
HAL Id: hal-03484009
https://hal.science/hal-03484009v1

Preprint submitted on 16 Dec 2021 (v1), last revised 19 Jun 2023 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Survey on Fairness Notions and Related Tensions
Guilherme Alves, Fabien Bernier, Miguel Couceiro, Karima Makhlouf,

Catuscia Palamidessi, Sami Zhioua

To cite this version:
Guilherme Alves, Fabien Bernier, Miguel Couceiro, Karima Makhlouf, Catuscia Palamidessi, et al..
Survey on Fairness Notions and Related Tensions. 2021. �hal-03484009v1�

https://hal.science/hal-03484009v1
https://hal.archives-ouvertes.fr


Noname manuscript No.
(will be inserted by the editor)

Survey on Fairness Notions and Related Tensions.

Guilherme Alves · Fabien Bernier ·
Miguel Couceiro · Karima Makhlouf ·
Catuscia Palamidessi · Sami Zhioua

Received: date / Accepted: date

Abstract Automated decision systems are increasingly used to take conse-
quential decisions in problems such as job hiring and loan granting with the
hope of replacing subjective human decisions with objective machine learning
(ML) algorithms. ML-based decision systems, however, are found to be prone
to bias which result in yet unfair decisions. Several notions of fairness have
been defined in the literature to capture the different subtleties of this ethical
and social concept (e.g. statistical parity, equal opportunity, etc.). Fairness
requirements to be satisfied while learning models created several types of
tensions among the different notions of fairness, but also with other desirable
properties such as privacy and classification accuracy. This paper surveys the
commonly used fairness notions and discusses the tensions that exist among
them and with privacy and accuracy. It also shows how the simple idea of
fairness through unawareness (dropping sensitive features) can be leveraged
through explanations and ensemble learning to appropriately address the ten-
sion between fairness and classification accuracy.
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1 Introduction

Fairness emerged as an important requirement to guarantee that machine
learning (ML) based decision systems can be safely used in practice. Using
such systems while fairness is not satisfied can lead to unfair decisions typi-
cally discriminating against disadvantaged populations such as racial minori-
ties, women, poverty stricken districts, etc.

With the recent interest for fairness, a multitude of fairness notions have
been defined to capture different aspects of fairness. These include statisti-
cal group-based notions (e.g. statistical parity [19], equalized odds [26], etc.),
individual-based notions (e.g. fairness through awareness [19], etc.), and causal-
based notions (e.g. total effect [36], counterfactual fairness [31], etc.). As fair-
ness is a social and ethical concept in the first place, defining it is still prone
to subjectivity. Hence, the aim of replacing the subjective human decisions
by objective ML-based decision systems resulted in notions and algorithms
still exhibiting unfairness. Hence although the different notions of algorithmic
fairness appear internally consistent, several of them cannot hold simultane-
ously and hence are mutually incompatible [5,35,26,6,30]. As a consequence,
practitioners assessing and/or implementing fairness need to choose among
them.

In addition to the tensions “intra-notions”, there are tensions between fair-
ness notions and other desirable properties of ML algorithms. One such prop-
erties is privacy. This property emerged as a concern that specific information
about an individual might be revealed when a model is learned based on
a dataset containing that individual. A learning algorithm satisfying privacy
will learn aggregate information about the population, but will not incorporate
specific information about individuals. Recent results showed that fairness and
privacy (differential privacy [18]) are at odds with each other [14,2,38]. That
is, a learning algorithm that satisfies differential privacy is not guaranteed to
generate a classifier that satisfies fairness, unless it has trivial accuracy.

Fairness through unawareness is one of the simplest approaches to address
fairness and consists in dropping the sensitive feature before training the ML
model. Such approach is an example of process fairness [24] which focuses
on the fairness of the learning process rather than the fairness of the output.
Dropping features, however, creates a tension with classification accuracy: it
typically improves fairness but reduces accuracy. An interesting line of re-
search in the literature consists in handling this fairness/accuracy trade-off by
aggregating multiple classifier’s outputs (ensemble classifier) each of which is
obtained by dropping one single sensitive feature [3]. Selecting sensitive fea-
tures to drop is based on explanation methods which assess the contribution
of each sensitive feature on the outcome. Examples of explanation methods
include LIME [23,39] and SHAP [33].

Several surveys of the relatively recent field of ML fairness can be found
in the literature [6,34,46,35,49,22]. However, this survey deviates from exist-
ing surveys by focusing on the tensions that exist among fairness notions and
between fairness and other desirable ML properties, namely, privacy and classi-
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fication accuracy. Section 2 briefly presents all commonly used fairness notions
spanning all categories (group, individual, and causal) along with their formal
definitions. Section 3 describes the tensions and incompatibilities that exist
among the various fairness notions. Section 4 shows that fairness and privacy
properties are at odds with each other and present a complete formal proof
of this incompatibility. Section 5 describes how fairness through unawareness
can be pushed further to address the fairness vs accuracy trade-off and obtain
a fair but also accurate classifier thanks to process fairness, explanation meth-
ods, and ensemble classifiers. Section 6 shows how fairness notions can applied
on benchmark and real datasets and illustrates some of the tensions described
in the previous sections. Section 7 discusses directions for future work.

2 Catalogue of fairness notions

Let V , A, and X1 be three random variables representing, respectively, the
total set of features, the sensitive features, and the remaining features de-
scribing an individual such that V = (X,A) and P (V = vi) represents the
probability of drawing an individual with a vector of values vi from the pop-
ulation. For simplicity, we focus on the case where A is a binary random
variable where A = 0 designates the protected group, while A = 1 designates
the non-protected group. Let Y represent the actual outcome and Ŷ represent
the outcome returned by the prediction algorithm. Without loss of generality,
assume that Y and Ŷ are binary random variables where Y = 1 designates a
positive instance, while Y = 0 a negative one. Typically, the predicted out-
come Ŷ is derived from a score represented by a random variable S where
P[S = s] is the probability that the score value is equal to s.

A simple and straightforward approach to address fairness problem is to
ignore completely any sensitive feature while training the prediction system.
This is called fairness through unawareness2. This notion is investigated
further in Section 5.

Statistical parity[19] is one of the most commonly accepted notions of
fairness. It requires the prediction to be statistically independent of the sensi-
tive feature (Ŷ ⊥ A). In other words, the predicted acceptance rates for both
protected and unprotected groups should be equal. Statistical parity implies
that

TP + FP

TP + FP + FN + TN
3

is equal for both groups. A classifier Ŷ satisfies statistical parity if:

P[Ŷ | A = 0] = P[Ŷ | A = 1]. (1)

1 Table 10 in the appendix lists all terms used in this survey.
2 Known also as: blindness, unawareness [35], anti-classification [11], and treatment parity

[32].
3 TP, FP, FN, and TN stand for: true positives, false positives, false negatives, and true

negatives, respectively.
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Conditional statistical parity [12] is a variant of statistical parity ob-
tained by controlling on a set of resolving features4. The resolving features (we
refer to them as R) among X are correlated with the sensitive feature A and
give some factual information about the label at the same time leading to a
legitimate discrimination. Conditional statistical parity holds if:

P[Ŷ = 1 | R = r,A = 0] = P[Ŷ = 1 | R = r,A = 1] ∀r ∈ range(R). (2)

Equalized odds [26] considers both the predicted and the actual out-
comes. The prediction is conditionally independent from the protected feature,
given the actual outcome (Ŷ ⊥ A | Y ). In other words, equalized odds requires
that both sub-populations to have the same true positive rate TPR = TP

TP+FN

and false positive rate FPR = FP
FP+TN :

P[Ŷ = 1 | Y = y, A = 0] = P[Ŷ = 1 | Y = y, A = 1] ∀y ∈ {0, 1}. (3)

Because equalized odds requirement is rarely satisfied in practice, two vari-
ants can be obtained by relaxing its equation. The first one is called equal
opportunity [26] and is obtained by requiring only TPR equality among
groups:

P[Ŷ = 1 | Y = 1, A = 0] = P[Ŷ = 1 | Y = 1, A = 1]. (4)

As TPR does not take into consideration FP , equal opportunity is completely
insensitive to the number of false positives.

The second relaxed variant of equalized odds is called predictive equal-
ity [12] which requires only the FPR to be equal in both groups:

P[Ŷ = 1 | Y = 0, A = 0] = P[Ŷ = 1 | Y = 0, A = 1]. (5)

Since FPR is independent from FN , predictive equality is completely insen-
sitive to false negatives.

Conditional use accuracy equality [6] is achieved when all population
groups have equal positive predictive value PPV = TP

TP+FP and negative pre-

dictive value NPV = TN
FN+TN . In other words, the probability of subjects with

positive predictive value to truly belong to the positive class and the probabil-
ity of subjects with negative predictive value to truly belong to the negative
class should be the same. By contrast to equalized odds, one is conditioning
on the algorithm’s predicted outcome not the actual outcome. In other words,
the emphasis is on the precision of prediction rather than its recall:

P[Y = y | Ŷ = y,A = 0] = P[Y = y | Ŷ = y,A = 1] ∀y ∈ {0, 1}. (6)

Predictive parity [10] is a relaxation of conditional use accuracy equality
requiring only equal PPV among groups:

P[Y = 1 | Ŷ = 1, A = 0] = P[Y = 1 | Ŷ = 1, A = 1] (7)

Like predictive equality, predictive parity is insensitive to false negatives.

4 Called explanatory features in [27].
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Overall accuracy equality [6] is achieved when overall accuracy for both
groups is the same. This implies that

TP + TN

TP + FN + FP + TN

is equal for both groups:

P[Ŷ = Y |A = 0] = P[Ŷ = Y |A = 1] (8)

Treatment equality [6] is achieved when the ratio of FPs and FNs is the
same for both protected and unprotected groups:

FN

FP
A=0 =

FN

FP
A=1 (9)

Total fairness [6] holds when all aforementioned fairness notions are sat-
isfied simultaneously, that is, statistical parity, equalized odds, conditional use
accuracy equality (hence, overall accuracy equality), and treatment equality.
Total fairness is a very strong notion which is very difficult to hold in practice.

Balance [30] uses the score (S) from which the outcome Y is typically
derived through thresholding. Balance for positive class focuses on the
applicants who constitute positive instances and is satisfied if the average
score S received by those applicants is the same for both groups:

E[S | Y = 1, A = 0)] = E[S | Y = 1, A = 1]. (10)

Balance of negative class focuses instead on the negative class:

E[S | Y = 0, A = 0] = E[S | Y = 0, A = 1]. (11)

Calibration [10] holds if, for each predicted probability score S = s,
individuals in all groups have the same probability to actually belong to the
positive class:

P[Y = 1 | S = s,A = 0] = P[Y = 1 | S = s,A = 1] ∀s ∈ [0, 1]. (12)

Well-calibration [30] is a stronger variant of calibration. It requires that
(1) calibration is satisfied, (2) the score is interpreted as the probability to
truly belong to the positive class, and (3) for each score S = s, the probability
to truly belong to the positive class is equal to that particular score:

P[Y = 1 | S = s,A = 0] = P[Y = 1 | S = s,A = 1] = s ∀ s ∈ [0, 1]. (13)

Fairness through awareness [19] implies that similar individuals should
have similar predictions. Let i and j be two individuals represented by their at-
tributes values vectors vi and vj . Let d(vi, vj) represent the similarity distance
between individuals i and j. Let M(vi) represent the probability distribution
over the outcomes of the prediction. For example, if the outcome is binary (0 or
1), M(vi) might be [0.2, 0.8] which means that for individual i, P[Ŷ = 0]) = 0.2
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and P[Ŷ = 1] = 0.8. Let dM be a distance metric between probability distri-
butions. Fairness through awareness is achieved iff, for any pair of individuals
i and j:

dM (M(vi),M(vj)) ≤ d(vi, vj)

In practice, fairness through awareness assumes that the similarity metric is
known for each pair of individuals [29]. That is, a challenging aspect of this
approach is the difficulty to determine what is an appropriate metric function
to measure the similarity between two individuals. Typically, this requires
careful human intervention from professionals with domain expertise [31].

Causality-based fairness notions differ from all statistical fairness ap-
proaches because they are not totally based on data but consider additional
knowledge about the structure of the world, in the form of a causal model.
Therefore, most of these fairness notions are defined in terms of non-observable
quantities such as interventions (to simulate random experiments) and coun-
terfactuals (which consider other hypothetical worlds, in addition to the actual
world).

A variable X is a cause of a variable Y if Y in any way relies on X for
its value [37]. Causal relationships are expressed using structural equations [8]
and represented by causal graphs where nodes represent variables (features)
and edges represent causal relationships between variables. Figure 1 shows a
possible causal graph for the job hiring example where directed edges indicate
causal relationships.

Fig. 1: A possible causal graph for the hiring example.

Total effect (TE) [36] is the causal version of statistical parity and is
defined in terms of experimental probabilities as follows:

TEa1,a0(ŷ) = P[ŷA←a1 ]− P[ŷA←a0 ] (14)

where P[ŷA←a] = P[Ŷ = ŷ | do(A = a)] is called the experimental probability
and is expressed using intervention. An intervention, denoted do(V = v), is a
manipulation of the model that consists in fixing the value of a variable (or
a set of variables) to a specific value. Graphically, it consists in discarding all
edges incident to the vertex corresponding to variable V . Intuitively, using the
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job hiring example, while P[Ŷ = 1 | A = 0] reflects the probability of hiring
among female applicants, P[ŶA←0 = 1] = P[Ŷ = 1) | do(A = 0)] reflects the
probability of hiring if all the candidates in the population had been female.
The obtained distribution P[ŶA←a] can be considered as a counterfactual dis-
tribution since the intervention forces A to take a value different from the one
it would take in the actual world. Such counterfactual variable is also denoted
ŶA=a or Ŷa for short.

TE measures the effect of the change of A from a1 to a0 on Ŷ = ŷ along
all the causal paths from A to Ŷ . Intuitively, while statistical parity reflects
the difference in proportions of Ŷ = ŷ in the current cohort, TE reflects the
difference in proportions of Ŷ = ŷ in the entire population. A more involved
causal-based fairness notion considers the effect of a change in the sensitive
feature value (e.g. gender) on the outcome (e.g. probability of hiring) given
that we already observed the outcome for that individual. This typically in-
volves an impossible situation which requires to go back in the past and change
the sensitive feature value. Mathematically, this can be formalized using coun-
terfactual quantities. The simplest fairness notion using counterfactuals is the
effect of treatment on the treated (ETT) [36] defined as:

ETTa1,a0(ŷ) = P[ŷA←a1 | a0]− P[ŷ | a0] (15)

P[ŷA←a1 | a0] reads the probability of Ŷ = ŷ had A been a1, given A had been
observed to be a0. For instance, in the job hiring example, P[ŶA←1 | A = 0]
reads the probability of hiring an applicant had she been a male, given that
the candidate is observed to be female. Such probability involves two worlds:
an actual world where A = a0 (the candidate is female) and a counterfactual
world where for the same individual A = a1 (the same candidate is male).

Counterfactual fairness [31] is a fine-grained variant of ETT conditioned
on all features. That is, a prediction Ŷ is counterfactually fair if under any
assignment of values X = x,

P[ŶA←a1 = ŷ | X = x,A = a0] = P[ŶA←a0 = ŷ | X = x,A = a0]. (16)

3 Tensions between fairness notions

It has been proved that there are incompatibilities between fairness notions.
That is, it is not always possible for a predictor to satisfy specific fairness
notions simultaneously [5,10,48,35]. In presence of such incompatibilities, the
predictor should make a trade-off to satisfy some notions on the expense of
others or partially satisfy all of them. Incompatibility5 results are well sum-
marized by Mitchell et al. [35] as follows:

Statistical parity (independence) versus conditional use accuracy
equality (sufficiency). Independence and sufficiency are incompatible, ex-
cept when both groups (protected and non-protected) have equal base rates

5 The term impossibility is commonly used as well.
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or Ŷ and Y are independent. Note, however, that Ŷ and Y should not be in-
dependent since otherwise the predictor is completely useless. More formally,

Ŷ ⊥ A AND Y ⊥ A | Ŷ =⇒
(independence) (strict sufficiency)

Y ⊥ A OR Ŷ ⊥ Y
(equal base rates) (useless predictor)

It is important to mention here that this result does not hold for the
relaxation of sufficiency, in particular, predictive parity. Hence, it is possible
for the output of a predictor to satisfy statistical parity and predictive parity
between two groups having different base rates.

Statistical parity (independence) versus equalized odds (separa-
tion). Similar to the previous result, independence and separation are mutu-
ally exclusive unless base rates are equal or the predictor Ŷ is independent
from the actual label Y [5]. As mentioned earlier, dependence between Ŷ and
Y is a weak assumption as any useful predictor should satisfy it. More formally,

Ŷ ⊥ A AND Ŷ ⊥ A | Y =⇒
(independence) (strict separation)

Y ⊥ A OR Ŷ ⊥ Y
(equal base rates) (useless predictor)

Considering a relaxation of equalized odds, that is, equal opportunity or
predictive equality, breaks the incompatibility between independence and sep-
aration.

Equalized odds (separation) versus conditional use accuracy equal-
ity (sufficiency). Separation and sufficiency are mutually exclusive, except
in the case where groups have equal base rates. More formally:

Ŷ ⊥ A | Y AND Y ⊥ A | Ŷ ⇒ Y ⊥ A
(strict separation) (strict sufficiency) (equal base rates)

Both separation and sufficiency have relaxations. Considering only one re-
laxation will only drop the incompatibility for extreme and degenerate cases.
For example, predictive parity (relaxed version of sufficiency) is still incompat-
ible with separation (equalized odds), except in the following three extreme
cases [10]:

– both groups have equal base rates.
– both groups have FPR = 0 and PPV = 1.
– both groups have FPR = 0 and FNR = 1.

The incompatibility disappears completely when considering relaxed ver-
sions of both separation and sufficiency.
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4 Tensions between fairness and privacy

The privacy property in the context of machine learning (ML) is typically
formalized using differential privacy [18]. Differential privacy gives a strong
guarantee that the learning algorithm will learn aggregate information about
the population, but will not encode information about the individuals. Privacy
and fairness of ML algorithms have been mainly studied separately. Recently,
however, a number of studies focused on the relationship between fairness and
privacy [14,38,2], that is, what is the consequence of guaranteeing fairness
on the privacy of individuals? Also, to which extent the learning accuracy is
impacted when fairness and privacy are simultaneously required? It turns out
that there is a tension between privacy and fairness. In particular, it is im-
possible to satisfy exact fairness and differential privacy simultaneously while
keeping a useful level of accuracy. Cummings et al. [14] provided a proof of a
theorem stating that exact equal opportunity and differential privacy can si-
multaneously hold only for a constant/trivial classifier (a classifier that outputs
always the same decision). However, the proof contains a flaw illustrated by
Agarwal [2]. Agarwal, in turn, proved a stronger version of the theorem which
holds on relaxed versions of fairness notions but could not fix Cummings et
al.’s proof. This section describes a complete proof of the impossibility of sat-
isfying simultaneously exact fairness and differential privacy while keeping a
non-trivial accuracy.

For the sake of the proof, we use the same variable definitions as in Sec-
tion 2. In addition, let X be the data universe consisting of all possible data
elements z = (x, a, y) where x ∈ X are the element’s features, a ∈ A is the
sensitive feature, and y ∈ Y is the actual outcome (label). Let h : X → {0, 1}
be a binary classifier that tries to predict the true outcome y of a data element
z.

The following definitions are needed for the proof.

Definition 1 (Trivial classifier) A classifier h is said to be trivial if it out-
puts the same outcome independently from the data element inputs:

P[h(z) = ŷ] = P[h(z′) = ŷ] ∀z, z′ ∈ X , ŷ ∈ {0, 1}

Definition 2 (Datasets adjacency) A dataset D can be defined in two
ways each leading to a different definition of adjacency:

– a dataset is a finite set of samples D = {z1, z2, . . . , zn} drawn from a
distribution over X . With this definition, datasets D and D′ are adjacent
if they differ in exactly one data element, that is, zi 6= z′i for exactly one
i ∈ [n].

– a dataset is a distribution over X . With this definition, D and D′ are
adjacent (ζ-close) if:

1

2

∑
z∈X
| D(z)−D′(z) | ≤ ζ,
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where D(z) is the probability of z under distribution D.

Definition 3 (Differential privacy) Let D be the set of all possible datasets
and R the set of all possible trained classifiers. A learning algorithmM : D →
R satisfies ε-differential privacy if for any two adjacent datasets D, D′ ∈ D,
for any ε <∞, and for any subset of models S ∈ R:

P[M(D) ∈ S ] ≤ eε P[M(D′) ∈ S ]

Hence, to satisfy differential privacy, a learning algorithm should output sim-
ilar classifiers with similar probabilities on any adjacent datasets.

Proposition 1 Every trivial classifier is fair (equal opportunity) and differ-
entially private.

Proof We first prove that a trivial classifier satisfies always equal opportunity.
Then we prove that it always satisfies differential privacy. Let h be a trivial
classifier. Then,

P[h(z) = 1] = P[Ŷ = 1|Y = y,A = a] ∀z, y, a (17)

= P[Ŷ = 1|Y = 1, A = 0] (18)

= P[Ŷ = 1|Y = 1, A = 1] (19)

Steps 18 and 19 correspond to equal opportunity (Equation 4).
For differential privacy, assume that the trivial classifier h outputs Ŷ = 1

with a constant probability ρ ∈]0, 1[. Let D, D′ ∈ D be two adjacent datasets.
Then,

∀z ∈ d P[ h(z) = 1 ] = ρ (20)

∀z′ ∈ d′ P[ h(z′) = 1 ] = ρ (21)

Hence, for any trivial classifier h

P[M(D) = h ] = P[M(D′) = h ] (22)

ut

Proposition 2 No learning algorithmM can simultaneously satisfy ε−differential
privacy and guarantee to generate a fair (equal opportunity) classifier which
is non-trivial.

To prove that Proposition 2 holds, it suffices to find a non-trivial classifier h
which is fair on a dataset D and unfair on a neighboring dataset D′. This
means that h can be generated by a model M on D but cannot be generated
by the same model M on D′ ∈ D.

Proof 6 For any non-trivial classifier h, there exist two points a and b such
that:

6 The proof is inspired by Cummings et al. [14] and Agarwal [2] proofs.
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– a and b are classified differently (h(a) 6= h(b))7

– a and b belong to two different groups (a = (x1, 0, y1) and b = (x2, 1, y2))8.

Consider datasets constructed over the following four elements:

z1 = (x1, 0, 1) z2 = (x1, 0, 0)
z3 = (x2, 1, 0) z4 = (x2, 1, 0)

Since h is non-trivial and depends only on the observable features (X and A),
we have: h(z1) = h(z2) = 0 and h(z3) = h(z4) = 1. Let D a dataset over the
above four points such that:

D(z1) = ε D(z2) = 1
2 − ε

D(z3) = ε D(z4) = 1
2 − ε

According to D, h is fair for group A = 0 (most of the points have label Y = 0
and are all classified Ŷ = 0) and for group for group A = 1 as well (most of
the points have label Y = 0 and are all classified Ŷ = 1).

Consider now dataset D′ on the same four points such that:

D′(z1) = 1
2 − ε D′z2) = ε

D′(z3) = 1
2 − ε D′(z4) = ε

According to D′, h is (negatively) unfair to group A = 0 (most of the points
have label Y = 1 but are all classified Ŷ = 0) and (positively) unfair to group
A = 1 (most of the points have label Y = 0 but are all classified Ŷ = 1). It
is important to mention finally that D and D′ are not neighbors. However,
according to Claim 2 in [2], if a learning algorithm is differentially private,
then ∀D,D′ ∈ D, and for all classifiers h,

P[M(D) = h ] > 0 =⇒ P[M(D′) = h ] > 0 (23)

which means that if h can be learned from dataset D, it can be also learned
from dataset D′.

Hence, for any non-trivial classifier h which is fair on a dataset D, there
always exist another dataset for which h is unfair. ut

5 Tensions between process fairness and classification performance

This section focuses on explanation methods and how they are used to address
the tensions between fairness and classification accuracy. It starts by discussing
process fairness and its relation with fairness through unawareness [19]. It then
recalls the main concepts underlying explanation methods. It finally shows
how to use explanations to generate an ensemble classifier that allows to deal
appropriately with the tension between fairness and classification accuracy.

7 This is valid for any non-trivial classifier.
8 If a and b belong to the same group, any point in the other group will be different from

either a or b. So replace a or b with that point.
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5.1 Process Fairness

Process fairness [24] can be described as a set of subjective fairness notions
that are centered on the process that leads to outcomes. These notions are not
focused on the fairness of the outcomes, instead they quantify the fraction of
users that consider fair the use of a particular set of features. They are subjec-
tive as they depend on user judgments which may be obtained by subjective
reasoning.

A natural approach to improve process fairness is to remove all sensitive
(protected or salient) features before training classifiers. This simple approach
connects process fairness to fairness through unawareness. However, in addi-
tion to the proxies problem mentioned in the beginning of Section 2, dropping
out sensitive features may impact negatively classification performance [48].
Addressing the tension between these two constraints– classification perfor-
mance and process fairness– requires to explore the set of classifiers that have
suitable classification performance and at the same time low dependence on
sensitive features.

A Rashomon set [20] is defined as a set of ML models that present simi-
lar performances in terms of error rate (the “good models”) but that utilize
features differently, e.g., they rely on class labels or certain features at differ-
ent levels. Breiman [9] used “Rashomon effect” to denote a multiple functions
with similar error rates but different descriptions. Recently, Coston et al. [13]
adapted the notion of Rashomon set by integrating fairness metrics. We are
interested in classifiers that belong to the set of “good” models, i.e. they have
similar classification performance, but are less reliant on sensitive features. In
order to quantify classifiers’ reliance on sensitive features, we take advantage
of explanation methods.

5.2 Explanation methods

Explanation methods differ mainly in the form of explanations or in the ap-
proach they use to generate them [25,45]. The first group can be divided w.r.t.
the type of explanations. For instance, Anchors provide rule-based explana-
tions [40], while LIME [39], SHAP [33] and DeepLIFT [42] explain the outcome
for a given instance by computing the contributions of every feature to the
outcome. This group includes also methods based on group saliency maps [1],
and counterfactual methods [47]. The second group can be arranged into two
main sub-groups: (1) those that provide local explanations and (2) those that
provide global explanations. Local explanation methods generate explanations
for individual predictions, while global explanations give an understanding of
the global behaviour of the model. Similarly, global explanation methods can
be divided into methods based on a collection of local explanations [39], and
representation based explanations [28].

In this survey, we are interested in explanation methods that are based on
importance of features. Particularly, we focus on model agnostic explanation
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methods that provide explanations in the form of feature importance such as
LIME and SHAP.

5.3 Local explanations

Let f be the classifier, x be a target data instance, and f(x) be the outcome
we want to explain. In order to explain f(x), LIME and SHAP generate data
instances around x by applying perturbations. A mapping function hx(x′) is
responsible for converting x′ from the interpretable space to the feature space.
For instance, different data types require distinct mapping functions hx. For
tabular data, hx treats discretized versions of numerical features, while for
textual data, it deals with the presence/absence of words.

LIME and SHAP explanations take the form of surrogate models that are
linear models (transparent by design). They learn a linear function g, i.e.,
g(z′) = wg · z′, where wg are the weights of the models which correspond to
the importance of features. Now, let ξ be the explanation for f(x), the function
g optimize the following objective function:

ξ = arg min
g∈G
{L(f, g, πx) +Ω(g)} , (24)

where Ω(g) measures the complexity of g (for instance, the arity of g) in order
to insure interpretability of the linear model given by the explainer. L is the
loss function defined by:

L(f, g, πx) =
∑
z,z′∈Z

[f(z)− g(z′)]2πx(z), (25)

where z is the interpretable representation of x, and πx(z) defines the neigh-
borhood of x that is considered to explain f(x).

LIME and SHAP differs in the definition of the kernel πx and also in the
complexity function Ω used to produce explanations. In the following we recall
each method and highlight their differences.

5.3.1 LIME

Local Interpretable Model Agostic Explanations is a model-agnostic explana-
tion method providing local explanations [39,23]. Explanations obtained from
LIME take the form of surrogate linear models. LIME learns a linear model
by approximating the prediction and feature values in order to mimic the be-
havior of ML model. To do so, LIME uses the following kernel πx to define the
neighborhood of x and considered to explain f(x):

πx(z) = exp(−d(x, z)2/σ2),

where d is a distance function between x and z, and σ is the kernel-width.
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5.3.2 SHAP

SHapley Additive exPlanations [33] is also a local model-agnostic explana-
tion method based on coalitional game theory. SHAP provides explanations in
the form of a linear surrogate model that (unlike LIME) is defined on a sim-
plified representation space (a “coalition” of simplified features), and whose
coefficients correspond to the contributions of features. In the case of SHAP
these coefficients coincide with Shapley values [41]. We focus on KernelSHAP
[33] that is a variant of SHAP. KernelSHAP receives as input an instance x,
the function f , and the number of coalitions m. It then learns a linear model
g defined on a simplified subset of features (“coalition” that defines the rep-
resentation space) by optimizing the loss function L(f, g, πx) with the kernel
πx(z) defined as:

πx(z) =
K(

K
|z|
)
|z|(K − |z|)

,

where |z| is the number of present features in the coalition z and K is the
maximum coalition size.

KernelSHAP first samples coalitions of features and it then asks for pre-
diction of each coalition. Before asking for predictions, KernelSHAP converts
a coalition z from the representation space to the original space using hx(z).
This produces a new dataset of coalitions along with predictions which is used
by KernelSHAP to fit the linear model g.
Example. To illustrate, let us consider the example of the Adult dataset9

where the goal is to predict if a person earns ≥50k dollars a year. The dataset
contains more than 32000 instances; each instance is described by 14 features,
e.g., “Age”, “Education”, and “Occupation”. Figure 2 and 3 present LIME
and SHAP explanations for a prediction using Logistic Regression classifier.
In the case of SHAP explanation, the Shapley value for “Capital Gain = 2,174”
is around -0.15 that indicates this feature contribute to move the prediction
towards the negative class.

5.4 Assessing Fairness: From Local to Global Explanations

Local explanation methods only provide explanations for individual predic-
tions. In order to assess fairness, we need to have a global understanding of
the classifier. For instance, if classifier’s outcomes depend on sensitive features,
the classifier might be biased against a protected group. However, local expla-
nations alone can not provide global understanding of the inner workings of
classifiers. To overcome this issue, Ribeiro et al. [39] proposed the so-called
Submodular-pick (SP). SP was originally proposed to work along with LIME
explanations and it is called SP-LIME. The main idea on which relies SP-
LIME is to sample a set of instances whose explanations are not redundant
and that has a “high covering” in the following sense.

9 http://archive.ics.uci.edu/ml/datasets/Adult
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Fig. 2: LIME explanation of the prediction of an instance in the Adult dataset.

Fig. 3: SHAP explanation of the prediction of an instance in the Adult dataset.

Denote by B the desired number of explanations used to explain f globally,
and let V be a set of selected instances, I an array of feature importance,
and W an explanation matrix –columns represent features and rows represent
instances– that contains the importance (contribution) of d′ features to each
instance. SP-LIME picks instances that are explaining thanks to:

Pick(W, I) = arg max
V,|V|<B

d′∑
j=1

1[i∈V:Wij>0]Ij .

Once the number of desired explanations is attained, i.e., V is completed,
then we aggregate the selected explanations. Essentially, for each feature in
V, we sum the contribution values of the respective feature that are present
in all selected explanations. As a result, we obtain a single real number for
each feature. This value represents the overall importance (contribution) of
that feature to the classifier’s outcomes. We call these feature contributions
the global explanation.

Let F (k) be the list of the k most important features a1, a2, ..., ak, where
the absolute contribution of au is greater than av, u < v. If F (k) contains at
least one sensitive feature aj1 , aj2 , . . . , aji in F (k) with i > 1, then the classifier
is deemed unfair.
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5.5 Manipulating Explanations and Concealing Unfairness

Explanations can give insights about the inner workings of opaque classifiers.
However, explanations based on feature importance can be manipulated. These
manipulations can be done in such a way that biases are concealed even though
explanations show that classifier’s outcomes do not depend on sensitive fea-
tures. This problem has been pointed out in recent papers [43,17,44].

Manipulating explanations can be done by adversarial attacks in the fol-
lowing way. An adversarial model is applied to train a biased classifier based
on a particular fairness notion. An auditor uses explanations based on feature
importance (LIME or SHAP) to assess (un)fairness.

LIME and SHAP generate data instances in the neighborhood of a data
instance of interest in order to obtain local explanation. Generating data in-
stances is done by perturbation and the distribution of generated data is not
the same as the distribution of input data. Once adversarial models can differ-
entiate between the two distributions, they can take advantage of it in the way
they train/modify a classifier to be biased, in order to fool LIME and SHAP
explanations.

5.6 Tackling Unfairness Through Unawareness: the case of FixOut

Algorithmic approaches that address unfairness issues are mainly divided in
three groups based on the stage they apply fairness interventions [21]: pre-
processing, in-processing, and post-processing. Pre-processing approaches mod-
ify the input to guarantee that the outcome is fair. In-processing techniques try
to change the learning algorithm during the training process. Post-processing
approaches modify algorithm’s outputs to satisfy fairness constraints.

This section presents FixOut (FaIrness through eXplanations and feature
dropOut), a framework that pushes further fairness through unawareness by
combining in-processing and post-processing without compromising accuracy.
FixOut removes sensitive features before training classifiers and modifies the
input which characterizes the pre-processing phase. The framework produces a
pool of classifiers whose outputs are combined thanks to an aggregation func-
tion. This function manipulates classifiers’ outputs in order to enforce fair-
ness, which characterizes the post-processing phase. More precisely, FixOut
has two main components, namely: ExpGlobal and EnsembleOut. ExpGlobal

is responsible for assessing fairness of a pre-trained classifier. EnsembleOut is
then applied if the pre-trained model is deemed unfair. It uses feature dropout,
which manipulates the input with an ensemble approach to build a fair clas-
sifier.

FixOut receives a triple (M,D,F,E) of a pre-trained classifier M , a
dataset D, a set of sensitive features F , and an explanation method E based
on feature importance. It starts by applying the component ExpGlobal using
E as the explanation method. For instance, it can employ either SHAP, LIME
or any other measure of feature importance, and thus to evaluate the depen-
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dence of M on sensitive features (see Figure 4). The output of ExpGlobal is a
list F (k) of the k most important features a1, a2, . . . , ak. The framework ap-
plies the following rule to decide whether M is fair: if F (k) contains sensitive
features aj1 , aj2 , . . . , aji in F with i > 1, then M is deemed unfair and the
FixOut’s second component applies; otherwise, it is considered fair and no
action is taken.

In the former case (i.e., M is considered unfair), FixOut employs feature
dropout [7] and uses the i sensitive features aj1 , aj2 , . . . , aji ∈ F (k) to build a
pool of i+ 1 classifiers in the following way:

– for each 1 ≤ t ≤ i, FixOut trains a classifier Mt after removing ajt from
D,

– and an additional classifier Mi+1 trained after removing all sensitive fea-
tures F from D.

This pool of classifiers is used to construct an ensemble classifier Mfinal

(see Figure 4). As a post-processing approach, FixOut has considered three
different aggregation functions for manipulating classifier’s outputs in order
to enforce fairness, namely: simple, weighted and learned weighted averages.
Note that, FixOut uses only classifiers that provide probabilities.

Simple average. This is an immediate solution for aggregating classifiers’
outputs. Here, all outputs have the same importance, even though some clas-
sifiers might be fairer than others. Given a data instance x and a class C, for
an ensemble classifier Mfinal that uses simple averaging, the probability of x
being in class C is computed as follows

PMfinal
(x ∈ C) =

1

i+ 1

i+1∑
t=1

PMt
(x ∈ C), (26)

where PMt
(x ∈ C) is the probability predicted by model Mt.

Weighted average. This function assigns different importance for clas-
sifiers’ outputs. In order to to that, the contribution of sensitive features
are taken into consideration. Let c′jt ∈ [0, 1] be the normalized global fea-
ture contribution associated with ajt . We standardize feature contributions by

c′jt =
cjt−min(F

(k))

max(F (k))−min(F (k))
, where min(F (k)) and max(F (k)) are the lowest and

the highest feature contribution among F (k), respectively. Now, let us define
the weights wt of Mt and the weight wi+1 of Mi+1 as

wt =
c′jt

1 +
∑i
u=1 c

′
ju

, 1 ≤ t ≤ i, and wi+1 =
1

1 +
∑i
u=1 c

′
ju

.

The main idea behind using feature contribution in the weighted average is
to ensure higher weights for classifiers trained without sensitive features whose
contributions to M ’s outcomes are high. Also, the additional classifier Mi+1,
the one that is trained without any sensitive feature, receives a higher weight.
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For an ensemble classifier Mfinal that uses weighted averaging, the probability
of x being in class C is computed as follows:

PMfinal
(x ∈ C) =

i+1∑
t=1

wtPMt(x ∈ C). (27)

Learned weighted average. The third aggregation function also assigns
different importance for classifiers’ outputs. However, unlike the weighted av-
erage, weights are learned by a learning algorithm, e.g. Logistic Regression,
instead of using directly contributions of sensitive features.

For each data instance, we ask the probabilities from each classifier in the
pool. We then associate the list of probabilities obtained from all classifiers
with the actual label. Thus, we have a dataset where each data instance is a
list of probabilities with its label. This new dataset allows us to train a logistic
regression classifier. After training, we use as weights the coefficients from the
trained classifier. The following example illustrates how FixOut works.

Example. We illustrate FixOut on the Adult dataset. The goal is to
predict if an American citizen earns more than 50k dollars per year based on
census information. In this dataset, the sensitive features are “MaritalStatus”,
“Race”, and “Sex”.

The global explanations and pool of classifiers obtained from the experi-
ment are depicted in Figure 4. In the right side of the figure, we can see the
ranking of features’ contributions F (k), where k = 10 (also referred to here
as the top-10 most important features), for both pre-trained (original model)
and FixOut’s ensemble classifiers. In the lower left part of the same figure,
the pool of classifiers is shown. Note that, as we considered three features as
sensitive features, FixOut trains four classifiers: three classifiers are trained
without one sensitive feature (either “MaritalStatus”, “Race”, or “Sex”) and
a fourth one without any sensitive feature (all three sensitive features are
removed before training).

Global explanations of the pre-trained classifier show that this classifier
is dependent on sensitive features, i.e., all sensitive features have (absolute
value of) contribution that place them in the top-10 most important features.
On the other hand, global explanations of FixOut’s ensemble show that the
pool of classifiers obtained from feature dropout is less reliant of sensitive
features. Note that, only “MaritalStatus” appears in the top-10 and this sen-
sitive feature has lower contribution for the ensemble’s outcomes than for the
pre-trained classifier’s outcomes.

5.7 FixOut for Textual Data

FixOut was extended to textual data and it was employed in the task of
classifying tweets as hate speech or not [3]. The dataset used to evaluate this
version contains tweets written in two language variant: African-American En-
glish and Standard-American English [15]. Classifiers trained on that dataset
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Feature (top 10) Contribution
CapitalGain 8.133364
Education-Num 3.180944
Age 1.824722
MaritalStatus 1.354002
Hoursperweek 0.767099
Education -0.518881
Country -0.345699
Race 0.203788
Sex 0.178965
Occupation 0.064353

Original model
All features are taken into account

Model 1
Trained without MaritalStatus

Model 2
Trained without Sex

Model 3
Trained without Race

Model 4
Marital status

Sex
Race

FixOut ensemble
Feature (top 10) Contribution

CapitalGain 7.877460
Education-Num 3.047071
Age 2.572467
Hoursperweek 1.193460
Country -0.881120
RelationShip 0.223869
Workclass -0.214024
fnlwgt 0.130579
MaritalStatus 0.120827
Education 0.081567

Explanation

Explanation

Fig. 4: Impact of FixOut on global explanations of original model (pre-trained
classifier) and FixOut’s ensemble classifier. Example taken from an experi-
ment on the Adult dataset using a bagging ensemble as pre-trained classifier
and LIME.

were reported to be biased against tweets written in African-American English.
For instance, some words that are considered offensive in Standard-American
English are used in familiar interactions in African-American English, e.g.
between close friends, and they do not indicate offensive discussions.

As language variant should not be a criteria for classifying a tweet as hate
speech or not, FixOut was extended in order to reduce the dependence of
classifiers on certain words. To do so, feature dropout was adapted to word
dropout. However, once the number of words to be removed increase, FixOut
becomes less effective. In order to overcome this issue, instead of ignoring
a single word, words are grouped in order to do a “bag of word dropout”,
i.e., the classifier drops several words. The contribution of words using bag of
words dropout (grouping words) is lower than word dropout (without grouping
words).

6 Empirical analysis on benchmark datasets

To show how fairness notions are used to assess fairness and to illustrate
some of the tensions described above, three benchmark datasets are used,
namely, communities and crimes, German credit, and Compas. For each one
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of them, the most common fairness notions are computed in two scenarios:
baseline model (logistic regression including all the features in the dataset)
and FixOut ’s ensembles using logistic regression. This allows to highlight
tensions between fairness notions and to show how feature dropping through
process fairness produces an ensemble classifier with a good trade-off between
fairness and classification accuracy.

6.1 Communities and crimes

The communities and crimes dataset10 includes information relevant to per
capita violent crime rates in several communities in the United States and
the goal is to predict this crime rate. The dataset includes a total number of
123 numerical features and 1994 instances. 22 features have been dropped as
they contain more than 80% missing values. The label violent crime rate has
been transformed into a binary feature by thresholding11 where 1 corresponds
to high violent rate and 0 corresponds to low violent rate. To assess fairness,
we consider two different settings depending on the sensitive feature at hand.
First, the communities racial makeup is considered as the sensitive feature
thus, two groups are created, namely: whites (communities with high rate of
whites) and non-whites (communities with high rate of non-whites12). Second,
the communities rate of divorced female is used as sensitive feature where we
divide the samples into two sub-populations based on whether the rate of
divorced females in a community is high (1) or low (0)13.

Tables 1 and 2 show fairness assessment results for the communities and
crimes dataset using the baseline model then FixOut. For both models, we
applied the ten-fold cross-validation technique, using 90% of the data for train-
ing and the remaining 10% of the data for testing. Five fairness notions are
applied, namely: statistical parity (SP), equal opportunity (EO), predictive
equality (PE), predictive parity (PP) and calibration. Note that we binned
the predicted scores in calibration in 10 bins and we calculated the bin-centers
for each bin as shown in Table 2. The results show discrimination against
communities with high rate of non-whites in the first setting and against com-
munities with high rate of divorced females in the second setting for all fairness
notions except for some of the calibration results corresponding to the bold-
faced rates14 presented in Table 2. Hence the only incompatibility exhibited
by the experiment on Communities and crime is between sufficiency and in-
dependence in the case of few bins (bold-faced) in calibration results.

Process fairness empirical analysis focuses on the impact of feature dropout
on classifiers’ dependence on sensitive features. The results are shown in Ta-
ble 3. Column “Contribution” contains the average value of feature contri-

10 https://archive.ics.uci.edu/ml/datasets/communities+and+crime
11 The mean value of the violent crime rate in the dataset is used as threshold.
12 Blacks, Asians, Indians and Hispanics are grouped into a single group called non-whites
13 The mean value of the divorced female rate in the dataset is used as threshold.
14 We consider here a maximum difference of 0.01 as insignificant.
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Table 1: Fairness assessment for the communities and crimes dataset.

Sensitive
Sub-population

Baseline FixOut
feature SP EO PE PP SP EO PE PP

Race
white .14 .46 .05 .71 .14 .46 .05 .70
non-white .80 .86 .50 .85 .80 .89 .45 .86

Divorced high rate .54 .72 .27 .82 .54 .72 .22 .82
female rate low rate .08 .43 .00 .79 .08 .57 .03 .74

.

Table 2: Calibration obtained from experiments on the communities and
crimes dataset.

Baseline FixOut
Sensitive bin centers bin centers
feature .13 .21 .30 .38 .46 .54 .63 .71 .80 .88 .16 .26 .33 .40 .47 .54 .61 .66 .75 .82

Race
.08 .20 .29 .36 .45 .52 .60 .67 .75 .81 .08 .20 .29 .36 .44 .52 .60 .68 .75 .82
.14 .21 .30 .41 .48 .56 .64 .71 .81 .90 .14 .21 .31 .42 .48 .56 .63 .72 .80 .91

Divorced .20 .24 .31 .39 .46 .53 .60 .68 .76 .87 .20 .24 .31 .39 .45 .52 .60 .68 .76 .87
female rate .01 .12 .28 .35 .46 .54 .60 .67 .72 .83 .06 .17 .28 .36 .44 .54 .60 .66 .73 .83

bution throughout the cross-validation protocol. Column “Ranking” presents
the average position of features in the top k most important features; here, we
adopted k = 20 for all experiments. We can observe that (absolute value of)
contributions of both sensitive features decrease when we use FixOut, e.g.,
the absolute value of contribution of “Divorced female rate” decreases from
0.0199 (baseline) to 0.0080 (FixOut’s ensemble). By analyzing the ranking,
one notes that the position of both sensitive features decrease, i.e., the position
in the list of most import features move down, which indicates that they be-
come less important compared to other features (ranking positions increase).
For instance, “Race” moved from 7.9 (baseline) to 15.5 position (FixOut’s
ensemble), i.e., it is closer to the end of the list. Classification accuracy for the
FixOut ensemble classifier, however, remains exactly the same as the baseline
case.

Table 3: Process fairness assessment for the communities and crimes dataset.

Contribution Ranking Accuracy
Baseline FixOut Baseline FixOut Baseline FixOut

Race 0.0092 0.0027 7.9 15.5
0.84 0.84

Divorced female rate -0.0199 -0.0080 1.6 6.5
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6.2 German credit

The German credit dataset15 is composed of the data of 1000 individuals
applying for loans. Among 21 features in the dataset, 7 are numerical and 13
are categorical. Numerical and binary features are used directly as features in
the classification and each categorical feature is transformed to a set of binary
features, arriving at 27 features in total. This dataset is designed for binary
classification to predict whether an individual will default on the loan (1) or
not (0). We consider first, gender as sensitive feature where female applicants
are compared to male applicants. Then, age is treated as protected feature
where the population is divided into two groups based on whether they are
above or below the mean age in the dataset (35.5 years-old).

Tables 4 and 5 show the results for assessing fairness notions for the Ger-
man credit dataset. As for the communities and crimes dataset, two models are
trained using 10-fold cross validation, namely, baseline and FixOut. Results
for both models show that the applicants who are above the mean age are dis-
criminated against compared to the applicants under the mean age based on
SP, EO and PE. However, the results of PP show that the two sub-populations
have almost the same predicted rate (0.54 ≈ 0.55) regardless of the sensitive
feature used (gender and age). That is, male and older applicants are privi-
leged over female and younger applicants, respectively, when applying SP, EO
and PE. However, there is parity when PP is used to assess fairness (around
0.55). Divergence between SP and PP is an example of the first incompatibil-
ity result in Section 3. Divergence between EO and PP is an example of the
third incompatibility result in Section 3. Calibration results is inline with PP
which confirms the first deviation.

Table 4: Fairness assessment for the German credit dataset.

Sensitive
Sub-population

Baseline FixOut
feature SP EO PE PP SP EO PE PP

Age
≥ 35.5 .11 .25 .03 .55 .15 .29 .10 .52
< 35.5 .23 .45 .30 .54 .20 .38 .12 .59

Gender
female .28 .75 .25 .55 .10 .23 .07 .52
male .14 .33 .16 .55 .21 .37 .13 .58

Table 6 shows the contribution of the sensitive feature on the classifica-
tion output for the baseline as well as the FixOut models. Notice that the
configuration is the same as the communities and crime case. Similarly to com-
munities and crime, FixOut improves the contribution and ranking of “Age”
compared to the baseline. However, FixOut only improved the ranking of
“Gender” but not the contribution of this feature. Classification accuracy has
slightly dropped from 0.71 in the baseline model to 0.69 in the FixOut model.

15 https://archive-beta.ics.uci.edu/ml/datasets/statlog+german+credit+data
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Table 5: Calibration obtained from experiments on the German credit dataset.

Baseline FixOut
Sensitive bin centers bin centers
feature .23 .29 .35 .41 .47 .53 .60 .65 .71 .78 .16 .23 .31 .39 .46 .54 .62 .70 .77 .85

Age
.19 .22 .28 .35 .40 .45 .51 .58 .63 .68 .19 .23 .31 .37 .43 .48 .54 .61 .67 .71
.23 .26 .32 .38 .43 .49 .54 .58 .63 .66 .20 .24 .32 .38 .44 .49 .55 .61 .66 .70

Gender
.21 .25 .31 .38 .44 .51 .57 .62 .66 .71 .20 .23 .29 .34 .40 .44 .52 .56 .64 .69
.18 .23 .29 .36 .43 .47 .55 .61 .66 .71 .23 .27 .33 .39 .44 .48 .52 .57 .62 .66

Table 6: Process fairness assessment for the German credit dataset.

Contribution Ranking Accuracy
Baseline FixOut Baseline FixOut Baseline FixOut

Age -0.0111 -0.0060 11.0 14.1
0.71 0.69

Gender -0.0001 0.0020 15.0 17.6

6.3 Compas

The Compas dataset contains information from Broward County, Florida, ini-
tially compiled by ProPublica [4] and the goal is to predict the two-year violent
recidivism. That is, whether a convicted individual would commit a violent
crime in the following two years (1) or not (0). Only black and white defen-
dants who were assigned Compas risk scores within 30 days of their arrest are
kept for analysis [4] leading to 5915 individuals in total. We consider race as
sensitive feature in the first setting and gender in the second. Each categorical
feature is transformed to a set of binary features leading to 11 features in total.

Similarly to the previous experiments, Tables 7 and 8 show the five fairness
notions results for the baseline and the FixOut models. The tables show
similar findings as those discussed in the German credit use case. That is, SP,
EO and PE are not satisfied for both settings (blacks vs. whites and females
vs. males) while the results of PP and calibration show closer results for both
settings (0.69/0.65 for whites/black and 0.64/0.69 for females/males). This
corroborates the debate that has arisen between Propublica and Northpointe16

(Compas designers) where Propublica used EO and PE to prove that Compas
privileges whites over blacks. At the other hand, the Northepointe’s answer
was that PP is a more suitable fairness notion to apply and they proved that
Compas satisfies PP for blacks and whites [16].

For process fairness (Table 9), similarly to the previous benchmark datasets,
the contribution of “Race” decreases when using FixOut’s ensemble classifier.
In the same way, the ranking of this feature increases from 7.1 in the case of
the baseline model to 8.5 in the case of the FixOut ensemble classifier. Sur-
prisingly, LIME explanations did not report “Gender” as a highly important
feature for baseline’s outcomes; this feature was already in the last position
in the ranking (with no contribution). As a result, we do not see any decrease

16 Now Equivant.
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Table 7: Fairness assessment for the Compas dataset.

Sensitive
Sub-population

Baseline FixOut
feature SP EO PE PP SP EO PE PP

Race
white .28 .42 .20 .65 .27 .42 .15 .66
non-white .56 .67 .36 .69 .53 .67 .34 .70

Gender
female .23 .31 .13 .64 .46 .63 .18 .70
male .48 .66 .33 .69 .29 .70 .28 .62

Table 8: Calibration obtained from experiments on the Compas dataset.

Baseline FixOut
Sensitive bin centers bin centers
feature .10 .19 .28 .37 .46 .54 .63 .72 .81 .90 .10 .19 .28 .37 .46 .54 .63 .72 .81 .90

Race
.16 .21 .27 .37 .45 .53 .62 .71 .79 .86 .17 .21 .27 .36 .45 .53 .62 .70 .78 .86
.17 .22 .29 .37 .46 .54 .63 .72 .79 .87 .17 .23 .29 .37 .46 .54 .63 .72 .79 .87

Gender
.16 .20 .27 .37 .44 .53 .62 .70 .79 .85 .17 .22 .28 .37 .45 .54 .63 .72 .79 .87
.17 .22 .28 .37 .45 .54 .63 .72 .79 .87 .17 .21 .27 .37 .45 .53 .62 .70 .78 .86

w.r.t feature contribution and ranking. Note finally that classification accuracy
is almost the same (0.71 vs 0.70) for both models.

Table 9: Process fairness assessment for the Compas dataset.

Contribution Ranking Accuracy
Baseline FixOut Baseline FixOut Baseline FixOut

Race -0.0017 -0.0003 7.7 8.5
0.71 0.70

Gender 0.0000 0.0000 10.0 10.0

7 Conclusion

Implementing fairness is essential to guarantee that ML-based automated de-
cision systems produce unbiased decisions and hence avoid unintentional dis-
crimination against some sub-populations (typically minorities). This survey
discusses two important issues related to implementing fairness.

First, there are several acceptable notions of fairness that can be impossible
to satisfy simultaneously. This means that fairness practitioners have to choose
among them. Second, implementing fairness can create tensions with other
desirable properties of ML algorithms, in particular, privacy and classification
accuracy. The survey also discusses process fairness which uses explanations
and feature dropout to reduce dependence on sensitive features. This is a
promising approach to improve fairness while keeping classification accuracy
at an acceptable level.

Empirical results showed concrete examples of tensions between fairness
notions in real datasets. For instance, for the German credit dataset, fairness
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is satisfied according to predictive parity (sufficiency), but is not satisfied
according to statistical parity (independence) and equalized odds (separation)
which corroborates the incompatibility results of Section3. Empirical results
showed also that using FixOut ensemble classifier (1) slightly reduced the
disparity between sub-populations, (2) kept classification accuracy at similar
level than the baseline case, and, most importantly, (3) significantly reduced
the dependence of the output on the sensitive features.

This survey highlights the need to construct fair ML algorithms that ad-
dress appropriately the different types of tensions. As future work, we also
emphasize the need to automate the choice of sensitive/salient features in
view of datasets and the decision task.
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A Notation Index

Table 10: Notation

V set of attributes
A sensitive attributes
X remaining (non-sensitive) attributes
Y actual outcome

Ŷ outcome returned
S score
R resolving features
M pre-trained classifier
D dataset
F list of features contributions

F (k) list of the k most important features
E explanation method
x data instance
f(x) outcome of a classifier
g linear (interpretable) model
z interpretable representation of x
hx(z) transformation function
K maximum coalition size
π kernel (LIME,SHAP)
σ kernel-width
Ω measure of complexity
d distance function
B desired number of explanations
V selected instances
W explanation matrix
I array of feature importance
wt weight of the t-th classifier
C class (label)
ai i-th attribute (feature)
ci global feature contribution associated with ai


