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Abstract—
Assisting air traffic controllers in their deconfliction task is

challenging. A five nautical mile separation standard in the
horizontal plane and one thousand feet vertically are required
in the upper airspace between aircraft. However, air traffic
controllers generally need to take extra margins in their mental
process. These margins can impact efficiency and capacity but
are essential to safely manage the evolving traffic situations. It
is necessary to model uncertainties on controllers trajectories
predictions in order to design assistance tools that can mimic
their perception of conflict risk. This article models uncertainties
on the speed prediction, pilots reaction times when a maneuver
is started or ended, and heading change accuracy. A method
is proposed to estimate these values on deconflicted trajectories
benchmarks. First we apply our method to benchmarks that
where artificially created with an automatic solver calibrated
with specific known uncertainty parameters. We show that
the uncertainty on speed prediction, maneuver start time and
heading change can be retrieved afterwards with a good accuracy.
Then we apply our method to benchmarks of conflicts solved by
qualified air traffic controllers. The method works but the quality
of the results is questionable because of the small data size and
the big variability in the air traffic controllers decisions.

I. INTRODUCTION

Air traffic controllers still have very few tools to detect and
solve conflicts. Many attempts have been made to ease their
task in the past. The major issue controllers have to face is the
lack of accuracy in trajectory prediction. Because they only
have a partial control on the pilots reaction and trajectory
change, they need to anticipate maneuvers and give enough
margins to trajectory modifications. As long as we keep the
controller in the loop of conflict detection and resolution, we
need to take into account this factor. Any tool that aims at
helping controllers in conflict detection must take into account
uncertainties in trajectory prediction. If too much uncertainty is
added to the detection, the controller will find the tool useless,
sometimes bothering for situations that are not an issue. If
the uncertainties are underestimated, air traffic controllers may
feel unsafe because they might keep an eye on situations that
are not detected by the tool. In this article, we present a model
of uncertainty that is related to the behaviour of pilots and
controllers and we try to calibrate the uncertainty parameters

with traffic situations solved by humans. Therefore we first test
our model on artificial problems that were created using an au-
tomatic conflict solver and chosen uncertainty parameters. We
show that it is possible to “guess” the uncertainty parameters
used to create the maneuvers. We then use real resolution data
collected on a benchmark of two and three aircraft conflicts
solved by a cohort of 17 qualified air traffic controllers of the
Reims Control Center to test our uncertainty model.

Conflict detection and resolution require much of Air Traffic
Controller mental resources. In order to provide a tolerable
level of problem complexity to air traffic controllers, the
current Air Traffic Management system is divided into layers
or filters, each with a decreasing time horizon. Each layer is
meant to reduce the complexity of the next one. There are four
major layers:

1) Strategic (several months before), ASM (Air Space
Management): design of routes, sectors and procedures

2) (Pre-)Tactical (a few days to a few hours before), ATFM
(Air Traffic Flow Management): control centers open
schedules and define hourly capacities of each open
sectors (or groups of sectors). To respect these capacity
constraints, the NMOC (Network Manager Operations
Center) computes and updates flow regulations and
reroutings according to the posted flight plans and
resulting workload excess.

3) Real time (5/10 minutes), tactical control: surveillance,
coordination with adjacent centers, conflict resolution by
various simple maneuvers (heading, flight level, speed)
transmitted to the pilots.

4) Emergency (less than 5 minutes), safety nets: ground-
based (Short Term Conflict Alert, Minimum Safety Al-
titude Warning) and airborne (Traffic Alert and Collision
Avoidance System, Ground Proximity Warning System).

Our research focuses on the real time level. In France, like
in many countries, air traffic controllers are trained to detect
conflicts using a 2D horizontal visualization of the traffic.
Aircraft are represented by plots and past positions of the
aircraft are represented by a comet. The speed vector is
materialized by a line segment representing 3,6 or 9 minutes of
flight. This line segment helps the air traffic controller project
future positions of the aircraft to detect potential conflicts.
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Controllers can also, on demand, measure distances between
points to check minimum separations, but this information is
not automatically shown on the screen. There have been many
attempts to organize the controller’s work or assist the conflict
detection task. Short Term Conflict Alert (STCA) tools are
also progressively introduced in En-Route controller displays
in order to ease the conflict detection but their reliability is
often questioned depending on how the trajectory prediction
is performed. This shows that uncertainty management plays
a key role in air traffic control. [1] recently proposed a
field study exploring sources of uncertainties and management
strategies adopted by controllers. In the trajectory prediction,
some uncertainties are constant, some other uncertainties grow
with time. Corver et al recommend that controllers should be
able to understand how alerts are designed, how prediction
tools work and how the system is flexible for acknowledging
increasing uncertainties.

First research experiments on controller assistance tools
were carried out in the 1990s. In Europe, HIPS [2], [3] the
Highly Interactive Problem Solver was issued from ARC2000
[4]. HIPS offered a representation of the conflict zones, called
no-go-zones, in an interactive way for a chosen aircraft,
knowing the intent of the other aircraft and taking into
account uncertainties. An optimal maneuver time could thus
be defined, but the uncertainty modeling was not detailed in
the articles. The concept was more recently redefined in the
Solution Space Based Diagram [5] to deal with 4D Trajectory
Management. [6] compare different conflict prediction models
taking into account uncertainties. They explain that uncertainty
model adopted by HIPS uses geometric approach: Aircraft
are modeled by ellipses and the conflict predictor compares
the distance between ellipses and the separation standard. The
size of the ellipse grows with time in the speed direction.
This models uncertainties on aircraft speeds. Bakker and Blom
compare on different scenarios the result of the geometric
conflict predictor and the probabilistic model used by [7] and
later adopted by [8] in the American project URET (User
Request Evaluation Tool). They also introduce a third conflict
predictor based on a collision risk approach. The challenge
of any conflict predictor is to detect every conflict without
overestimating potential conflict that will not lead to effective
separation loss.

In the US, [7] introduced a conflict predictor in the 90s
that was then used by [8] in URET. The model is much
more technically advanced than the geometric approach. It
can display conflict probabilities in complex situations. The
conflict probe models trajectory prediction with gaussian dis-
tributions, calibrated on observed data. Very few details are
given in Erzberger’s publications on how the uncertainties
were adjusted. Furthermore these uncertainties modeled air-
craft future position distribution and did not try to model air
traffic controllers behaviour. The conflict probe was used by
[9] as a tool to assist controllers in the conflict detection task.
[10] describe complex experiments done in 2008 to check how
new displays of conflicts and an interactive conflict solver can
help controllers deal with 3 times the current traffic. In [11],
bad weather conditions and time constraints are added to check
the robustness of the automated solver tool.

Besides assistance tools, much research has been done
on automatic conflict resolution in the last 30 years [12],
[13], [14], [15], [16], [17], [18], [19], [20]. Complex con-
flict situations can now be handled by automatic solvers.
Hypotheses used by researchers to model the trajectories and
uncertainties are generally not realistic enough to imagine a
usable application, but even in the most realistic models using
simple maneuvers [12], [20], the solutions found by automatic
solvers have never really been compared to real situations.

None of the cited research try to model the air traffic
controller uncertainty management. In this article we model
air traffic controller uncertainties and introduce a method
able to calibrate this model. We first detail the air traffic
controller uncertainty model used in part II. Then we use
an automatic solver to optimize resolutions using nominal
uncertainty parameters on a benchmark of random conflicts
(part III). We show in part IV that we can learn the uncertainty
parameters used with a benchmark of resolutions using these
parameters. Part V show the uncertainty parameters found with
this approach on a benchmark of resolutions performed by
qualified air traffic controllers of the Reims Control Center.

II. AIR TRAFFIC CONTROLLER UNCERTAINTY MODEL

Air traffic controllers need to anticipate aircraft positions
taking into account several uncertainties. These uncertainties
have been taken into account in previous work [20], [21] but
we never managed to give realistic values to the different
parameters defined. In [20] we introduced the model in the
horizontal plane. In [21] we added the vertical dimension that
we do not consider in this article, but will add in future work.

A. Maneuvers

We discretize time into steps of duration τ to describe
maneuvers. τ is small enough to detect every conflict in the
application. In the experiments, τ = 3 s because two facing
aircraft flying at 600 kt (maximal speed) get only 1 NM closer
every 3 s, so we will never miss any conflict with such a small
τ value ([22] discusses the topic).

In our trajectory model, maneuvers are heading changes of
α degrees, at starting time t0, until ending time t1. Heading
changes α can take different values that are discretized by
steps of 5 degrees, in order to comply with air traffic con-
trollers practice. α is relative to the current heading. Figure 1
summarizes a current Air Traffic Control maneuver which can
easily be implemented by pilots and current FMS technologies
(cf. [23]).
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Fig. 1: Maneuver model.

We model four different sources of uncertainties:

• When pilots get maneuver orders, they can react more or
less quickly. An uncertainty δt0 ∈ [0,∆t0 ] representing
the maximum reaction time for beginning a maneuver is
associated with time t0 (figure 2);

• An uncertainty δt1 ∈ [0,∆t1 ] representing the maximum
reaction time for resuming the initial route (i.e. heading
to the next beacon of the route) is associated with time
t1 (figure 2);

• An uncertainty εα ∈ [−EαMax , EαMax ] is also associated
with the heading change angle α (figure 3);

• Aircraft speeds are also subject to a εs ∈
[−EsMax , EsMax ] error such that future positions
of aircraft are spread over a range which grows with
time (figure 4);
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Fig. 2: Pilot execution time uncertainties: δt0 and δt1 model.
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Fig. 3: Maneuver angle uncertainty: εα model.
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Fig. 4: Speed uncertainty: εs

B. Handling Uncertainties

We define three different states for a maneuvered aircraft
(see figure 1) depending on the fact that it has not started its
maneuver (State S0), it has started its maneuver (State S1),
or it has ended its maneuver (State S2). In the prediction, the
initial position of an aircraft is a point (the current known
position of the aircraft). At each time step the position of
the aircraft is recalculated according to the previously defined
uncertainties. Because of the speed uncertainty, an aircraft
position at time t can lead to different positions at time t+ τ .
If a maneuver is decided at time t0 and the current time
tcur ∈ [t0, t0 + ∆t0 ], the next position can either take into
account the maneuver or not, which creates two different pos-
sible positions of the aircraft, with different status. In one case
the aircraft is still not maneuvered, and will remain in state
S0. In the second case the aircraft has started its maneuver and
switches to state S1. The same process occurs when the current
time tcur ∈ [t1, t1 + ∆t1 ]. Each aircraft position is described
at every time step τ (i.e. 0, τ , 2 τ , 3 τ . . .) by three convex
hulls corresponding to the three possible states (S0, S1 or S2)
of the aircraft. Only the extreme points of the convex hulls
are used to define the new possible aircraft positions. This
prevents the trajectory prediction from becoming too much
time consuming. Convex hulls are computed with Graham’s
algorithm [24].

Figure 5 gives an example of maneuver with the different
states. In red, the aircraft has not started any maneuver. In
green, the aircraft has changed its heading, and in blue, it is
heading back to the next point on its route (D). The gray line
gives the convex hull of the three states. The conflicts will
then be detected between such convex hulls by computing
their relative distance.
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Fig. 5: An example of trajectory prediction. Red, green and
blue correspond respectively to states S0, S1 and S2; Grey

parts represent the convex hulls.

Any traffic simulator using any kind of uncertainty hy-
pothesis can be adapted to build the trajectory prediction for
the aircraft and for the maneuver options. It is also possible
to have different uncertainties for different aircraft. We can
also use different maneuver options if necessary. The convex
hull prevents the detection algorithm from missing a potential
conflict according to the chosen uncertainties.

This approach can easily be generalized to the third dimen-
sion (vertical plane), taking into account uncertainties on the
climbing rate of the aircraft. Convex 3D-volumes can thus be
defined and conflicts detected according to the horizontal and
vertical distance between them.

III. NOMINAL BENCHMARK USING AN AUTOMATIC
SOLVER

In this section, we detail how we build nominal benchmarks
that will be used in section IV to evaluate the uncertainty
parameters. Because we know the uncertainties used to build
the nominal benchmarks, we will be able to check how our
learning process can recover these parameters.

A. Building a Nominal Benchmark

Before calibrating the uncertainty model using a benchmark
of conflicts solved by air traffic controllers, we want to validate
our approach on “nominal benchmarks” on which we know
what uncertainties were used. We want to make sure the
calibration gives us the values of the uncertainties that were
used to build the benchmark.

To build a nominal benchmark we use a conflict generator
and solve conflicts in a centralized way using an evolutionary
algorithm (EA) that predicts trajectories with the uncertainty
model described in section II. The EA used is similar to
those described in [12] and [25]. It finds optimal maneuvers
(t0, t1, α) for each aircraft of a scenario with the uncertainty
model. The EA presented in this section is different from
the EA used in section IV. It is used to find conflict free

Entry point area

Exit point area

10 Nm

100 Nm

Exit point area

100 Nm

30°

18°

Fig. 6: Generation of random traffic situations.

trajectories to build nominal benchmarks. The EA creates a
population of 50 random solutions in which each aircraft is
given no more than one maneuver. It first tries to find conflict
free solutions without trying to optimize maneuvers and then
spends an extra 20 generations minimizing the number of
maneuvers and finally minimizing the generated delays. 40%
of each population is crossed, 40% of each population is
muted. It uses σ truncation scaling and a simple sharing
process that devides the fitness of solutions that share the same
characteristics by their occurrence numbers: two solutions
share the same characteristics if they turn right or left or
keep straight the same aircraft. The EA returns a near optimal
solution for each scenario. For scenarios with two aircraft, the
EA generally solves the conflict with one maneuver.

B. Exercise generation

In order to generate random traffic scenarios with different
types of conflicts between aircraft, we consider a circular
sector with a diameter of 100 nautical miles (about 15 minutes
of flying time for an aircraft), with 20 possible entry points
regularly positioned on its circumference (see figure 6). With
these orders of magnitude, the distance between two neighbor-
ing entry points is over 15 nautical miles (which is three times
greater than the minimal separation distance between aircraft).

For the nominal tests, the number of aircraft in the traffic
situations is set to 2. Each aircraft is randomly assigned:
• a nominal speed, between 370 and 550 knots;
• its own entry point, in a rectangular area of 10 nautical

miles around one of the sector’s entry points;
• an exit point on the opposite side of the sector, in a

slice extending by plus or minus 30 degrees around the
opposite point on the circle.

Initially, each aircraft flies directly from its entry point to its
exit point.
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In order to build conflict scenarios and avoid unmanage-
able traffic situations, the following constraints were required
additionally (situations not respecting these constraints were
discarded):
• A conflict must happen considering the uncertainty cho-

sen;
• A minimal duration of 3 minutes was required before the

first conflict happens.
Using this process, we generate nominal benchmarks

Ωεs,δt0 ,δt1 ,εα of 40 scenarios using uncertainties εs, δt0 , δt1
and εα. These scenarios will be used in section IV in order to
check that uncertainties can be retrieved.

IV. LEARNING THE NOMINAL UNCERTAINTY PARAMETERS

In order to calibrate the uncertainty model described in sec-
tion II, we adjust uncertainties on the deconflicted trajectories
in order to reach a minimal distance as close as possible to
5 nautical miles between the uncertainty volumes around the
trajectories. Therefore, we define a function dω(εs, δt0 , δt1 , εα)
that calculates the minimum distance between trajectories,
given the uncertainty parameters (εs, δt0 , δt1 , εα), on the sce-
nario ω. Function dω can be applied to a benchmark Ω of
deconflicted aircraft scenarios and our objective is to mini-
mize:

DΩ(εs, δt0 , δt1 , εα) =
∑
ω∈Ω

[dω(εs, δt0 , δt1 , εα)− normd]
2 (1)

For the benchmark Ω, the minimum of DΩ for a benchmark
returns the uncertainty parameters for which resolutions com-
ply the most with normd when these uncertainties are applied
and thus calibrates the values of these uncertainties on the
benchmark.

Nominal scenarios were created as described in section III.
For each nominal benchmark Ωεs,δt0 ,δt1 ,εα of 40 scenarios,
the same uncertainties have been chosen and the resulting
data are aircraft trajectories before and after resolution. Before
resolution, we save the trajectory containing the origin and
the destination of each aircraft. After resolution, the new
trajectories of the deviated aircraft are added.

In order to optimize the four uncertainty values, we min-
imize the function DΩ defined in (1) on benchmark Ω: we
want to find the uncertainties εs, δt0 , δt1 , and εα that were
used to create the benchmark in order to validate the method.

Because the minimization criteria is the result of simula-
tions, we can only use optimization techniques that do not
require any analytical expression of the minimization criteria.
Furthermore, we have no idea of the regularity of the mini-
mization criteria. We decided to use an evolutionary algorithm
to minimize DΩ because it is robust to premature convergence.
In addition, an evolutionary algorithm as described in [12] is
generally more robust to the multimodal characteristics of our
problem.

A. Evolutionary algorithm

We decided to use a simple evolutionary algorithm to find
the four parameters εs, δt0 , δt1 and εα that minimize DΩ

on a benchmark of solved scenarios Ω. The elements in our
population correspond to a data type with four variables:

• The velocity uncertainty (between 0 and 20 %) εs ∈
[0; 0.2];

• The pilot answer uncertainty at the beginning of the
maneuver δt0 ∈ [0; 60];

• The pilot answer uncertainty at the end of the maneuver
δt1 ∈ [0; 60];

• The heading uncertainty during the maneuver εα ∈
[0; 10].

Because the EA seeks for a maximum, we used the fol-
lowing fitness function to minimize the difference between dω
and normd for each ω ∈ Ω:

f(εs, δt0 , δt1 , εα) =
|Ω|

|Ω|+DΩ(εs, δt0 , δt1 , εα)
(2)

A population of 20 elements is randomly generated at the
beginning of the EA. The population is rather small because
we only optimize four variables and the fitness evaluation is
rather long (it is the result of the 40 scenarios simulation for
each population element). For each individual of a generation,
its uncertainties are taken into account when applying the
aircraft maneuvers for each scenario and its fitness is then
calculated. The EA is stopped after 300 generations.

We decided to cross 20% of the population using an
arithmetic crossover and to mutate 30% of the population
by randomly choosing one of the four uncertainty variables
and adding a random noise to it. The noise is randomly
chosen in an interval centered in 0 of magnitude 10% of
the corresponding uncertainty domain. A sharing process is
used to avoid premature convergence. The euclidean distance
is used for the sharing process. The different parameters used
(percentage of crossover, mutation, type of mutation) where
adjusted empirically by testing different options.

B. Results on nominal benchmarks

We first validate our approach by using a benchmark for
which we know the uncertainties used. We want to make sure
that the EA gives us values that are close to uncertainties
used to build the benchmark. On a first benchmark using
uncertainties (εs = 0.1, δt0 = 30, δt1 = 30, εα = 5) the
EA gives us (εs = 0.1, δt0 = 30, δt1 = 48, εα = 5.8).
Uncertainties found for the speed, for t0 and for α are close
to the one used to create the benchmark. Uncertainty on t1
is very different. In order to understand why, we show in
figure 7 the behavior of the fitness function when we assign
three uncertainties to their optimal values and allow the fourth
uncertainty to vary.
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Fig. 7: Fitness as a function of the uncertainty parameters

Figure 7 details the fitness curves according to the four
uncertainties: 10 % for the speed, 30 seconds for t0, 48
seconds for t1 and 5.8 degrees for the heading.

The uncertainties related to the speed, to the maneuver start
and to the heading show a peak of fitness consistent with the
value of the expected uncertainty. We remain slightly above 5
degrees, but this could be due to the fact that the automatic
solver used in section III discretizes angles by steps of 5
degrees and keeps a minimum of 5 nautical miles between
aircraft.

The slightly chaotic aspect of the fitness curve as a function
of the t0 uncertainty justifies the choice of an evolutionary
algorithm as local maximums are present.

The fitness curve as a function of t1 is flat, which means
that our benchmark involving only two aircraft scenarios don’t
permit to detect uncertainties due to the end of maneuver
execution. This can be explained by the fact that if pilots
do not end their maneuver once the conflict is over, it does
not create any new conflict (This is particularly true for two
aircraft conflicts).

For this benchmark, figure 8 illustrates the minimal dis-
tances between aircraft (after resolution), as a function of
their initial headings difference, measured with and without
uncertainties.

Each point represents a particular scenario that has been
created and previously solved by our automatic solver. With
the uncertainties found by the EA (red points), the minimum
distances are close to 5 nautical miles as expected.

In table I, we give results on different nominal benchmarks
built with 9 different combinations of uncertainties. The four
first columns give the uncertainties used to build the 9 different
benchmarks. The four next columns give the uncertainties
found by the EA. The fitness columns compare the fitness
expected with the original uncertainties to the optimized
fitness. |dω − normd| for all ω ∈ Ω represents the error of
the model. The last two columns give the mean and standard
deviation of |dω − normd|.

The optimal expected fitness is generally lower than the
obtained fitness because the automatic solver stays above the 5
nautical miles separation. In the optimization process, normd

Fig. 8: Nominal case : Minimum distance between
uncertainty volumes (with uncertainties) or between

nominal trajectories (without uncertainties)

should probably be set to a higher value to improve the results.
First trials done with

√
28 tend to confirm this hypothesis. For

the seek of clarity of the paper, we do not develop this option
in this article.

In table I the speed, maneuver start, and heading change
uncertainties are generally very close to the expected values,
even for extreme uncertainty values. The error of the model is
a little higher for cases where the uncertainties are very low
or very high.

We introduced this first step using nominal benchmarks to
validate our approach. Results show that the method can find
three of the four uncertainty values with a good accuracy:
the speed, maneuver start, and heading change uncertainties.
To find the uncertainty on the end of maneuver, we should
probably use more complex scenarios or maybe refine the op-
timization criteria. In the next section we apply this approach
on conflicts solved by qualified air traffic controllers.

V. RESULTS ON EXPERIMENTS WITH AIR TRAFFIC
CONTROLLERS

A. Results on two aircraft benchmarks

We extracted from experiments done in the Reims Control
Center presented in [26] two aircraft resolution scenarios
solved by air traffic controllers. The benchmark includes 46
scenarios involving 8 different conflicts with 2 levelled aircraft
solved by 17 air traffic controllers. We kept the scenarios for
which no more than one maneuver per aircraft had been given,
and for which the conflict was solved.

The EA presented in section IV estimates the speed uncer-
tainty on close to 0, 8%, the time uncertainty t0 close to 145
seconds and the heading uncertainty close to 1.5 degrees (The
time bound of 60 seconds used in the nominal benchmarks was
increased because initial tests showed that is was to small).
Figure 9 shows the shape of the fitness as a function of
one out of the four uncertainties when the three others are
assigned their optimal value. It is once again clear that the
uncertainty on the end of maneuver cannot be estimated with
this approach.
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TABLE I: Results on nominal benchmarks

Expected uncertainties Optimized uncertainties Fitness |dω − normd|
s t0 t1 h s t0 t1 h exp opt ν σ

0.01 30. 30. 5. 0.01 30 57 7.6 0.80 0.91 0.22 0.24
0.1 30. 30. 5. 0.10 30 48 5.8 0.92 0.95 0.15 0.16
0.1 5. 30. 5. 0.10 4.3 60. 5.6 0.89 0.95 0.18 0.14

0.01 15. 15. 1. 0.01 18 4.5 1.9 0.85 0.91 0.21 0.22
0.1 30. 30. 1. 0.01 29 3.4 2.5 0.89 0.95 0.17 0.16
0.2 50. 50. 10. 0.21 50 60. 9.9 0.84 0.90 0.23 0.24
0.2 30. 30. 5. 0.20 30 8.9 6.6 0.78 0.89 0.26 0.23
0.1 30. 30. 10. 0.1 37 37 9.4 0.89 0.94 0.21 0.16
0.1 50. 30. 5. 0.10 48 27 6.0 0.91 0.96 0.16 0.15

Fig. 9: Fitness as a function of the uncertainty parameters

Furthermore, the average of |dω−normd| is approximately
equal to 2.18 with a standard deviation of 1.72, consequently
the model error is 10 times higher than for the nominal cases.
Figure 10 illustrates the distances on these scenarios dω for
all ω ∈ Ω as a function of the difference between the initial
headings of the aircraft with the uncertainties determined by
the algorithm (in red) and without uncertainties (in blue).
The cloud of red points is spread around the 5 nautical mile
ordinate because we minimize

∑
Ω(dω−normd)

2. We clearly
see a great variability of the decisions of the various air traffic
controllers. 8 columns of points are identifiable: these are the
different scenarios resolved by the controllers. Blue points
represent the minimum distance between the aircraft at the end
of the resolution by the controllers, without any consideration
of uncertainties.

B. Results on three aircraft benchmark

We extracted from experiments done in the Reims Control
Center the three aircraft resolution scenarios solved by 17
air traffic controllers. The benchmark includes 35 different
scenarios with 3 levelled aircraft. We kept the scenarios for
which at most one maneuver per aircraft had been given,
and for which the conflict was solved. For each maneuver
of each scenario, we initialize the uncertainty half a minute
before the decision was made by the air traffic controller. If

Fig. 10: Two aircraft experiments : Minimum separation
distance between aircraft with and without uncertainties

two maneuver decisions are made at two different times, we
duplicate the scenario in order to start the uncertainty half a
minute before each maneuver and calculate dω as the minimal
distance between the trajectory of the maneuvered aircraft and
the two other trajectories. Because we duplicate scenarios we
end up with 73 scenarios.

The EA estimates the speed uncertainty close to 1.4%,
the time uncertainty t0 close to 22 seconds and the heading
uncertainty close to 3.9 degrees. Figure 11 shows the shape
of the fitness as a function of one out of the four uncertainties
when the three others are assigned their optimal value.The
uncertainty on the end of maneuver still cannot be estimated
with this approach.

The average of |dω − normd| is approximately equal to
2.36 with a standard deviation of 2.1. Figure 12 illustrates the
distances on these scenarios dω for all ω ∈ Ω as a function
of the difference between the initial headings of the aircraft
with the uncertainties determined by the algorithm (in red) and
without uncertainties (in blue). We clearly observe that the red
points spread around the 5 nautical mile line.

C. Discussion

1) Two aircraft benchmark: Several observations can be
made. First, for small differences between initial headings,
less controllers were able to solve conflicts. This is probably
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Fig. 11: Fitness as a function of the uncertainty parameters

Fig. 12: Three aircraft experiments : Minimum separation
distance between aircraft with and without uncertainties

due to the fact that these conflicts are more difficult to solve
and need a quick decision. The number of collected scenarios
on these cases is probably too small to draw conclusions.

Second, there is a big variability of controllers response to
the same conflict configurations. This explains the rather high
value of the model error. It is probably necessary to collect
many more scenarios for a panel of different controllers to
give an interpretation to these results.

Third, if confirmed on bigger data sets, these results could
show that air traffic controllers may be very sensitive to the
uncertainty on the pilot response (estimated to 145 s).

2) Three aircraft benchmark: Results on the three aircraft
benchmark show a much smaller uncertainty on the pilot
response (20s), which could be explained by the fact that air
traffic controllers took a longer time to analyse the situation,
and waited to be closer to the conflict to make a decision.
These conflicts are more difficult to solve and can probably
not handle big uncertainties. We are aware of the questionable
reliability of these results on such a small benchmark.

VI. CONCLUSION AND FURTHER WORK

To conclude, we introduced in this article an approach
that models and estimates uncertainties on trajectories due
to conflict resolution. We validated the estimation process on
nominal benchmarks and showed that three out of the four
uncertainties modeled could rather precisely be estimated by
minimizing DΩ(εs, δt0 , δt1 , εα) on conflict scenarios.

We applied this approach on air traffic controllers conflict
resolutions involving two and three aircraft. We showed that
our model could still return values for the speed, maneuver
start and heading change uncertainty but the quality of the
results are not as good. The mean error remains above 2
nautical miles after applying the estimated uncertainties. This
prevents from building strong conclusions on the results, even
if we can make hypotheses to explain the orders of magnitude
observed in the results.

Results show that we need to perform our estimation
model on much bigger benchmarks. It could be interesting
to individualize the estimation on each controller to see if
we can observe different behaviors. We are currently working
on collecting big data sets to move forward in this direction.
We could also extend our model to the vertical dimension, by
adding uncertainties on climbing and descending rates.

However, this paper introduces an original approach to
model how air traffic controllers deal with uncertainties related
to conflict resolution in a scientific manner. The goal is that
future decision support tools become accepted and efficient for
air traffic controllers by ensuring that the uncertainty model
matches their own perception of conflict risk.

We really wanted to focus on the method in this article,
which is a first step toward a stronger study of the air traffic
controller uncertainty model for which more work is needed.
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