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Abstract Automated decision systems are increasingly used to take conse-
quential decisions in problems such as job hiring and loan granting with the
hope of replacing subjective human decisions with objective machine learning
(ML) algorithms. ML-based decision systems, however, are found to be prone
to bias which result in yet unfair decisions. Several notions of fairness have been
defined in the literature to capture the different subtleties of this ethical and
social concept (e.g. statistical parity, equal opportunity, etc.). Fairness require-
ments to be satisfied while learning models created several types of tensions
among the different notions of fairness, but also with other desirable properties
such as privacy and classification accuracy. This paper surveys the commonly
used fairness notions and discusses the tensions that exist among them and
with privacy and accuracy. Different methods to address the fairness-accuracy
trade-off (classified into four approaches, namely, pre-processing, in-processing,
post-processing, and hybrid) are reviewed. The survey is consolidated with ex-
perimental analysis carried out on fairness benchmark datasets to illustrate the
relationship between fairness measures and accuracy on real-world scenarios.
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1 Introduction

Fairness emerged as an important requirement to guarantee that machine
learning (ML) based decision systems can be safely used in practice. Using
such systems while fairness is not satisfied can lead to unfair decisions typi-
cally discriminating against disadvantaged populations such as racial minori-
ties, women, poverty stricken districts, etc.

With the recent interest for fairness, a multitude of fairness notions have
been defined to capture different aspects of fairness. These include statisti-
cal group-based notions (e.g., statistical parity [22], equalized odds [29], etc.),
individual-based notions (e.g., fairness through awareness [22]), and causal-
based notions (e.g., total effect [50], counterfactual fairness [40]). As fairness
is a social construct [32] and an ethical concept [58], defining it is still prone
to subjectivity. Hence, the aim of replacing the subjective human decisions
by objective ML-based decision systems resulted in notions and algorithms
still exhibiting unfairness. Hence although the different notions of algorithmic
fairness appear internally consistent, several of them cannot hold simultane-
ously and hence are mutually incompatible [9,48,29,11,38]. As a consequence,
practitioners assessing and/or implementing fairness need to choose among
them.

In addition to the tensions “intra-notions” between notions , there are ten-
sions between fairness notions and other desirable properties of ML algorithms.
One such properties is privacy. This property emerged as a concern that spe-
cific information about an individual might be revealed when a model is learned
based on a dataset containing that individual. A learning algorithm satisfying
privacy will learn aggregate information about the population, but will not
incorporate specific information about individuals. Recent results showed that
fairness and privacy (differential privacy [21]) are at odds with each other [19,
3,54]. That is, a learning algorithm that satisfies differential privacy is not
guaranteed to generate a classifier that satisfies fairness, unless it has trivial
accuracy.

Several methods have been introduced in the literature to reduce bias in
the classification output. These methods fall into three categories, namely,
pre-processing, in-processing, post-processing. This survey describes a rep-
resentative set of methods from each category (Reweighting [14] and Fair-
Batch [56] for pre-processing, adversarial learning [63], exponentiated gradi-
ent [1], and AdaFair [31] for in-processing, and threshold optimizer [29] and
SBD [24] for post-processing). In addition, we consider a fourth category for
methods that combine different fairness interventions (e.g. in-processing and
post-processing). We describe a representative set of methods in this category,
namely, LFR [62], FAE [30], and FixOut [5].

Reducing bias leads, typically, to a drop in classification accuracy. There-
fore, all aforementioned methods can be considered as approaches to tackle
the tension between fairness and classification accuracy.

Several surveys of the relatively recent field of ML fairness can be found
in the literature [11,46,59,48,65,27]. However, this survey deviates from ex-
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isting surveys by focusing on the tensions that exist among fairness notions
and between fairness and other desirable ML properties, namely, privacy and
classification accuracy. In addition, unlike other surveys, this paper features
an experimental analysis based on fairness benchmark datasets. The aim is
to show how different unfairness mitigation methods generate classifiers with
different fairness but also different accuracy levels.

Section 2 briefly presents commonly used fairness notions spanning all cat-
egories (group, individual, and causal) along with their formal definitions.
Related work is provided in Section 3. Section 4 describes the tensions and in-
compatibilities that exist among the various fairness notions. Section 5 shows
that fairness and privacy properties are at odds with each other and present
a complete formal proof of this incompatibility. Section 6 is a survey on un-
fairness mitigation methods which trackle the tension between fairness and
classification accuracy. Section 7 shows how fairness notions can be applied on
benchmark and real datasets, and illustrates some of the tensions described in
the previous sections. Section 8 concludes and mentions potential directions
for future work.

2 Related Work

With the increasing need for ethical concerns in decision-making systems that
have serious implications on individuals and society, several survey papers
have been proposed in the literature in the few recent years. In this section,
we revisit these survey papers and highlight how our survey deviates from
them.

Makhlouf et al. [45] compiled a survey about existing fairness notions and
their main contribution consists of addressing the problem of the applicability
of fairness notions to a given real-world scenario. To tackle this problem, the
authors identified a set of fairness-related characteristics of the real-world sce-
nario at hand. Then, they analyzed and studied the behavior of each fairness
notion. The result of fitting these two elements together consists of a deci-
sion diagram that can be used as a roadmap to guide practitioners and policy
makers to select the most suitable fairness notion in a specific setup. However,
their survey does not consider conflicts between fairness and privacy. More-
over, our survey provides empirical results that illustrate the tensions between
some fairness notions and how the problem of the trade-off between accuracy
and fairness can be tackled through explanability and ensemble techniques.

Mehrabi et al. [46] proposed a broader scope for their overview: in addi-
tion to concisely listing 10 definitions of fairness metrics, they discussed differ-
ent sources of bias and different types of discrimination, they listed methods
to mitigate discrimination categorized into pre-processing, in-processing, and
post-processing, and they discussed potential directions for contributions in
the field. However, they did not discuss any tensions that exist between fair-
ness notions and tensions between fairness, accuracy and privacy which we
discuss in depth in this survey.
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Arrieta et al. [7] provided an exhaustive overview on explainability in ML.
They proposed a novel definition of explainable ML that takes into account
the audience for which the explanations are addressed. They also presented
a detailed taxonomy of recent contributions related to the explainability of
different ML models including explaining Deep Learning methods. Then, they
discussed in depth the concept of responsible AI, which imposes the system-
atic adoption of several AI principles, namely: fairness, accountability and
privacy. The survey does not discuss the tensions that might exist between
those principles.

The survey of Mitchell et al. [48] includes an exhaustive list of group and
individual fairness notions and outlines most of the impossibility results among
them. They also discussed in detail a “catalogue” of choices and assumptions
in the context of fairness to address the question of how social goals are formu-
lated into a prediction (ML) problem. Again, their survey does not tackle the
problem of tensions between fairness and other ethical considerations (privacy
and explainability) in decision making systems as is studied in this paper.

Tsamados et al. [58] compiled an overview on the ethical problems in AI
algorithms and the solutions that have been proposed in the literature. In
particular, they provided a conceptual map of six ethical concerns raised by
AI algorithms namely: inconclusive, inscrutable, misguided evidence, unfair
outcomes, transformative effects, and traceability. The first three concerns
refer to epistemic factors, the fourth and the fifth are normative factors and
the fifth is relevant both for epistemic and normative factors. The epistemic
factors are related to the relevance of the accuracy of the data while the
informative factors refer to the ethical impact of AI systems. Although the
survey explores a broad scope related to ethical concerns in AI, it remains
at a conceptual level and does not address how these ethical concerns are
implemented in practice and how they enter in conflict with each other in
detail, which we explore in depth in this article.

Other works discussing the trade-off between fairess notions include the
work by Kleinberg et al.[37] which discussed the suitability of specific fairness
notions in a specific setup. In particular, they discussed the applicability of
calibration and balance notions. The survey of Berk et al. [11] studied the
trade-offs between different group fairness notions and between fairness and
accuracy in a specific context namely: criminal justice risk assessments. They
used simple examples based on the confusion matrix to highlight relationships
between the fairness notions.

In another research direction, Friedler et al. [25] discussed tensions be-
tween group fairness and individual fairness. In particular, they defined two
worldviews namely: WYSIWYG and WAE. The WYSIWYG (What you see
is what you get) worldview assumes that the unobserved (construct) space
and observed space are essentially the same while the WAE (we’re all equal)
worldview implies that there are no inherent differences between groups of
individuals based on potential protected attributes.

A more recent survey by Fioretto et al. [23] provided the constraints un-
der which differential privacy and fairness may be achieved simultaneously or
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having conflicting goals. In particular, they showed that individual fairness
and differential privacy can be applied at the same time while group fairness
and differential privacy are incompatible. They also examined how and why
differential privacy may magnify bias and unfairness in two different settings
namely: decision problems and learning tasks. Then, they reviewed existing
mitigation measures for the fairness issues arising in these two settings.

3 Catalogue of fairness notions

Let V , A, and X1 be three random variables representing, respectively, the to-
tal set of features, the sensitive features, and the remaining features describing
an individual such that V = (X,A) and P (V = vi) represents the probability
of drawing an individual with a vector of values vi from the population. For
simplicity, we focus on the case where A is a binary random variable where
A = 0 designates the non-protected group, while A = 1 designates the pro-
tected group. Let Y represent the actual outcome and Ŷ represent the outcome
returned by the prediction algorithm. Without loss of generality, assume that
Y and Ŷ are binary random variables where Y = 1 designates a positive in-
stance, while Y = 0 a negative one. Typically, the predicted outcome Ŷ is
derived from a score represented by a random variable S where P[S = s] is the
probability that the score value is equal to s.

To illustrate the various ML fairness notions, we use a simple job hiring
scenario (Table 1). Each sample in the dataset has the following attributes:
education level (numerical), job experience (numerical), age (numerical), mar-
ital status (categorical), gender (binary) and a label (binary). The sensitive
attribute is the applicant gender, that is, we are focusing on whether male
and female applicants are treated equally. Table 1(b) presents the predicted
decision (first column) and the predicted score value (second column) for each
sample. The threshold value is set to 0.5.

Statistical parity[22] (a.k.a., demographic parity [40], independence [8],
equal acceptance rate [64], benchmarking [57], group fairness [22]) is one of the
most commonly accepted notions of fairness. It requires the prediction to be
statistically independent of the sensitive feature (Ŷ ⊥ A). In other words, the
predicted acceptance rates for both protected and unprotected groups should
be equal. Statistical parity implies that

TP + FP

TP + FP + FN + TN
2

is equal for both groups. A classifier Ŷ satisfies statistical parity if:

P[Ŷ | A = 0] = P[Ŷ | A = 1]. (1)

1 Table 7 in the appendix lists all terms used in this survey.
2 TP, FP, FN, and TN stand for: true positives, false positives, false negatives, and true

negatives, respectively.
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Table 1: A simple job hiring example. Y represents the data label indicating
whether the applicant is hired (1) or rejected (0). Ŷ is the prediction which is
based on the score S. A threshold of 0.5 is used.

(a) Dataset

Gender
Education

Level
Job

Experience
Age

Marital
Status

Y

Female 1 8 2 39 single 0
Female 2 8 2 26 married 1
Female 3 12 8 32 married 1
Female 4 11 3 35 single 0
Female 5 9 5 29 married 1
Male 1 11 3 34 single 1
Male 2 8 0 48 married 0
Male 3 7 3 43 single 1
Male 4 8 2 26 married 1
Male 5 8 2 41 single 0
Male 6 12 8 30 single 1
Male 7 10 2 28 married 1

(b) Prediction

Ŷ S

1 0.5
0 0.1
1 0.5
0 0.2
0 0.3
1 0.8
0 0.1
0 0.1
1 0.5
1 0.5
1 0.8
0 0.3

In the example of Table 1, the calculated predicted acceptance rate of
hiring male and female applicants is 0.57 (4 out of 7) and 0.4 (2 out of 5),
respectively. Thus, statistical parity is not satisfied.

Conditional statistical parity [18] (a.k.a., also conditional discrimination-
aware classification in [34]) is a variant of statistical parity obtained by con-
trolling on a set of resolving features (also called explanatory features in [34]).
The resolving features (we refer to them as R) among X are correlated with
the sensitive feature A and give some factual information about the label at
the same time leading to a legitimate discrimination. Conditional statistical
parity holds if:

P[Ŷ = 1 | R = r,A = 0] = P[Ŷ = 1 | R = r,A = 1] ∀r ∈ range(R). (2)

In the example of Table 1, assuming job experience (denoted R) is a re-
solving variable, there is a discrimination against female when R = 2 or R = 3
but no discrimination when R = 8 according to conditional statistical parity
as fairness notion.

Equalized odds [29] (a.k.a., separation in [8], conditional procedure ac-
curacy equality in [11], disparate mistreatment in [61], error rate balance
in [15]) considers both the predicted and the actual outcomes. The predic-
tion is conditionally independent from the protected feature, given the actual
outcome (Ŷ ⊥ A | Y ). In other words, equalized odds requires that both sub-
populations to have the same true positive rate TPR = TP

TP+FN and false

positive rate FPR = FP
FP+TN :

P[Ŷ = 1 | Y = y, A = 0] = P[Ŷ = 1 | Y = y, A = 1] ∀y ∈ {0, 1}. (3)
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Using the same example (Table 1), the TPR for male and female groups
is 0.6 and 0.33, respectively while the FPR is exactly the same (0.5) for
both groups. Consequently, the equalized odds does not hold as there is a
discrimination against female candidates.

Because equalized odds requirement is rarely satisfied in practice, two vari-
ants can be obtained by relaxing its equation. The first one is called equal
opportunity [29] (a.k.a., false negative error rate balance in [15]) and is ob-
tained by requiring only TPR equality among groups:

P[Ŷ = 1 | Y = 1, A = 0] = P[Ŷ = 1 | Y = 1, A = 1]. (4)

As TPR does not take into consideration FP , equal opportunity is com-
pletely insensitive to the number of false positives. Equalized odds does not
hold in the example of Table 1 as TPR is higher for males than females.

The second relaxed variant of equalized odds is called predictive equal-
ity [18] (a.k.a., false positive error rate balance in [15]) which requires only
the FPR to be equal in both groups:

P[Ŷ = 1 | Y = 0, A = 0] = P[Ŷ = 1 | Y = 0, A = 1]. (5)

Since FPR is independent from FN , predictive equality is completely insen-
sitive to false negatives. The example in Table 1 satisfies predictive parity.

Conditional use accuracy equality [11] (called sufficiency in [8]) is
achieved when all population groups have equal positive predictive value PPV =
TP

TP+FP and negative predictive value NPV = TN
FN+TN . In other words, the

probability of subjects with positive predictive value to truly belong to the
positive class and the probability of subjects with negative predictive value to
truly belong to the negative class should be the same. By contrast to equal-
ized odds, conditional use accuracy equality conditions on the algorithm’s
predicted outcome not the actual outcome. In other words, the emphasis is on
the precision of prediction rather than its recall:

P[Y = y | Ŷ = y,A = 0] = P[Y = y | Ŷ = y,A = 1] ∀y ∈ {0, 1}. (6)

The calculated PPVs for male and female applicants in the hiring example (Ta-
ble 1) are 0.75 and 0.5, respectively. NPVs for male and female applicants are
both equal to 0.33. Overall the dataset in Table 1 does not satisfy conditional
use accuracy equality.

Predictive parity [15] (a.k.a., outcome test in [57]) is a relaxation of
conditional use accuracy equality requiring only equal PPV among groups:

P[Y = 1 | Ŷ = 1, A = 0] = P[Y = 1 | Ŷ = 1, A = 1] (7)

Like predictive equality, predictive parity is insensitive to false negatives.
According to predictive parity, there is a discrimination against female candi-
dates in the same example (Table 1).

Overall accuracy equality [11] is achieved when overall accuracy for
both groups is the same. This implies that
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TP + TN

TP + FN + FP + TN
(8)

is equal for both groups:

P[Ŷ = Y |A = 0] = P[Ŷ = Y |A = 1] (9)

Overall accuracy does not hold in Table 1 as P[Ŷ = Y ] for female candidates
is 2

5 whereas for male candidates, it is 4
7 .

Treatment equality [11] is achieved when the ratio of FPs and FNs is
the same for both protected and unprotected groups:

FN

FP
A=0 =

FN

FP
A=1 (10)

For example, in Table 1, the ratio FN
FP for male is 2

5 whereas for female, it
is 2

7 .
Total fairness [11] holds when all aforementioned fairness notions are sat-

isfied simultaneously, that is, statistical parity, equalized odds, conditional use
accuracy equality (hence, overall accuracy equality), and treatment equality.
Total fairness is a very strong notion which is very difficult to hold in practice.

Balance [38] uses the predicted probability score (S) from which the out-
come Y is typically derived through thresholding. Balance for positive class
focuses on the applicants who constitute positive instances and is satisfied if
the average score S received by those applicants is the same for both groups:

E[S | Y = 1, A = 0] = E[S | Y = 1, A = 1]. (11)

In Table 1, the expected score values are 0.3 and 0.5 for hired males and hired
females respectively. This also indicates a discrimination against female since
the latter need a higher score to get hired than male. Balance of negative
class focuses instead on the negative class:

E[S | Y = 0, A = 0] = E[S | Y = 0, A = 1]. (12)

The values in Table 1 are 0.35 and 0.3 for the non-hired males and females
respectively. Hence, there is no balance for negative class, however, there is
discrimination in favor of female.

Calibration [15] (a.k.a. test-fairness [15], matching conditional frequencies
[29]) holds if, for each predicted probability score S = s, individuals in all
groups have the same probability to actually belong to the positive class:

P[Y = 1 | S = s,A = 0] = P[Y = 1 | S = s,A = 1] ∀s ∈ [0, 1]. (13)

Well-calibration [38] is a stronger variant of calibration. It requires that
(1) calibration is satisfied, (2) the score is interpreted as the probability to
truly belong to the positive class, and (3) for each score S = s, the probability
to truly belong to the positive class is equal to that particular score:

P[Y = 1 | S = s,A = 0] = P[Y = 1 | S = s,A = 1] = s ∀ s ∈ [0, 1]. (14)
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Table 2: Calibration vs well-calibration.

(a) Calibrated but not well-calibrated

s 0.4 0.7 0.8 0.85

Female 0.33 0.5 0.6 0.6
Male 0.33 0.5 0.6 0.6

(b) Calibrated and well-calibrated

s 0.4 0.7 0.8 0.85

Female 0.4 0.7 0.8 0.85
Male 0.4 0.7 0.8 0.85

Table 2 shows the difference between calibration and well-calibration. The
values inside the table represent P[Y = y | S = s,A = a].

Fairness through unawareness (a.k.a., blindness, unawareness [48], anti-
classification [17], and treatment parity [42].) is a simple and straightforward
approach to address fairness problem where we ignore completely any sensitive
feature while training the prediction system.

Fairness through awareness [22] (a.k.a., individual fairness [27,40]) im-
plies that similar individuals should have similar predictions. Let i and j be
two individuals represented by their attributes values vectors vi and vj . Let
d(vi, vj) represent the similarity distance between individuals i and j. Let
M(vi) represent the probability distribution over the outcomes of the predic-
tion. For example, if the outcome is binary (0 or 1), M(vi) might be [0.2, 0.8]
which means that for individual i, P[Ŷ = 0]) = 0.2 and P[Ŷ = 1] = 0.8. Let
dM be a distance metric between probability distributions. Fairness through
awareness is achieved iff, for any pair of individuals i and j:

dM (M(vi),M(vj)) ≤ d(vi, vj)

In practice, fairness through awareness assumes that the similarity metric is
known for each pair of individuals [36]. A challenging aspect of this approach is
the difficulty to determine what is an appropriate metric function to measure
the similarity between two individuals. Typically, this requires careful human
intervention from professionals with domain expertise [40].

Causality-based fairness notions differ from all statistical fairness ap-
proaches because they are not totally based on data but consider additional
knowledge about the structure of the world, in the form of a causal model.
Therefore, most of these fairness notions are defined in terms of non-observable
quantities such as interventions (to simulate random experiments) and coun-
terfactuals (which consider other hypothetical worlds, in addition to the actual
world).

A variable X is a cause of a variable Y if Y in any way relies on X for its
value [51]. Causal relationships are expressed using structural equations [13]
and represented by causal graphs where nodes represent variables (features)
and edges represent causal relationships between variables. Figure 1 shows a
possible causal graph for the job hiring example where directed edges indicate
causal relationships.
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Fig. 1: A possible causal graph for the hiring example.

Total effect (TE) [50] is the causal version of statistical parity and is
defined in terms of experimental probabilities as follows:

TEa1,a0(ŷ) = P[ŷA←a1 ]− P[ŷA←a0 ] (15)

where P[ŷA←a] = P[Ŷ = ŷ | do(A = a)] is called the experimental probability
and is expressed using intervention. An intervention, denoted do(V = v), is a
manipulation of the model that consists in fixing the value of a variable (or a set
of variables) to a specific value. Graphically, it consists in discarding all edges
incident to the vertex corresponding to variable V . Intuitively, using the job
hiring example, while P[Ŷ = 1 | A = 0] reflects the probability of hiring among
female applicants, P[ŶA←0 = 1] = P[Ŷ = 1 | do(A = 0)] reflects the probability
of hiring if all the candidates in the population had been female. The obtained
distribution P[ŶA←a] can be considered as a counterfactual distribution since
the intervention forces A to take a value different from the one it would take
in the actual world. Such counterfactual variable is also denoted ŶA=a or Ŷa
for short.

TE measures the effect of the change of A from a1 to a0 on Ŷ = ŷ along
all the causal paths from A to Ŷ . Intuitively, while statistical parity reflects
the difference in proportions of Ŷ = ŷ in the current cohort, TE reflects the
difference in proportions of Ŷ = ŷ in the entire population. A more involved
causal-based fairness notion considers the effect of a change in the sensitive
feature value (e.g., gender) on the outcome (e.g., probability of hiring) given
that we already observed the outcome for that individual. This typically in-
volves an impossible situation which requires to go back in the past and change
the sensitive feature value. Mathematically, this can be formalized using coun-
terfactual quantities. The simplest fairness notion using counterfactuals is the
effect of treatment on the treated (ETT) [?] defined as:

ETTa1,a0(ŷ) = P[ŷA←a1 | a0]− P[ŷ | a0] (16)

P[ŷA←a1 | a0] reads the probability of Ŷ = ŷ had A been a1, given A had been
observed to be a0. For instance, in the job hiring example, P[ŶA←1 | A = 0]
reads the probability of hiring an applicant had she been a male, given that
the candidate is observed to be female. Such probability involves two worlds:
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an actual world where A = a0 (the candidate is female) and a counterfactual
world where for the same individual A = a1 (the same candidate is male).

Counterfactual fairness [40] is a fine-grained variant of ETT conditioned
on all features. That is, a prediction Ŷ is counterfactually fair if under any
assignment of values X = x,

P[ŶA←a1 = ŷ | X = x,A = a0] = P[ŶA←a0 = ŷ | X = x,A = a0]. (17)

Process fairness [28] (or procedural fairness) can be described as a set of
subjective fairness notions that are centered on the process that leads to out-
comes. These notions are not focused on the fairness of the outcomes, instead
they quantify the fraction of users that consider fair the use of a particular set
of features. They are subjective as they depend on user judgments which may
be obtained by subjective reasoning.

A natural approach to improve process fairness is to remove all sensitive
(protected or salient) features before training classifiers. This simple approach
connects process fairness to fairness through unawareness. However, in addi-
tion to the proxies problem mentioned in the beginning of Section 3, dropping
out sensitive features may impact negatively classification performance [61].

4 Tensions between fairness notions

It has been proved that there are incompatibilities between fairness notions.
For instance, it is not always possible for a predictor to satisfy specific fairness
notions simultaneously [9,15,61,48]. In presence of such incompatibilities, the
predictor should relax some fairness notions by partially satisfying all of them.
Incompatibility3 results are well summarized by Mitchell et al. [48] as follows.
Before listing the tensions, it is important to summarize the relationships be-
tween fairness notions. In addition, for completeness, we define a new fairness
notion, namely, negative predictive parity.

The following proposition states formally the relationship between equal-
ized odds, equal opportunity, and predictive equality.

Proposition 1 Satisfying equal opportunity and predictive equality is equiva-
lent to satisfying equalized odds:

Eq. 3⇔ Eq. 4 ∧ Eq. 5

Conditional use accuracy equality (Eq. 6) is “symmetric” to equalized odds
(Eq. 3) with the only difference of switching Y and Ŷ . The same holds for
equal opportunity (Eq. 4) and predictive parity (Eq. 7). However, there is no
“symmetric” notion to predictive equality (Eq. 5). For completeness, we define
such notion and give it the name negative predictive parity.

3 The term impossibility is commonly used as well.
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Definition 1 Negative predictive parity holds iff all sub-groups have the same
NPV = TN

FN+TN :

P (Y = 1 | Ŷ = 0, A = 0) = P (Y = 1 | Ŷ = 0, A = 1) (18)

Proposition 2 Satisfying equalized odds or conditional use accuracy equality
always leads to satisfying overall accuracy.

Eq. 3 ∨ Eq. 6⇒ Eq. (9)

The reverse, however, is not true. That is, a Machine Learning based Decision
Making (MLDM) approach that satisfies overall accuracy does not necessarily
satisfy equalized odds or conditional accuracy.

Statistical parity (independence) versus conditional use accuracy
equality (sufficiency). Independence and sufficiency are incompatible, ex-
cept when both groups (protected and non-protected) have equal base rates
or Ŷ and Y are independent. Note, however, that Ŷ and Y should not be in-
dependent since otherwise the predictor is completely useless. More formally,

Ŷ ⊥ A AND Y ⊥ A | Ŷ =⇒
(independence) (strict sufficiency)

Y ⊥ A OR Ŷ ⊥ Y
(equal base rates) (useless predictor)

It is important to mention here that this result does not hold for the
relaxation of sufficiency, in particular, predictive parity. Hence, it is possible
for the output of a predictor to satisfy statistical parity and predictive parity
between two groups having different base rates.

Statistical parity (independence) versus equalized odds (separa-
tion). Similar to the previous result, independence and separation are mutu-
ally exclusive unless base rates are equal or the predictor Ŷ is independent
from the actual label Y [9]. As mentioned earlier, dependence between Ŷ and
Y is a weak assumption as any useful predictor should satisfy it. More formally,

Ŷ ⊥ A AND Ŷ ⊥ A | Y =⇒
(independence) (strict separation)

Y ⊥ A OR Ŷ ⊥ Y
(equal base rates) (useless predictor)

Considering a relaxation of equalized odds, that is, equal opportunity or
predictive equality, breaks the incompatibility between independence and sep-
aration.

Equalized odds (separation) versus conditional use accuracy equal-
ity (sufficiency). Separation and sufficiency are mutually exclusive, except
in the case where groups have equal base rates. More formally:

Ŷ ⊥ A | Y AND Y ⊥ A | Ŷ ⇒ Y ⊥ A
(strict separation) (strict sufficiency) (equal base rates)
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Both separation and sufficiency have relaxations. Considering only one re-
laxation will only drop the incompatibility for extreme and degenerate cases.
For example, predictive parity (relaxed version of sufficiency) is still incompat-
ible with separation (equalized odds), except in the following three extreme
cases [15]:

– both groups have equal base rates.
– both groups have FPR = 0 and PPV = 1.
– both groups have FPR = 0 and FNR = 1.

The incompatibility disappears completely when considering relaxed ver-
sions of both separation and sufficiency.

5 Tensions between fairness and privacy

Privacy in the context of machine learning (ML) is typically formalized using
differential privacy [21]. Differential privacy gives a strong guarantee that the
learning algorithm will learn aggregate information about the population, but
will not encode information about the individuals. Privacy and fairness of ML
algorithms have been mainly studied separately. Recently, however, a number
of studies focused on the relationship between fairness and privacy [19,54,3].
These studies attempt to answer two main questions: what is the consequence
of guaranteeing fairness on the privacy of individuals? and to which extent the
learning accuracy is impacted when fairness and privacy are simultaneously
required? It turns out that there is a tension between privacy and fairness.
In particular, it is impossible to satisfy exact fairness and differential privacy
simultaneously while keeping a useful level of accuracy. Cummings et al. [19]
provided a proof of a theorem stating that exact equal opportunity and dif-
ferential privacy can simultaneously hold only for a constant/trivial classifier
(a classifier that outputs always the same decision). However, the proof con-
tains a flaw. On the other hand, the proof of Agarwal [3] does not contain
flaw but, although it holds on a relaxed version of fairness, it does not address
specifically equal opportunity. This section describes a complete proof of the
impossibility of satisfying simultaneously exact fairness (equal opportunity)
and differential privacy while keeping a non-trivial accuracy. Hence, compared
to the works of Cummings [19] and Agarwal [3], our proof addresses the flaw
of the former and shows explicitly how the proof holds specifically for equal
opportunity, which the latter (Agarwal [3]) fails to address.

For the sake of the proof, we use the same variable definitions as in Sec-
tion 3. In addition, let X be the data universe consisting of all possible data
elements z = (x, a, y) where x ∈ X are the element’s features, a ∈ A is the
sensitive feature, and y ∈ Y is the actual outcome (label). Let h : X → {0, 1}
be a binary classifier that tries to predict the true outcome y of a data element
z. The following definitions are needed for the proof.
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Definition 2 (Trivial classifier) A classifier h is said to be trivial if it out-
puts the same outcome independently from the data element inputs:

P[h(z) = ŷ] = P[h(z′) = ŷ] ∀z, z′ ∈ X , ŷ ∈ {0, 1}

Definition 3 (Datasets adjacency) A dataset D can be defined in two
ways each leading to a different definition of adjacency:

– a dataset is a finite set of samples D = {z1, z2, . . . , zn} drawn from a
distribution over X . With this definition, datasets D and D′ are adjacent
if they differ in exactly one data element, that is, zi 6= z′i for exactly one
i ∈ [n].

– a dataset is a distribution over X . With this definition, D and D′ are
adjacent (ζ-close) if:

1

2

∑
z∈X
| D(z)−D′(z) | ≤ ζ, (19)

where D(z) is the probability of z under distribution D.

Equation 19 can be interpreted as a bounding of the Hamming distance be-
tween the two distributions D and D′. While the first definition of adjacency
focuses on a specific data element z, the second definition (Equation 19) may
involve several data elements z1, z2, . . . ∈ X .

Definition 4 (Differential privacy) Let D be the set of all possible datasets
and R the set of all possible trained classifiers. A learning algorithmM : D →
R satisfies ε-differential privacy if for any two adjacent datasets D, D′ ∈ D,
for any ε <∞, and for any subset of models S ∈ R:

P[M(D) ∈ S ] ≤ eε P[M(D′) ∈ S ]

P[M(D) ∈ S ] represent the probability that a learning algorithm outputs
a classifier model in a specific subset of models S. Hence, to satisfy differential
privacy, a learning algorithm should output similar classifiers with similar
probabilities on any adjacent datasets.

Proposition 3 Every trivial classifier is fair (equal opportunity) and differ-
entially private.

Proof We first prove that a trivial classifier satisfies always equal opportunity.
Then we prove that it always satisfies differential privacy. Let h be a trivial
classifier. Then,

P[h(z) = 1] = P[Ŷ = 1|Y = y,A = a] ∀z, y, a (20)

= P[Ŷ = 1|Y = 1, A = 0] (21)

= P[Ŷ = 1|Y = 1, A = 1] (22)

Steps 21 and 22 correspond to equal opportunity (Equation 4).
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For differential privacy, assume that the trivial classifier h outputs Ŷ = 1
with a constant probability ρ ∈]0, 1[. Let D, D′ ∈ D be two adjacent datasets.
Then,

∀z ∈ d P[ h(z) = 1 ] = ρ (23)

∀z′ ∈ d′ P[ h(z′) = 1 ] = ρ (24)

Hence, for any trivial classifier h

P[M(D) = h ] = P[M(D′) = h ] (25)

ut

Proposition 4 No learning algorithmM can simultaneously satisfy ε−differential
privacy and guarantee to generate a fair (equal opportunity) classifier which
is non-trivial.

To prove that Proposition 4 holds, it suffices to find a non-trivial classifier h
which is fair on a dataset D and unfair on a neighboring dataset D′. This
means that h can be generated by a model M on D but cannot be generated
by the same model M on D′ ∈ D.

Proof 4 For any non-trivial classifier h, there exist two points a and b such
that:

– a and b are classified differently (h(a) 6= h(b))5

– a and b belong to two different groups (a = (x1, 0, y1) and b = (x2, 1, y2))6.

Consider datasets constructed over the following four elements:

z1 = (x1, 0, 1) z2 = (x1, 0, 0)
z3 = (x2, 1, 0) z4 = (x2, 1, 0)

Since h is non-trivial and depends only on the observable features (X and A),
we have: h(z1) = h(z2) = 0 and h(z3) = h(z4) = 1. Let D a dataset over the
above four points such that:

D(z1) = ε D(z2) = 1
2 − ε

D(z3) = ε D(z4) = 1
2 − ε

According to D, h is fair for group A = 0 (most of the points have label Y = 0
and are all classified Ŷ = 0) and for group for group A = 1 as well (most of
the points have label Y = 0 and are all classified Ŷ = 1).

Consider now dataset D′ on the same four points such that:

D′(z1) = 1
2 − ε D′z2) = ε

D′(z3) = 1
2 − ε D′(z4) = ε

4 The proof is inspired by Cummings et al. [19] and Agarwal [3] proofs.
5 This is valid for any non-trivial classifier.
6 If a and b belong to the same group, any point in the other group will be different from

either a or b. So replace a or b with that point.
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According to D′, h is (negatively) unfair to group A = 0 (most of the points
have label Y = 1 but are all classified Ŷ = 0) and (positively) unfair to group
A = 1 (most of the points have label Y = 0 but are all classified Ŷ = 1). It
is important to mention finally that D and D′ are not neighbors. However,
according to Claim 2 in [3], if a learning algorithm is differentially private,
then ∀D,D′ ∈ D, and for all classifiers h,

P[M(D) = h ] > 0 =⇒ P[M(D′) = h ] > 0 (26)

which means that if h can be learned from dataset D, it can be also learned
from dataset D′.

Hence, for any non-trivial classifier h which is fair on a dataset D, there
always exist another dataset for which h is unfair. ut

6 Tension between fairness and classification accuracy

This section focuses on the tension between fairness and classification accu-
racy, which is also known as the fairness-accuracy trade-off [37]. This tension
naturally arises in many real-world scenarios, e.g., mortgage lending [41]. It is
discussed in several papers [10,26,47,64] and it arises once we try to improve
fairness in a ML pipeline by using a fairness processor.

Fairness processors are algorithmic approaches (also know as algorithmic
interventions and fairness-enhancing interventions) that are conceived to opti-
mize one or more fairness notions. These approaches are often arranged based
on the stage they apply fairness interventions in a ML pipeline: pre-processing,
in-processing, and post-processing. We give an overview of algorithmic interven-
tions in this section. Particularly, we focus on methods whose implementations
(source codes) are available and that covers all categories. A more complete
list of fairness processors can be found at [26,53,49].

In this survey, we propose the inclusion of a fourth category named as
hybrid-processing, which comprises algorithmic approaches that combine dif-
ferent fairness interventions as a single method and, as a consequence, do not
fit in any of the three traditional categories.

6.1 Pre-processing

Pre-processing approaches (pre-processors) modify the input in order to achieve
fair outcomes. These processors can be applied to any model, since they are
model-agnostic. However, the fact they change the input before training may
harm the explainability. In addition, pre-processors may increase the uncer-
tainty of the classification process which impacts the level of accuracy [53].

– Reweighing [14]. This processor assigns different weights to data instances
based on the distribution of a sensitive feature and the class label. The
weights are used to guide a sampling procedure (with replacement) in order
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to obtain a (new) balanced dataset whose sensitive feature and class label
are independent. For instance, data instances that obtained high weights
will reappear more often in the balanced dataset. A classifier is then trained
on the balanced dataset. As a consequence of the sampling procedure,
classification errors on the high weighted data instances are more expensive.

– FairBatch [56] This pre-processor is an extension of a batch selection al-
gorithm that modifies the batch training in order to enforce model fairness
(e.g., equal opportunity, equalized odds, demographic parity). More pre-
cisely, it measures fairness and adapt the size of the batch based on sensitive
groups (which links this pre-processor with the reweighing approach).

6.2 In-processing

In-processing techniques (in-processors) try to change the learning algorithm
during the training process. Since they are an easy way to impose fairness
constraints, these processors usually take into account the tension between
fairness and classification performance. However, they can not always be ap-
plied to any model since they are usually model-specific.

– Debiasing with adversarial learning [63]. This in-processor trains two
neural networks: (1) a predictor and (2) an adversary. Both networks have
different objectives since the goal is, at the end of the training process,
to attain the separation criterion. The goal of the predictor is to learn a
function that predicts the class label (or the score in a regression problem),
while the adversary takes as input the predicted label and its goal is to
predict a sensitive feature. The predictor has weights W and loss function
LP , while the adversary has weights U and loss function LA.
The main idea behind this processor comes in the way the weights of both
networks are updated. The weights U (of the adversary) are modified based
only on the gradient ∇ULA. Unlike the adversary’s weights, the update of
the predictor’s weights, W , relies on two components: the first one is the
gradient ∇WLP (that minimizes predictor’s loss function), and the second
one is proj∇WLA

∇WLP − α∇WLA that avoids the predictor from helping
or not trying to harm the adversary.
This algorithmic intervention can be applied on classification and regression
problems. Also, it can improve demographic parity, equalized odds, and
equality of opportunity.

– Exponentiated gradient and grid search reductions [1,2]. These in-
processors reduce an unfairness mitigation problem to a sequence of cost-
sensitive classification problem. Here, fairness notions are re-written in a
generic constraint format (a.k.a. a vector of conditional moments), so that
processors can support multiple fairness notions. More precisely, the sta-
tistical parity notion is a special case of the generic constraint that follows

µj(h) = E[gj(X,A, Y, h(X)) | εj ],
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where gj is a function that maps a data instance (protected and non-
protected features) along with the predicted and actual outcomes into [0,1],
h is a classifier, and εj is an event, which is independent from h, that relies
on features (protected and non-protected) and Y . The idea is then to solve
the following problem

Mµ(h) ≤ c, (27)

where M is a matrix K×J , and c is a vector describing linear constraints.
In order to empirically solve Eq. 27, µ(h) and c are replaced by µ̂(h) and
ĉ, respectively, in the form of a Lagrangian

L(h, λ) = P[h(X) = Y ] + λT (Mµ̂(h)− ĉ),

where λ ∈ R|K|+ is a Lagrange multiplier. Now, one needs to find a saddle
point that is the overlapped point between maximizing L and minimizing
L. After few iterations of updating λ, the optimal h is obtained as a result.

– Prejudice remover regularizer [35]. This in-processor relies on the prej-
udice index (PI) that measures the indirect prejudice. PI quantifies the
mutual information between class label and a sensitive feature, which in-
dicates the degree of dependence on sensitive information.

PI =
∑

(Y,A)∈D

P[Y,A] ln

(
P[Y,A]

P[Y ]P[A]

)
PI is then included as a regularizer in the optimization function (see below),
to take fairness into account. A parameter η is used to (reduce) enforce the
importance of (un)fairness in the training process. The idea behind the
penalty (along with the parameter η) is to reduce the dependency of the
model on sensitive information and its fairness.

min
f
L[f(x), Y ] + ηPI

Prejudice remover can be applied to any discriminative probabilistic clas-
sifier. The original paper employed this in-processor in a logistic regression
model.

– AdaFair [31]. It is a ensemble approach that trains a set of classifiers
(weak learners) and then combines the output of these classifiers as a sin-
gle outcome. More precisely, it is an extension of AdaBoost that takes into
consideration Equalized Odds as a fairness notion to be optimized dur-
ing training. In order to do that, it uses the notion of cumulative fairness
which take into account the fairness of a weak learner in the past itera-
tions, instead of only considering the current iteration. In addition, AdaFair
uses confidence scores in the re-weighting process in order to obtain fairer
model’s outcomes, which differs from the traditional AdaBoost which relies
only on classification error.
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6.3 Post-processing

Post-processing approaches (post-processors) modify algorithm’s outputs to
satisfy fairness constraints. They are usually model-agnostic and are a easier
way to improve disparate impact. Also, post-processors are agnostic to the
input data, which make them easier to implement. However, post-processors
usually present low results compare to pre-processors [39,53].

There exists two categories of post-processors: (1) transparent-box ap-
proaches that change the decision boundary of a model, and (2) opaque-box
approaches that directly change the classification label.

– Threshold Optimizer [29]. It finds a threshold τ for each group (w.r.t. a
sensitive feature) that minimizes a loss function L and, at the same time,
takes into consideration the separation criterion (either equalized odds or
equal opportunity). This post-processor can be employed on top of any
model and it does not require the information about non-sensitive features
X, as it is based only on the joint distribution of the sensitive feature A,
and the predicted and actual outcomes, Ŷ and Y respectively. The opti-
mization process searches in the receiver operating characteristic (ROC)
curves between true and false positive rates of sub-populations. More pre-
cisely, for each binary sensitive feature, this processor finds a intersection
point between the ROC curves of the two sub-population, since the shape of
the curves and the cost of misclassification are not necessarily the same for
different groups. In other words, it minimizes the loss of classification while
improves equalized odds (or equal opportunity) as described as follows

min
τ

P[S(X|A = a, Y = 0) ≤ τ ] · L(Ŷ = 1, Y = 0)+

(1− P[S(X|A = a, Y = 1) > τ ]) · L(Ŷ = 0, Y = 1).

– Reject option classification [33]. This post-processor requires that clas-
sifiers output probability scores. Data instances that obtain scores close
to 0 or 1 indicate that a classifier has high confidence (low uncertainty)
about predicting the class labels of those instances. Instead, Reject option
classification focuses on the other group of data instances. It relies on the
idea that data instances that have high uncertainty can have their class
labels switched in order to enforce fairness. Once the definition of high un-
certainty (critical region) is established by the user, this processor changes
label of instances in the critical region to improve a certain fairness notion.

– SBD (Shifted Decision Boundary) [24]. This post-processor is also inspired
by the boosting mechanism. Unlike the traditional AdaBoost classifier that
applies a majority voting to obtain the outcome, SBD uses a confidence
score (and not classification error) for aggregating and obtaining the class
label. Here, the statistical parity notion is incorporate into the confidence
score, which is originally defined only by the distance of a data instance
to the decision boundary. As a result, this strategy moves the boundary
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decision towards fairer outcomes (w.r.t. statistical parity). SBD can be
employ on top of any model but it also allows the use of different fairness
metrics.

6.4 Hybrid-processing

Hybrid-processing approaches (hybrid-processors) combine more than one al-
gorithmic intervention in an ML pipeline. The idea is to use the advantages
of a fairness processor to overcome the disadvantages of another processor.

– LRF (Learning Fair Representations) [62] This fairness processor trans-
forms (encodes) the data from an original space to a representation space
in order to meet the following requirements: (1) to optimize statistical par-
ity, (2) to lose the membership information about protected groups while
keeping any other information from the original space, and (3) to map data
instances from the representation space to Y such that the mapping has
similar performance compared to an optimal classifier, i.e., to keep the high-
est possible accuracy. In order to do that, LRF takes into account these
requirements by solving an objective function thanks to a in-processing
approach. The goal is then to minimize the loss of a multi-objective and
non-linear function.

– FAE (Fairness-Aware Ensemble) [30] is a framework for fairness-aware
classification that combines two fairness-enhancing interventions: pre-pro-
cessing and post-processing. The first one tackles the problem of group
imbalance and class imbalance by generating samples before the training
phase (pre-processing intervention). It then trains multiple AdaBoost clas-
sifiers in order to obtain an ensemble model E. The second one moves
the decision boundary of E towards fairer outcomes (post-processing in-
tervention) based on the fairness notion Equal Opportunity. FAE sorts the
misclassified instances (in descending order) in order to update the param-
eter θ that allows it to move the decision boundary.

– FixOut (FaIrness through eXplanations and feature dropOut) [12,4] is a
framework that produces an ensemble model by combining pre-processing
and post-processing interventions. At pre-processing, FixOut removes fea-
tures based on the approach fairness through unawareness. This interven-
tion is guided by an explanation method (e.g., LIME [55] and SHAP [43])
that produces a list F (k) of the k most important features a1, a2, . . . , ak
w.r.t a model M provided by the user. The framework then applies the
following rule to decide whether M is fair: if F (k) contains sensitive fea-
tures aj1 , aj2 , . . . , aji in F with i > 1, then M is deemed unfair and the
FixOut’s second fairness intervention applies; otherwise, it is considered
fair and no action is taken.
In the former case (i.e., M is considered unfair), FixOut employs feature
dropout and uses the i sensitive features aj1 , aj2 , . . . , aji ∈ F (k) to build a
pool of i+ 1 classifiers in the following way:
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� for each 1 ≤ t ≤ i, FixOut trains a classifier Mt after removing ajt
from D,

� and an additional classifier Mi+1 trained after removing all sensitive
features F from D.

This pool of classifiers is then used to construct an ensemble classifier
Mfinal. Note that, FixOut uses only classifiers that provide probabilities.
At the post-processing intervention, FixOut can use one of these aggrega-
tion functions in order to obtain a single outcome and to enforce fairness,
namely: simple, weighted and learned weighted averages.
In the simple average, all outputs have the same importance, even though
some classifiers might be fairer than others. Given a data instance x and
a class C, for an ensemble classifier Mfinal that uses simple averaging, the
probability of x being in class C is computed as follows

PMfinal
(x ∈ C) =

1

i+ 1

i+1∑
t=1

PMt
(x ∈ C), (28)

where PMt
(x ∈ C) is the probability predicted by model Mt.

FixOut can improve fairness w.r.t. multiple sensitive features. However,
it relies on explanations that can be vulnerable to adversarial attacks in
some contexts.

Table 3 presents a summary of the fairness-enhancing interventions de-
scribed here. It also indicates the links for the code artifacts (git repositories
or the Python packages for fairness: AIF 36011 or Fairlearn12).

6.5 Assumptions and expectations for the fairness-accuracy trade-off

Even though various fairness processors take into account both fairness and
classification accuracy during the fairness intervention, there is still room for
studying, characterizing and defining this trade-off. On the one hand, distinct
conclusions have been found about the impact on the classification accuracy
when fairness is enforced. For instance, one can say that improving fairness
can compromise accuracy [37], however, in specific contexts, it can actually
increase accuracy [52,60].

On the other hand, other papers have been focused on characterizing or
questioning the underlying assumptions made in previously published stud-
ies. For instance, [64] shows that in the evaluation of the fairness-accuracy
trade-off, the acceptance rate must be taken into account, since classification
accuracy from distinct acceptance rates can not be comparable. More pre-
cisely, they rely on a notion of discrimination to assess fairness and show that
better classification accuracy does not necessarily mean better classification

11 https://github.com/Trusted-AI/AIF360
12 https://github.com/fairlearn/fairlearn
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Table 3: Summary of some fairness-enhancing interventions.

T
y
p
e

Method Fairness notion Type of model
Artifact
availability

P
re

-p
ro

c.

Reweighing [14] Statistical parity Model agnostic AIF 360

FairBatch [56]
Equalized odds,
Statistical parity

Model agnostic -

Debiasing with
adversarial learning [63]

Separation criterion Gradient-based AIF 360

In
-p

ro
c.

Exponentiated
Gradient [1,2]

Equalized odds,
Statistical parity

Model agnostic
AIF 360,
Fairlearn

Prejudice Remover [35]
Normalized
prejudice index

Logistic regression AIF 360

AdaFair [31] Equalized odds AdaBoost Git repository7

P
o
st

-p
ro

c.

Threshold
Optimizer [29]

Equalized odds Any score based
AIF 360,
Fairlearn

Reject option
classification [33]

Independence criterion Model agnostic AIF 360

SBD [24] Statistical parity Any score based Git repository8

H
y
b

ri
d

LRF [62] Statistical parity Logistic regression AIF 360

FAE [30] Equal opportunity
Bagging and
boosting based

Git repository9

FixOut [12,4] Process fairness Any score based Git repository10

if it comes from distinct acceptance rates. More recently, [16] argue that re-
searchers make assumptions that may lead to actually unfairness outcomes
(or emergent unfairness). More precisely, three unsuitable assumptions are in-
dicated: (1) fairness metrics are sufficient to assess fairness, (2) the lack of
consideration of historical context, and (3) collecting more data on protected
groups as an adequate solution.

7 Empirical analysis on benchmark datasets

To show how fairness notions are used to assess fairness and to illustrate some
of the tensions described above, three benchmark datasets are used, namely,
communities and crimes, German credit, and Compas. For each one of them,
the most common fairness notions are computed in four scenarios: baseline
model (logistic regression including all the features in the dataset), baseline
model after Reweighing (pre-processor), baseline model along with Thresh-

7 https://github.com/iosifidisvasileios/AdaFair
8 https://github.com/j2kun/fkl-SDM16
9 https://github.com/iosifidisvasileios/Fairness-Aware-Ensemble-Framework

10 https://gitlab.inria.fr/galvesda/fixout
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old Optimizer (post-processor), and FixOut ’s ensembles (hybrid-processor
of pre-processing along with post-processing) using logistic regression. This
allows to highlight tensions between fairness notions and to show how feature
dropping through process fairness produces an ensemble classifier with a good
trade-off between fairness and classification accuracy.

7.1 Communities and crimes

The communities and crimes dataset13 includes information relevant to per
capita violent crime rates in several communities in the United States and
the goal is to predict this crime rate. The dataset includes a total number of
123 numerical features and 1994 instances. 22 features have been dropped as
they contain more than 80% missing values. The label violent crime rate has
been transformed into a binary feature by thresholding14 where 1 corresponds
to high violent rate and 0 corresponds to low violent rate. To assess fairness,
we consider two different settings depending on the sensitive feature at hand.
First, the communities racial makeup is considered as the sensitive feature
thus, two groups are created, namely: whites (communities with high rate of
whites) and non-whites (communities with high rate of non-whites15). Second,
the communities rate of divorced female is used as sensitive feature where we
divide the samples into two sub-populations based on whether the rate of
divorced females in a community is high (1) or low (0)16.

Figures 2 and 3 show fairness assessment results for the communities and
crimes dataset using the baseline model then FixOut. For both models, we
applied the ten-fold cross-validation technique, using 90% of the data for train-
ing and the remaining 10% of the data for testing. Five fairness notions are
applied, namely: statistical parity (SP), equal opportunity (EO), predictive
equality (PE), and predictive parity (PP). The results show discrimination
against communities with high rate of non-whites in the first setting and
against communities with high rate of divorced females in the second setting
for all fairness notions. Fairness processors decrease the difference in some
cases, in particular, EO was improved by the pre-processor and the post-
processor, while FixOut reduces the discrimination w.r.t. to PP values in the
first setting (Fig. 2). In the second setting (Fig. 3), the pre-processor and the
post-processor have inverted the discrimination w.r.t. EO.

Process fairness empirical analysis focuses on the impact of feature dropout
on classifiers’ dependence on sensitive features. The results are shown in Ta-
ble 4. Column “Contribution” contains the average value of feature contri-
bution throughout the cross-validation protocol. Column “Ranking” presents
the average position of features in the top k most important features; here, we
adopted k = 20 for all experiments. We can observe that (absolute value of)

13 https://archive.ics.uci.edu/ml/datasets/communities+and+crime
14 The mean value of the violent crime rate in the dataset is used as threshold.
15 Blacks, Asians, Indians and Hispanics are grouped into a single group called non-whites
16 The mean value of the divorced female rate in the dataset is used as threshold.
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Fig. 2: Fairness assessment for the communities and crimes dataset with race
as a sensitive feature.
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Fig. 3: Fairness assessment for the communities and crimes dataset with di-
vorced female rate as a sensitive feature.

contributions of both sensitive features decrease when we use FixOut, e.g.,
the absolute value of contribution of “Divorced female rate” decreases from
0.0199 (baseline) to 0.0080 (FixOut’s ensemble). By analyzing the ranking,
one notes that the position of both sensitive features decrease, i.e., the position
in the list of most import features move down, which indicates that they be-
come less important compared to other features (ranking positions increase).
For instance, “Race” moved from 7.9 (baseline) to 15.5 position (FixOut’s
ensemble), i.e., it is closer to the end of the list. Classification accuracy for the
FixOut ensemble classifier, however, remains exactly the same as the base-
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line case (see Figure 8) while the accuracy of the other two fairness processors
dropped.

Table 4: Process fairness assessment for the communities and crimes dataset.

Contribution Ranking
Baseline FixOut Baseline FixOut

Race 0.0092 0.0027 7.9 15.5
Divorced female rate -0.0199 -0.0080 1.6 6.5

7.2 German credit

The German credit dataset17 is composed of the data of 1000 individuals
applying for loans. Among 21 features in the dataset, 7 are numerical and 13
are categorical. Numerical and binary features are used directly as features in
the classification and each categorical feature is transformed to a set of binary
features, arriving at 27 features in total. This dataset is designed for binary
classification to predict whether an individual will default on the loan (1) or
not (0). We consider first, gender as sensitive feature where female applicants
are compared to male applicants. Then, age is treated as protected feature
where the population is divided into two groups based on whether they are
above or below the mean age in the dataset (35.5 years-old).

Figures 4 and 5 show the results for assessing fairness notions for the Ger-
man credit dataset. As for the communities and crimes dataset, four models
are trained using 10-fold cross validation, namely, baseline (logistic regression),
baseline with a pre-processor, baseline with a post-processor, and FixOut.
Overall, results for all methods show that the applicants who are above the
mean age are discriminated against compared to the applicants under the
mean age based on EO and PP regardless of the sensitive feature used (gender
and age). That is, male and older applicants are privileged over female and
younger applicants, respectively, when applying EO and PP. However, in the
second setting (age as sensitive feature, Fig. 5) there is parity when SP is used
to assess fairness (SP close to 0) while the disparity of PP increases. Diver-
gence between SP and PP is an example of the first incompatibility result in
Section 4.

Table 5 shows the contribution of the sensitive feature on the classifica-
tion output for the baseline as well as the FixOut models. Notice that the
configuration is the same as the communities and crime case. Similarly to com-
munities and crime, FixOut improves the contribution and ranking of “Age”
compared to the baseline. However, FixOut only improved the ranking of
“Gender” but not the contribution of this feature. Classification accuracy has
slightly dropped from 0.71 in the baseline model to 0.69 in the FixOut model.

17 https://archive-beta.ics.uci.edu/ml/datasets/statlog+german+credit+data
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Fig. 4: Fairness assessment for the German credit dataset with sex as a sensitive
feature
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Fig. 5: Fairness assessment for the German credit dataset with age as a sensi-
tive feature

7.3 Compas

The Compas dataset contains information from Broward County, Florida, ini-
tially compiled by ProPublica [6] and the goal is to predict the two-year violent
recidivism. That is, whether a convicted individual would commit a violent
crime in the following two years (1) or not (0). Only black and white defen-
dants who were assigned Compas risk scores within 30 days of their arrest are
kept for analysis [6] leading to 5915 individuals in total. We consider race as
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Table 5: Process fairness assessment for the German credit dataset.

Contribution Ranking
Baseline FixOut Baseline FixOut

Age -0.0111 -0.0060 11.0 14.1
Gender -0.0001 0.0020 15.0 17.6

sensitive feature in the first setting and gender in the second. Each categorical
feature is transformed to a set of binary features leading to 11 features in total.

Similarly to the previous experiments, Figures 6 and 7 show the four fair-
ness notions results for the baseline and the three fairness-enhancing methods
(pre-processor, post-processor and FixOut). The figures show similar find-
ings as those discussed in the German credit use case. That is, SP, EO and
PE are not satisfied for both settings (blacks vs. whites and females vs. males)
while we have at least one fairness notion closer to 0 (e.g. PP without any
fairness intervention and PE after applying either the pre-processor or the
post-processor). This corroborates the debate that has arisen between Prop-
ublica and Northpointe18 (Compas designers) where Propublica used EO and
PE to prove that Compas privileges whites over blacks. At the other hand,
the Northepointe’s answer was that PP is a more suitable fairness notion to
apply and they proved that Compas satisfies PP for blacks and whites [20].
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Fig. 6: Fairness assessment for the Compas dataset with race as a sensitive
feature.

For process fairness (Table 6), similarly to the previous benchmark datasets,
the contribution of “Race” decreases when using FixOut’s ensemble classifier.
In the same way, the ranking of this feature increases from 7.1 in the case of
the baseline model to 8.5 in the case of the FixOut ensemble classifier. Sur-

18 Now Equivant.
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Fig. 7: Fairness assessment for the Compas dataset with sex as a sensitive
feature.

prisingly, LIME explanations did not report “Gender” as a highly important
feature for baseline’s outcomes; this feature was already in the last position
in the ranking (with no contribution). As a result, we do not see any decrease
w.r.t feature contribution and ranking. Note finally that classification accuracy
is almost the same for FixOut, the original model and the pre-processor, but
it decreased when the post-processor was applied (see Figure 8).

Table 6: Process fairness assessment for the Compas dataset.

Contribution Ranking
Baseline FixOut Baseline FixOut

Race -0.0017 -0.0003 7.7 8.5
Gender 0.0000 0.0000 10.0 10.0

8 Conclusion

Implementing fairness is essential to guarantee that ML-based automated de-
cision systems produce unbiased decisions and hence avoid unintentional dis-
crimination against some sub-populations (typically minorities). This survey
discusses two important issues related to implementing fairness.

First, there are several reasonable fairness requirements that can be sat-
isfied simultaneously. This means that fairness practitioners have to choose
among them. Second, implementing fairness can create tensions with other
desirable properties of ML algorithms, such as privacy and classification accu-
racy.
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Fig. 8: Accuracy of all datasets after applying the different fairness-enhancing
methods.

Empirical results showed that among the unfairness mitigation methods
considered in this survey, pre-processing (reweighting) and post-processing
(threshold optimizer) are the most efficient to mitigate bias. However, the
hybrid approach (FixOut) produced the best accuracy among all unfairness
mitigation methods. This survey highlights the need to construct fair ML
algorithms that address appropriately the different types of tensions.

The most recent fairness notions, are causal-based [44] and reflect the now
widely accepted idea that using causality is necessary to appropriately ad-
dress the problem of fairness. Hence, a promising future work is to study how
the tensions described in this survey are reflected in causal-based fairness no-
tions. For instance, enforcing causal-based fairness notions relax the tension
with privacy and/or accuracy or amplify them. Besides, the most recent fair-
ness notions, however, are causal-based and reflect the now widely accepted
idea that using causality is necessary to appropriately address the problem of
fairness.
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A Notation Index

Table 7: Notation

V set of attributes
A sensitive attributes
X remaining (non-sensitive) attributes
Y actual outcome

Ŷ outcome returned
S score
R resolving features
M pre-trained classifier
D dataset
F list of features contributions

F (k) list of the k most important features
E explanation method
x data instance
f(x) outcome of a classifier
g linear (interpretable) model
z interpretable representation of x
hx(z) transformation function
K maximum coalition size
π kernel (LIME,SHAP)
σ kernel-width
Ω measure of complexity
d distance function
B desired number of explanations
V selected instances
W explanation matrix
I array of feature importance
wt weight of the t-th classifier
C class (label)
ai i-th attribute (feature)
ci global feature contribution associated with ai


