both our sequential and semi-
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parallel designs have an interesting property: the number of cycle is inde-
pendent from the size of the modulus.

Architecture FPGA Area
(LUTeq)

Time
(µs) ADP

Through-
put

(Mb/s)
Semi-parallel V7 124151 0.43 53384 2381.39
Sequential V7 55667 0.598 33288 1712.37

Rezai and Keshavarzi
(2014)

V5 6105 0.883 5390 1159.6

Rezai and Keshavarzi
(2016)

V6 1125 2.56 2880 356

Rezai and Keshavarzi
(2015)

V5 6091 0.851 5180 1203.3

Table 10: Comparison of ADP and throughput result for 1024-bit modulus p..

7. Conclusion and future works

In this paper, we present a fast hardware architecture that realizes a mod-
ular multiplication over large prime characteristic finite fields Fp, which uses
AMNS representations in order to speed up modular multiplication. We pro-
pose two hardware architectures: a semi-parallel architecture and a sequential
one. Our semi-parallel architecture provides the fastest implementations. As
we propose the first hardware implementation of the modular multiplication
in AMNS, we compare our results with existing modular multiplication like
systolic CIOS, systolic architectures using carry-save or signed digit repre-
sentations for the intermediate results and arcitecture designed for the RNS
modular multiplication. The comparison of our results with the state of the
art highlight that we propose the fastest implementation of modular multi-
plication for large field application with the highest throughput.

For future work, we prospect to optimize the semi-parallel structure to
reduce the area size. We would like to implement a full ECC scalar multipli-
cation using the modular arithmetic in AMNS.
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