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Abstract The size of maximum antichains in the product of n linear orders
is known when the n linear orders have the same length. We present an exact
expression for the size of maximum antichains when the linear orders have
(possibly) different lengths. From this, we derive an exact expression for the
size of maximum antichains in the product of n linear orders with the same
length. This expression is equivalent to but different from the existing expres-
sion. It allows us to present an asymptotic result for the size of maximum
antichains of n linear orders with the same length m going to infinity.
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1 Introduction

Antichains in the poset {0, 1}n equipped with the standard partial ordering are
well-studied and have many different interpretations [4]. An expression for the
maximal size of such antichains in {0, 1}n is given by a classical theorem due to
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Sperner [19]. If we consider the more general poset {1, . . . ,m}n also equipped
with the standard partial ordering, an expression for the size of maximum an-
tichains is given by Sander [17]. Sander also provides asymptotic results when
m is fixed and n goes to infinity. The interest of Sander in this problem arose
from a recreational mathematics problem posed in [14]. Actually, antichains
and, hence, maximal antichains, in the poset {1, . . . ,m}n are of interest in
many domains. For instance in game theory, [10] define a multichoice cooper-
ative game as a real-valued mapping on {1, . . . ,m}n, where n is the number
of players and {1, . . . ,m} denotes the set of ordered actions that each player
can take. A profile in such a game is a vector x = (x1, . . . , xn) ∈ {1, . . . ,m}n
and represents the actions taken by each agent. A winning profile is such that
the value of the game at that profile is 1. A winning profile x is minimal if
there is no other winning profile y such that y ≤ x. If a game is monotone,
then the set of all minimal winning profiles is an antichain. Besides, [7] shows
that antichains in {1, . . . ,m}n play an important role in the analysis of these
multichoice cooperative games.

In [9], a generalization of multichoice cooperative games is presented by
considering that the set of actions available to agent i is {1, . . . ,mi}. A multi-
choice cooperative game thus becomes a real-valued mapping on

∏n
i=1{1, . . . ,mi}.

Applications of multichoice cooperative games in various domains (cost alloca-
tion, voting, . . . ) can be found in [2,6]. A very simple example1 of multi-choice
cooperative game is as follows. Consider a voting situation in a parliament in
which the players are the political parties, mi represents the number of seats of
party i, a winning profile is such that the proposal obtains enough votes to be
approved, and there is no voting discipline in political parties. In this setting,
minimal winning profiles are antichains and they are interesting because they
give information about how to approve a proposal.

Our personal interest in antichains in the poset
∏n

i=1{1, . . . ,mi} stems
from the analysis of a multicriteria sorting model (called Electre tri-nb)
presented in [5]. This model, when restricted to two categories, makes use of p
limiting profiles (vectors of length n) supposed to lie at the border between the
upper and the lower category. An alternative x (also a vector of length n) is
assigned to the upper category if x is weakly preferred to at least one limiting
profile and no limiting profile is strictly preferred to x. In this context, the
size of maximal antichains corresponds to the maximum number of limiting
profiles needed to represent a twofold ordered partition in Electre tri-nb,
whenever such a representation is possible. See [1] for a detailed explanation
of the relation between antichains and Electre tri-nb.

Another paper about antichains in {1, . . . ,m}n is [20] (and the references
therein): it presents an upper bound for the number of antichains (a general-
ization of Dedekind numbers).

In the present paper, we extend Sander’s results in two directions. First,
we present an exact expression for the size of maximum antichains in the
heterogeneous product

∏n
i=1{1, . . . ,mi}. Then, we provide asymptotic results

1 This example was suggested to us by an anonymous referee.
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for the size of maximum antichains in {1, . . . ,m}n when n is fixed and m goes
to infinity.

The rest of the paper is organized as follows. In Section 2, we introduce
some notation and the main definitions. Section 3 is devoted to the general
case of heterogeneous products and presents some exact results about the size
of maximum antichains. Our main results are presented in Section 4, in which
we consider the special case of homogeneous products and we present a new
exact result and also an asymptotic one when n is fixed.

2 Notation and definitions

Let P be a set and ≤ be a binary relation defined on P , satisfying (i) reflexivity
(∀x ∈ P, x ≤ x), (ii) antisymmetry (∀x, y ∈ P, x ≤ y and y ≤ x ⇐⇒ x = y)
and (iii) transitivity (∀x, y, z ∈ P, x ≤ y and y ≤ z ⇒ x ≤ z). The pair (P,≤)
is called a partially ordered set (poset)2. When there is no ambiguity, the poset
(P,≤) is simply denoted by P . For all x, y belonging to a poset P , we say that
x and y are comparable if x ≤ y or y ≤ x. A chain of P is a totally ordered
subset of P . A linear order on P is a poset such that P is a chain. An antichain
of P is a subset of pairwise incomparable elements. A maximum antichain is
an antichain of maximal cardinality.

Let (P,≤P ) and (Q,≤Q) be two posets. The product poset (P ×Q,≤) is
defined to be the set of all pairs (a, b), a ∈ P, b ∈ Q, with the order given by
(a, b) ≤ (a′, b′) if and only if (a ≤P a′) and (b ≤Q b′). Let n be a positive
integer and m = (m1, . . . ,mn) be an element of Nn, where N denotes the
set of positive integers. For any a ∈ N, let [a] denote the set {1, . . . , a}. For
any i ∈ [n], the poset ([mi],≤), where ≤ is the usual ordering of the natural
numbers, is a linear order (also called a chain). The product of these n chains is
the poset (

∏n
i=1[mi],�) where � is defined as follows: for all x, y ∈

∏n
i=1[mi],

x � y iff xi ≤ yi for all i ∈ [n] [8]. When m is such that mi = m for all i ∈ [n],
then the Cartesian product

∏n
i=1[mi] is homogeneous and can be written as

[m]n.
The size of the maximum antichains in

∏n
i=1[mi] and [m]n is respectively

denoted by s(m) and S(m,n). [19] has proved that the size of a maximum
antichain in [2]n is

S(2, n) =

(
n

bn/2c

)
.

When n is large, a convenient approximation for S(2, n) is obtained using
Stirling’s formula: S(2, n) ∼ 2n

√
2/πn. Later, [17] has proved that the size of

a maximum antichain in [m]n is

S(m,n) =

bg/mc∑
j=0

(−1)j
(
n

j

)(
n− 1 + g −mj

n− 1

)
, (1)

2 Most definitions about posets are taken from [16].
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with g = bn(m− 1)/2c. Sander has also provided a bound3 and some asymp-
totic results for S(m,n) when m is fixed. Asymptotic results for S(m,n) when
n is fixed have not been discussed in the literature. Notice that S(m,n) corre-
sponds to Sequence A077042 in the On-line Encyclopedia of Integer Sequences
[15].

3 Heterogeneous product

Since multichoice cooperative games have been generalized to heterogeneous
sets of actions [9] and the analysis of Electre tri-nb also involves antichains
in a heterogeneous product set [1], we need results about s(m). Let us define
mI =

∑
i∈I mi and

h =

⌊
n+m[n]

2

⌋
.

An expression for s(m) was posted on February 11, 2013, by Brian M. Scott
on the website StatExchange [18].4

Theorem 1 For all m = (m1, . . . ,mn) ∈ Nn,

s(m) =
∑

I⊆[n]:mI≤h−n

(
h−mI − 1

n− 1

)
(−1)|I|. (2)

Since the website only presents an informal and elliptic proof, we deem it
useful to present a formal proof below. Let us first recall some definitions and
results about posets. Let (P,≤) be a poset. For any x, y ∈ P , we say that y
covers x in P iff x < y and there is no z such that x < z < y. A ranking (or
grading) of a poset P is a partition of P into (possibly empty) sets Pi (i ∈ Z)
such that, for each i, every element in Pi is covered only by elements in Pi+1.
The set Pi is called the ith rank of P . If a poset admits a ranking, then we say
that it is ranked (or graded). P is said to be Sperner if every rank of largest
size is a maximum antichain.

Proof of Theorem 1. In this proof, for the sake of brevity, we use X
to denote the poset (

∏n
i=1[mi],�) or the set

∏n
i=1[mi]. For each i ∈ [n], the

poset ([mi],≤) is a chain. Hence, X is a product of chains, it is Sperner and
the median rank (or ranks if n+m[n] is odd) is a maximum antichain of X [3,
8]. It is simple to see that this rank is the set

D = {x ∈ X :
∑
i∈[n]

xi = h}.

3 This bound is later rediscovered by [12] in a different context. In addition, [12] note that
(1) can be found in [13] as the solution of a probability problem.

4 When we submitted the first version of this paper, we were not aware of Scott’s post
and our proof used generating functions. We thank an anonymous reviewer for pointing to
us this post on StatExchange.
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For any I ⊆ [n], let us define

DI = {x ∈ Nn :
∑
i∈[n]

xi = h and xi > mi ∀i ∈ I}.

We have DI =
⋂

i∈I D{i} and using the multiset coefficient formula (also
known as ‘stars and bars’ technique), we find

|DI | =
(
h− 1−mI

n− 1

)
.

It is clear that
D = D∅ \

⋃
i∈[n]

D{i}.

Using the inclusion-exclusion principle, we find

|D| = |D∅| −

∣∣∣∣∣∣
⋃
i∈[n]

D{i}

∣∣∣∣∣∣ = |D∅| −
∑
∅6=I⊆[n]

(−1)|I|+1

∣∣∣∣∣⋂
i∈I

D{i}

∣∣∣∣∣
= |D∅|+

∑
∅6=I⊆[n]

(−1)|I||DI |

=
∑
I⊆[n]

(−1)|I||DI |

=
∑
I⊆[n]

(−1)|I|
(
h−mI − 1

n− 1

)
.

Since
(
h−mI−1

n−1
)

= 0 whenever h−mI < n, we obtain (2). 2

Table 1 illustrates how s(m) varies as a function of m. In particular, we

m1, . . . ,mn size
5, 5 5

5, 5, 5 19
5, 5, 10 25
5, 5, 100 25

5, 5, 10, 10 210
5, 5, 10, 20 250
5, 5, 10, 100 250
10, 10, 10, 10 670
10, 10, 10, 20 1 000
10, 10, 10, 100 1 000

100, 100, 100, 100 666 700
10, . . . , 10 (10 times) 432 457 640

100, . . . , 100 (10 times) 430 438 025 018 583 040

Table 1 The size of the maximum antichains with m1, . . . ,mn levels on n attributes.

see that increasing one of the mi’s way above the others has a limited impact.
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When all components of m are identical, it is easy to show that (2) coincides
with Sander’s expression (1). In that case, Sander’s expression is computation-
ally more efficient than ours.

This section about heterogeneous products does not contain any asymp-
totic result because it does not seem relevant to let one of the parameters, say
m5, go to infinity while keeping the other parameters constant.

4 Homogeneous product

In addition to an exact expression for S(m,n), [17] provides asymptotic results
when n → ∞. Our goal in this section is to analyze the asymptotic behavior
of S(m,n) when m → ∞. This corresponds in multichoice simple games to
the case in which the number of ordered actions the players can take is very
large. In the case of multicriteria sorting, this corresponds to situations in
which the alternatives to be sorted are evaluated on criteria scales involving
a large number of levels. To this end, we first present a new exact expression
for S(m,n) from which we then derive an asymptotic result.

Let h = bn(m+ 1)/2c. Our first result about homogeneous products is the
following.

Theorem 2 For all n ≥ 2, if n(m+ 1) is even, then S(m,n) is equal to

mn−1 − 2

h−m−1∑
r=n−1

b r−n+1
m−1 c∑
i=0

(−1)i
(
n− 1

i

)(
r − im− 1

r − im− n+ 1

)
. (3)

Otherwise, S(m,n) is equal to

mn−1 − 2

h−m−1∑
r=n−1

b r−n+1
m−1 c∑
i=0

(−1)i
(
n− 1

i

)(
r − im− 1

r − im− n+ 1

)

−
bh−m−n+1

m−1 c∑
i=0

(−1)i
(
n− 1

i

)(
h− im− 1

h− im− n+ 1

)
. (4)

Proof. We first prove (3). We have seen in the proof of Theorem 1 that an
antichain of maximum size in

∏
i∈[n][mi] is the set A = {x ∈ X :

∑
i∈[n] xi =

h} where h = bn+
∑

i∈[n] mi

2 c. Hence, if n(m + 1) is even, then an antichain
of maximum size in [m]n is the set A = {x ∈ [m]n :

∑
i∈[n] xi = h}, with

h = n(m + 1)/2. Since 1 ≤ xn ≤ m, if we project the set A on [m]n−1

by dropping the last coordinate xn, we obtain the set A′ = {y ∈ [m]n−1 :
h−m ≤

∑
i∈[n−1] yi ≤ h−1}. Since no x, y ∈ A are comparable, we know that

no distinct x, y ∈ A project on the same element in [m]n−1. Hence |A′| = |A|
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and S(m,n) is equal to

|A′| = mn−1 −
∣∣∣∣{y ∈ [m]n−1 :

∑
i∈[n−1]

yi ≤ h−m− 1}
∣∣∣∣

−
∣∣∣∣{y ∈ [m]n−1 :

∑
i∈[n−1]

yi ≥ h}
∣∣∣∣

= mn−1 − 2

∣∣∣∣{y ∈ [m]n−1 :
∑

i∈[n−1]

yi ≤ h−m− 1}
∣∣∣∣,

where the last equality holds because

h−m− 1− min
y∈[m]n−1

∑
i∈[n−1]

yi = max
y∈[m]n−1

∑
i∈[n−1]

yi − h.

Let us rewrite {y ∈ [m]n−1 :
∑

i∈[n−1] yi ≤ h − m − 1} as the union of
several sets:

h−m−1⋃
r=n−1

Ar where Ar = {y ∈ [m]n−1 :
∑

i∈[n−1]

yi = r}.

Clearly, for any r 6= s, Ar ∩As = ∅ and

S(m,n) = mn−1 − 2

h−m−1∑
r=n−1

|Ar|. (5)

Let

Br = {y ∈ Nn−1 :
∑

i∈[n−1]

yi = r},

Cl
r = {y ∈ Nn−1 :

∑
i∈[n−1]

yi = r and yl > m} for l ∈ [n− 1]

and Cl∗
r = Br \ Cl

r. Then Ar =
⋂

l∈[n−1] C
l∗
r and, thanks to the inclusion-

exclusion principle,

|Ar| = |Br| −

∣∣∣∣∣∣
⋃

l∈[n−1]

Cl
r

∣∣∣∣∣∣
= |Br| −

∑
∅6=J⊆[n−1]

(−1)|J|−1

∣∣∣∣∣⋂
l∈J

Cl
r

∣∣∣∣∣
= |Br| −

∑
[i]:1≤i<n

(−1)i−1
(
n− 1

i

)∣∣∣∣∣∣
⋂
l∈[i]

Cl
r

∣∣∣∣∣∣,
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where the last equality holds because all dimensions play the same role. The
set Br is a regular (n− 2)-dimensional simplex. Its cardinality is equal to the
(r − n+ 1)-th simplicial polytope number in n− 2 dimensions [11], that is

|Br| =
(

r − 1

r − n+ 1

)
. (6)

The set
⋂

l∈[i] C
l
r is the set of all elements of Nn−1 such that at least i com-

ponents are strictly larger than m. If r < i(m − 1) + n − 1, then
⋂

l∈[i] C
l
r is

empty because it is not possible to have at least i components strictly larger
than m. Hence

|Ar| = |Br| −
∑

[i]:1≤i≤j

(−1)i−1
(
n− 1

i

)∣∣∣∣∣∣
⋂
l∈[i]

Cl
r

∣∣∣∣∣∣, (7)

where j is the largest integer such that r ≥ j(m−1)+n−1. If r ≥ i(m−1)+n−1,
then ∣∣∣∣∣∣

⋂
l∈[i]

Cl
r

∣∣∣∣∣∣ = |Br−im| =
(

r − im− 1

r − im− n+ 1

)
. (8)

Combining (5), (6), (7) and (8) concludes the proof of (3).

The proof of (4) is similar. The main difference is that

|A′| = mn−1 − 2

∣∣∣∣{y ∈ [m]n−1 :
∑

i∈[n−1]

yi ≤ h−m− 1}
∣∣∣∣

−
∣∣∣∣{y ∈ [m]n−1 :

∑
i∈[n−1]

yi = h−m}
∣∣∣∣,

because

h−m− 1− min
y∈[m]n−1

∑
i∈[n−1]

yi = max
y∈[m]n−1

∑
i∈[n−1]

yi − h− 1.

2

Expressions (3) and (4) are less elegant than Sander’s expression (1). They
are also computationally less efficient. Indeed the first summation in (3) has
approximately nm/2 terms while the only summation in (1) has approximately
n/2 terms. Expressions (3) and (4) are nevertheless interesting because they
allow us to derive an asymptotic result for S(m,n) when n is fixed and m→∞
(see Theorem 3). This was not possible with (1).

When n < 5, expressions (3) and (4) reduce to particularly simple expres-
sions.
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Corollary 1

S(m, 2) = m;

S(m, 3) =

{
3m2

4 if m is even,
3m2+1

4 if m is odd;

S(m, 4) =
2m3 +m

3
.

For n = 2, 3 or 4, the asympotic behaviour of S(m,n) is easy to derive from
this corollary, while the general case is covered by our next result.

Theorem 3 For all n ≥ 2, when m → ∞, S(m,n) is equal to mn−1γ(n) +
O(mn−2) where γ(n) is equal to

1− 2

n−4
2∑

j=0

j∑
i=0

(−1)i
(1 + j − i)n−1 − (j − i)n−1

i! (n− 1− i)!
, (9)

when n is even, or to

1− 2

n−5
2∑

j=0

j∑
i=0

(−1)i
(1 + j − i)n−1 − (j − i)n−1

i! (n− 1− i)!

− 2

n−3
2∑

i=0

(−1)i
(n
2 − 1− i)n−1 − (n−3

2 − i)
n−1

i! (n− 1− i)!
, (10)

when n is odd.

Proof. We first prove (9). Expression (3) for S(m,n) can also be written as

mn−1 − 2

n−4
2∑

j=0

m+n−3+j(m−1)∑
r=n−1+j(m−1)

j∑
i=0

(−1)i
(
n− 1

i

)(
r − im− 1

r − im− n+ 1

)

+

h−m−1∑
r=n−1+n−2

2 (m−1)

n−2
2∑

i=0

(−1)i
(
n− 1

i

)(
r − im− 1

r − im− n+ 1

) . (11)

For n fixed, γ(n) is the limit for n→∞ of (11) divided by mn−1, that is

1− lim
m→∞

2

(n− 2)!mn−1

n−4
2∑

j=0

j∑
i=0

(−1)i
(
n− 1

i

) m+n−3+j(m−1)∑
r=n−1+j(m−1)

(r − im− 1)!

(r − im− n+ 1)!

+

n−2
2∑

i=0

(−1)i
(
n− 1

i

) h−m−1∑
r=n−1+n−2

2 (m−1)

(r − im− 1)!

(r − im− n+ 1)!

 .
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Since lima→∞
a!/(a−b)!

ab = 1, this is also equal to

1− lim
m→∞

2

(n− 2)!mn−1

n−4
2∑

j=0

j∑
i=0

(−1)i
(
n− 1

i

) m+n−3+j(m−1)∑
r=n−1+j(m−1)

(r − im)n−2

+

n−2
2∑

i=0

(−1)i
(
n− 1

i

) h−m−1∑
r=n−1+n−2

2 (m−1)

(r − im)n−2


or, since

∑b
d=a d

c = (c+ 1)−1[dc+1]ba +O(dc) as d→∞,

1− lim
m→∞

2

(n− 1)!mn−1

n−4
2∑

j=0

j∑
i=0

(−1)i
(
n− 1

i

)[
(r − im)n−1

]m+n−3+j(m−1)

r=n−1+j(m−1)

+

n−4
2∑

i=0

(−1)i
(
n− 1

i

)[
(r − im)n−1

]h−m−1
r=n−1+ (n−2)

2 (m−1)

 .

We then substitute r with the summation bounds, we simplify and we take
the limit, keeping only the coefficients of the highest power of m (i.e. mn−1)
and we obtain (9). The second highest power of m is mn−2 and this completes
the proof of (9).

The reasoning for proving (10) is identical but starts from (4) instead of
(3). 2

Numerical estimations of γ(n) are given in Table 2 and Figure 1 illustrates
how quickly S(m,n)/mn−1 converges to γ(n) for n = 10 and 100. Expressions
(9) and (10) are easy to compute for n between 2 and 100. Our implementation
of (9) in Python takes approximately 0.029 seconds to compute γ(100). For
100 < n < 1000, computing γ(n) with our implementation of γ(n) takes longer
but is still achievable (see Table 2). Computation of γ(n) for n larger than 1000
becomes problematic.

n γ(n) time n γ(n) time
2 1 0.000 9 0.45292096819196426 0.000
3 3/4 0.000 10 0.43041776895943573 0.000
4 2/3 0.000 50 0.19485381202305646 0.004
5 115/192 0.000 100 0.13799020407550003 0.029
6 11/20 0.000 500 0.06178532829673273 8.984
7 0.5110243055555556 0.000 1000 0.04369538142621430 174.987
8 0.47936507936507944 0.000 1500 0.03567891389083611 1123.630

Table 2 Some values of γ(n). Fractions are exact. Computing time in seconds.

Notice that, when n < 5, Corollary 1 provides an asymptotic expression
for S(m,n) that is tighter than that resulting from Theorem 3.
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