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Abstract

The aim of this paper is to present an algorithm to solve frictional con-
tact problems by considering the Coulomb’s criterion. As it is known, the
frictional contact problem using Coulomb’s criterion has no minimization
principle behind. However in order to use algorithms based on minimiza-
tion methods, the frictional contact problem is written as an optimization
one, more specifically as a sequence of Tresca contact problems. Moreover
a family of regularization functions is introduced in order to regularize
the non-smooth character of the Tresca criterion, which in some cases
can have an experimental justifications. As each minimization problem
becomes smooth enough, the interior point method is used to solve the
generated optimization problem.

Keywords— Frictional contact, regularization , optimization, fixed point, interior
point method, symmetric algorithm

1 Introduction

The contact problems with friction were studied in many papers, for example in [10]
the existence of solutions for elastic static contact problems with a small coefficient
of friction was proved in the case of Coulomb’s friction, where a penalty method
was used. In the paper [3], existence of solutions for static Signorini’s problem with
Coulomb friction was proved, where the normal component of the stress was replaced
by a regularized one, in addition, the uniqueness of the solution was proved for a
small friction coefficient. In the chapter 3 of [9] several studies for elastic frictional
problems were done in addition to the formulation into a variational inequality for the
Signorini’s problem with Coulomb’s friction.
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In [23] and in the case of linear elastic material, the Coulomb frictional contact
problem is transformed into a sequence of Tresca frictional contact problems. Indeed
the problem is transformed into a fixed point method where at each iteration a min-
imization problem over a convex set is solved. The bi-potential method was used for
frictional dynamic problem in [11, 12], indeed the contact forces are computed by a
process of prediction and correction, by a projection on the Coulomb cone. Then the
contact forces are considered as an external loading.

A penalty formulation based on the integration points was considered in [13], to
solve frictional contact problems. The integration in [13] was done on the non-mortar
segments (or the slave contact segments), with a fixed integration points on the non-
mortar segment, and not on the overlapping regions between mortar and non-mortar
areas, so the computational effort is reduced. In [1, 25, 26] the elastic problems were
considered, where a non-classical friction law was used in [25, 26], the idea was to fix
the normal pressure at each iteration and update it for the next iteration.

The returning mapping method is a method used for the frictional contact prob-
lems, this method was already been used in plasticity problems (see [5, 6]), where like
the yield surface, a surface which is dependent on the normal and on the tangential
stress is created (see [14]). We can cite for example [28] where the penalty and the aug-
mented Lagrangian methods were used. The return mapping method and the penalty
method were also presented in [30] for contact problems with large deformations.

In this paper, we present an algorithm to solve frictional contact problems using
Coulomb’s criterion for elastic and finite deformation problems. As we know, the
frictional contact problem using Coulomb’s criterion has no minimization principle
behind. However, expressing the contact problem in a minimization form and solve it
with optimization methods can be a robust way to solve it, indeed we can use several
optimization techniques (for example line search method) in order to converge faster
to the solution which is a minimum. Therefore in order to use optimization algorithms,
the frictional contact problem is written as an optimization one, more specifically as
a sequence of Tresca contact problems until convergence (a fixed point method).

Each Tresca contact problem is equivalent to a minimization one, unfortunately
the energy to minimize becomes not smooth enough, therefore we introduce a family
of regularization functions in order to regularize the non-smooth part. In addition, in
some cases, regularization can be justified because tangential slip always occurs, even
for a small tangential stress [4, 24]. We can also cite [17], where a micro-displacement
is produced between a hard steel ball and the flat end of a hard steel roller in contact,
when the tangential force applied on the ball is less than the value necessary to produce
slip.

In the case of large deformations, the non-penetration constraints are non-linear,
therefore the contact problem is written into a sequence of problems with linear con-
straints, more specifically as a fixed point (more like [7, 8, 20]). In addition the
non-penetration constraints are imposed in a symmetrical manner, in other words,
non-penetration constraints are prescribed on the slave body to forbid the penetration
of the latter into the master one, in addition to non-penetration constraints which are
prescribed on the master body to forbid the penetration of the latter into the slave
one. Generally, the symmetrical non-penetration constraints can be redundant or lin-
early dependent therefore numerical difficulties can be generated, we can see in [16]
how these numerical difficulties are avoided when using the interior point method. In
short, we have two loops, the exterior one is for the Tresca problems and the interior
one is for the non-linearity of the constraints in the finite deformation case.

This paper is organized as follows: in section 2, we present several reminders
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about frictional contact problems. A family of regularization functions to make the
Tresca problem smooth enough in addition to the corresponding frictional regularized
problems, are introduced in section 3. The finite deformation case is discussed in
section 4. The existence and the uniqueness of a solution in addition to the convergence
of the frictional fixed point algorithm in the discretized case are shown in section 5.
The algorithm can be found in section 6. Finally, in section 7 our method is validated
against several contact examples.

2 Linear elasticity

We consider here two elastic bodies Ωl ⊂ R2 or R3 with l = 1, 2 initially in contact at
the border ΓC (see Figure 1), the contact area after loading is supposed to be included
in ΓC . Let Γl0 be the border of the body Ωl where a null displacement is imposed, and
Γl1 where a surface traction tl is imposed, in addition Ω = Ω1 ∪ Ω2. We call n := n1,
n2 respectively the outward unit normal vector on ∂Ω1 and on ∂Ω2. Finally, the body
force f l is applied on Ωl.

Figure 1: The two bodies in contact

The frictional contact problem using Coulomb’s criterion is given as follows
∇.σl + f l = 0 in Ωl

σl = Clεl in Ωl (Hook’s law)

ul = 0 on Γl0

σl.nl = tl on Γl1

(1)

with the following contact conditions
[u.n] = u1.n1 + u2.n2 = (u1 − u2).n ≤ 0 on ΓC

σn = (σ1.n1).n1 = (σ2.n2).n2 ≤ 0 on ΓC

σn.[u.n] = 0 on ΓC

(2)

Here the normal vector n is considered to be equal to n1, in addition at the contact
area we have n1 = −n2. Given a friction coefficient µ, the static Coulomb criterion
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on ΓC states 
σ1
T = −σ2

T

|σ1
T | ≤ µ|σn|

if |σ1
T | < µ|σn| ⇒ u1

T − u2
T = 0

if |σ1
T | = µ|σn| ⇒ ∃λ ≥ 0 s.t u1

T − u2
T = −λσ1

T

(3)

where the subscript T means the tangential part, otherwise speaking, for a vector vl,
vlT = vl − (vl.nl)nl. Moreover the symbol | · | for a vector means its module.

2.1 Tresca criterion

Let τ ∈ L2(ΓC) ≥ 0, be the sliding limit of the Tresca criterion, the governing equations
are the same, except the system (3), which becomes

σ1
T = −σ2

T

|σ1
T | ≤ τ

if |σ1
T | < τ ⇒ u1

T − u2
T = 0

if |σ1
T | = τ ⇒ ∃λ ≥ 0 s.t u1

T − u2
T = −λσ1

T

(4)

where µ|σn| was replaced by the sliding limit τ .

2.2 Variational formulation for Tresca criterion

The displacement field u is defined by u = (u1,u2). We define the admissible set as
V = V1 ×V2 where

Vl = {v ∈ H1(Ωl) = H1(Ωl)×H1(Ωl) |v = 0 a.e on Γl0} (5)

where H1(Ωl) is the Sobolev space endowed with the norm ‖ · ‖1. The space V is
endowed with the broken norm:

‖u‖1 = ‖(u1,u2)‖1 =
(
‖u1‖21 + ‖u2‖21

) 1
2 (6)

where ‖ul‖1 is the broken norm of the space Vl. Let the applications a : V×V→ R
and f : V→ R be defined by{

a(u,v) = a1(u,v) + a2(u,v)

f(v) = f1(v) + f2(v)
(7)

where for l = 1, 2 
al(u,v) =

∫
Ωl

σ(ul) : ε(vl) dv

f l(v) =

∫
Ωl

f l.vl dv +

∫
Γl
1

tl.vl ds
(8)

We also consider the application jτ : V→ R+ defined by

jτ (v) =

∫
ΓC

τ |v1
T − v2

T | ds (9)
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The convex and closed set K describes the non-penetration between the two bodies,
and is defined by

K = {v ∈ V | [v.n] ≤ 0 a.e on ΓC} (10)

where [v.n] = (v1−v2).n = (v1−v2).n1 . The variational formulation of the frictional
contact problem using Tresca’s criterion can be proven to be equal to

Find u ∈ K such that

a(u,v − u) + jτ (v)− jτ (u) ≥ f(v − u) ∀v ∈ K (11)

2.3 Minimization formulation for the Tresca criterion

Before giving the minimization formulation, let’s recall a theorem which can be found
in [19].

Theorem 2.1. Let K be a nonempty, closed and convex, subset of the normed linear
space V, and consider a function F : K ⊂ V → R of the form F = F1 + Φ where F1

and Φ are convex and lower semicontinuous and F1 is Gâteaux differentiable on K.
Then u is a minimizer of F on K if and only if,

< DF1(u),v − u > +Φ(v)− Φ(u) ≥ 0 ∀v ∈ K (12)

Let Ep denotes the total potential energy of the two bodies, Ep can be given by

Ep(v) :=
1

2
a(v,v)− f(v) (13)

Consider the energy functional Jτ given by

Jτ (v) := Ep(v) + jτ (v) (14)

Then by applying the theorem 2.1 above, by taking F = Jτ , F1 = Ep and Φ = jτ , the
frictional problem (11) is equivalent to the following minimization problem

Find u ∈ K such that

Jτ (u) ≤ Jτ (v) ∀v ∈ K (15)

2.4 Coulomb’s criterion as a fixed point problem

The idea to study the Tresca criterion, is that the Coulomb criterion can be equivalent
to the fixed point of the following application (see [22, 27])

T (τ) = −µσN (uτ ) (16)

where σN the normal stress and uτ the solution of the Tresca problem with the sliding
limit τ ≥ 0, otherwise speaking, solution of the following problem

Find uτ ∈ K such that

a(uτ ,v − uτ ) + jτ (v)− jτ (uτ ) ≥ f(v − uτ ) ∀v ∈ K (17)

or equivalently
Find uτ ∈ K such that

Jτ (uτ ) ≤ Jτ (v) ∀v ∈ K (18)

Otherwise speaking, if τ∗ is the fixed point of the application T , τ∗ = −µσN (uτ∗),
then uτ∗ is the solution of the frictional problem using Coulomb’s criterion.
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2.5 The quasi-static problem for Coulomb’s criterion

In reality the friction depends on the history of the loading, indeed the Coulomb
criterion depends on the velocity rather than the displacement, and therefore the
friction depends on the state of the previous time step. However the static criterion is
very useful to treat the quasi-static case, because as we will see the quasi-static criterion
can be written as a sequence of a static criterion when the velocity is discretized.

The quasi-static criterion is given by the following
|σ1
T | ≤ µ|σn|

if |σ1
T | < µ|σn| ⇒ u̇1

T − u̇2
T = 0

if |σ1
T | = µ|σn| ⇒ ∃λ ≥ 0 s.t u̇1

T − u̇2
T = −λσ1

T

(19)

where u̇ denotes the velocity.
For a time step ∆t the velocities u̇1

T and u̇2
T are discretized as follows

u̇1
T =

u1
T,i+1 − u1

T,i

∆t

u̇2
T =

u2
T,i+1 − u2

T,i

∆t

(20)

where i + 1 and i denotes respectively the actual and the previous state. Therefore
the quasi-static criterion becomes
|σ1
T | ≤ µ|σn|

if |σ1
T | < µ|σn| ⇒ (u1

T,i+1 − u1
T,i)− (u2

T,i+1 − u2
T,i) = 0

if |σ1
T | = µ|σn| ⇒ ∃λ ≥ 0 s.t (u1

T,i+1 − u1
T,i)− (u2

T,i+1 − u2
T,i) = −λσ1

T

(21)

3 Regularization of the Tresca frictional prob-
lem

Recall that the frictional problem using Tresca’s criterion is given by
Find u ∈ K such that

a(u,v − u) + jτ (v)− jτ (u) ≥ f(v − u) ∀v ∈ K (22)

The application jτ is not differentiable because of its module term. For this reason
and for an algorithmic point of view, in order to obtain a smooth problem, the module
vector | · | is approximated by an application ηα.

We suppose that the regularization function ηα approximating the module of a
vector in Rd (d = 2, 3), belongs to the set Ξα, defined below.

Definition 3.1. Define Ξα, for α > 0, the set of functions such that

ηα ∈ Ξα ⇐⇒



ηα ∈ C2(Rd)
ηα is convex

ηα(v) = ηα(−v) ∀v ∈ Rd

ηα(v) ≥ 0 ∀v ∈ Rd

|ηα(v)− |v|| ≤ α ∀v ∈ Rd

|ηα(v1)− ηα(v2)| ≤ | |v1| − |v2| | ∀v1,v2 ∈ Rd

(23)
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Let’s give an example of a regularization function belonging to Ξα.

Example 3.1. For α > 0, the function η̄α : Rd → [0,∞[ defined by

η̄α(v) =
√
|v|2 + α2 ∀v ∈ Rd (24)

belongs to Ξα.

In the following we take a regularization function ηα such that ηα ∈ Ξα. Our
regularized frictional problem becomes

Find u ∈ K such that

a(u,v − u) + jα,τ (v)− jα,τ (u) ≥ f(v − u) ∀v ∈ K (25)

where the application jα,τ is given by

jα,τ (v) =

∫
ΓC

τ.ηα(v1
T − v2

T ) ds (26)

Note that the regularization of frictional problems was considered in many papers like
[1, 21, 24].

3.1 Frictional criterion generated from the regularized prob-
lem

In most papers and for Signorini’s contact problem, one can cite [9, 19], the variational
inequality (11) is proved to be equivalent to the contact problem equations (1), (2),
with Tresca’s frictional criterion (4). Otherwise, regularizing the frictional criterion
can be found in [27], and in [24] where a nonlocal friction is used (the normal stress is
replaced by a weighed average of the normal stress in the friction criterion) and where
we can find a physical interpretation for the regularization, as the elastic and elasto-
plastic deformation of the junctions (a region in the contact area where an adhesion
take place). Here we prove formally, in the case of contact between two bodies, that
if the variational inequality (25) is satisfied then the equations of the contact problem
(1), (2) are satisfied with a special regularized frictional criterion.

In order to obtain the frictional criterion generated by the regularized problem, we
present the following theorem

Theorem 3.1. Let u ∈ K be sufficiently regular (H2), and satisfying the following
variational inequality

a(u,v − u) + jα,τ (v)− jα,τ (u) ≥ f(v − u) ∀v ∈ K (27)

Then u satisfies the following equations for l = 1, 2
∇.σl + f l = 0 in Ωl

σl = Clεl in Ωl (Hook’s law)

ul = 0 on Γl0

σl.nl = tl on Γl1

(28)

with the following contact conditions:
[u.n] = u1.n1 + u2.n2 = (u1 − u2).n ≤ 0 on ΓC

σn := (σ1.n1).n1 = (σ2.n2).n2 ≤ 0 on ΓC

σn.[u.n] = 0 on ΓC

(29)
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with the following regularized frictional criterion on ΓC
σ1
T = −σ2

T

σ1
T = −τ.∇ηα(u1

T − u2
T )

= −τ (u1
T−u2

T )√
|u1

T
−u2

T
|2+α2

if ηα(v) =
√
|v|2 + α2

(30)

where ∇ηα(u1
T−u2

T ) is supposed to be in the same tangent space of σ1
T (true if ηα(v) =√

|v|2 + α2).

Proof. We recall the Green formula which will be useful in the sequel. For l = 1 or 2∫
Ωl

σl(ul) : ε(vl) dv = −
∫

Ωl

∇.σl(ul).vl dv +

∫
∂Ωl

σl(ul).nl.vl ds (31)

Therefore

a(u,v − u) =
∑
l=1,2

(
−
∫

Ωl

∇.σl(ul).(vl − ul) dv +

∫
∂Ωl

σl(ul).nl.(vl − ul) ds

)
(32)

First consider an application φ ∈ D2(Ω1) (C2(Ω1) with a compact support in Ω1), we
will take the test function v = (v1,v2) such that v1 = u1 ± φ and v2 = u2. Then
using the variational inequality (27), the Green formula (32) and the fact that φ is
equal to zero on the borders, one obtains

−
∫

Ω1

∇.σ1(u1).φ dv −
∫

Ω1

f1.φ dv ≥ 0 (33)

and ∫
Ω1

∇.σ1(u1).φ dv +

∫
Ω1

f1.φ dv ≥ 0 (34)

Thus ∫
Ω1

(∇.σ1(u1) + f1).φ dv = 0 (35)

Otherwise speaking
∇.σ1(u1) + f1 = 0 a.e on Ω1 (36)

In the same manner if we take v such that v1 = u1 and v2 = u2 ± φ, we obtain

∇.σ2(u2) + f2 = 0 a.e on Ω2 (37)

Consider the test function v = (v1,v2) such that v1 = u1 ± φ and v2 = u2, then
using the two equilibrium equations (36) and (37) the variational inequality becomes∫
∂Ω1

σ1(u1).n1.(±φ) ds−
∫

Γ1
1

t1.(±φ) ds+

∫
ΓC

τ.(ηα(v1
T −u2

T )− ηα(u1
T −u2

T )) ds ≥ 0

(38)
In the inequality (38) we can take φ ∈ H1/2(∂Ω1) with supp(φ) ⊂ Γ1

1, and we will
obtain then

−
∫

Γ1
1

(σ1(u1).n1 − t1).φ ds ≥ 0 (39)

and ∫
Γ1
1

(σ1(u1).n1 − t1).φ ds ≥ 0 (40)
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Otherwise speaking ∫
Γ1
1

(σ1(u1).n1 − t1).φ ds = 0 (41)

Therefore
σ1(u1).n1 = t1 a.e on Γ1

1 (42)

In the same manner if we take v = (v1,v2) such that v1 = u1 and v2 = u2 ± φ we
obtain

σ2(u2).n2 = t2 a.e on Γ2
1 (43)

Because u ∈ K, then by definition [u.n] ≤ 0 on ΓC and ul = 0 on Γl0. So it remains
to verify the last two equations of (29) and the two equations of (30).

Using the equations (36), (37), (42), (43) and the Green formula, the variational
inequality (27) becomes∑
l=1,2

∫
ΓC

σl(ul).nl.(vl−ul) ds+

∫
ΓC

τ.(ηα(v1
T −v2

T )− ηα(u1
T −u2

T )) ds ≥ 0 ∀v ∈ K

(44)
Taking v = (v1,v2) such that v1 = φ.n1 + u1 and v2 = −φ.n2 + u2, we have the fact
that v ∈ K because [v.n] = v1.n1 + v2.n2 = u1.n1 + u2.n2 = [u.n] ≤ 0. Thus if we
inject v in the inequality (44) one obtains∫

ΓC

(
(σ1(u1).n1).n1 − (σ2(u2).n2).n2)φds ≥ 0 (45)

In addition if we consider −φ instead of φ, we can obtain thus∫
ΓC

(
(σ1(u1).n1).n1 − (σ2(u2).n2).n2)φds ≤ 0 (46)

Therefore ∫
ΓC

(
(σ1(u1).n1).n1 − (σ2(u2).n2).n2)φds = 0 (47)

We can deduce that σn := (σ1.n1).n1 = (σ2.n2).n2 a.e on ΓC which is the second
equation of (29).

Now we take v = (v1,v2) such that v1 = λ.φ.n1 + u1
T and v2 = u2

T , where
λ ≥ 0 and φ ∈ H1/2(∂Ω1) ≤ 0 with supp(φ) ⊂ ΓC . Clearly v ∈ K because [v.n] =
v1.n1 + v2.n2 = λ.φ ≤ 0. Injecting v in the inequality (44) and using the fact that
u1 = (u1.n1)n1 + u1

T and u2 = (u2.n2)n2 + u2
T , one obtains∫

ΓC

(σ1(u1).n1).λ.φn1 ds−
∫

ΓC

(σ1(u1).n1).(u1.n1)n1 ds−
∫

ΓC

(σ2(u2).n2).(u2.n2)n2 ds ≥ 0

(48)
Then ∫

ΓC

σn.λ.φ ds−
∫

ΓC

σn.(u
1.n1) ds−

∫
ΓC

σn.(u
2.n2) ds ≥ 0 (49)

which is equivalent to

λ

∫
ΓC

σn.φ ds−
∫

ΓC

σn.[u.n] ds ≥ 0 (50)

If λ→ 0 then ∫
ΓC

σn.[u.n] ds ≤ 0 (51)
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If we divide the inequality (50) by λ and taking λ→ +∞ then∫
ΓC

σn.φ ds ≥ 0 (52)

From the inequality (52) and from the fact that φ ≤ 0 we deduce that σn ≤ 0. By
definition [u.n] ≤ 0, thus σn.[u.n] ≥ 0, therefore from the inequality (51) we deduce
that σn.[u.n] = 0. Therefore the equations of (29) are verified and it remains to prove
the two equations of (30).

Let φ = φnn1 + φT ∈ H1/2(∂Ω1) with supp(φ) ⊂ ΓC . Take v = (v1,v2) such
that v1 = u1 ± εφT and v2 = u2, where ε ∈ [0, 1]. Clearly v ∈ K, thus injecting v in
(44) one obtains∫

ΓC

σ1(u1).n1.(±εφT ) ds+

∫
ΓC

τ.(ηα(u1
T − u2

T ± εφT )− ηα(u1
T − u2

T )) ds ≥ 0 (53)

thus and after dividing by ε∫
ΓC

σ1
T .(±φT ) ds+

∫
ΓC

τ.
ηα(u1

T − u2
T ± εφT )− ηα(u1

T − u2
T )

ε
ds ≥ 0 (54)

Thanks to the differentiability of ηα, we obtain the following inequality when ε→ 0∫
ΓC

σ1
T .(±φT ) ds+

∫
ΓC

τ.∇ηα(u1
T − u2

T ).(±φT ) ds ≥ 0 (55)

We deduce that ∫
ΓC

σ1
T .φT ds+

∫
ΓC

τ.∇ηα(u1
T − u2

T ).φT ds = 0 (56)

Otherwise σ1
T .φT = σ1

T .φ and∇ηα(u1
T−u2

T ).φT = ∇ηα(u1
T−u2

T ).φ, (indeed∇ηα(u1
T−

u2
T ) is supposed to be in the same tangent space, it’s true if ηα(v) =

√
|v|2 + α2),

thus ∫
ΓC

(σ1
T + τ.∇ηα(u1

T − u2
T )).φ ds = 0 (57)

We conclude that

σ1
T = −τ.∇ηα(u1

T − u2
T ) = −τ u1

T − u2
T√

‖u1
T − u2

T ‖2 + α2
a.e on ΓC (58)

In the same manner, we take v = (v1,v2) such that v1 = u1 and v2 = u2 ± εφT ,
where ε ∈ [0, 1], and we inject v in (44). We obtain∫

ΓC

σ2(u2).n2.(±εφT ) ds+

∫
ΓC

τ.(ηα(u1
T − u2

T ∓ εφT )− ηα(u1
T − u2

T )) ds ≥ 0 (59)

As before we conclude that

σ2
T = τ.∇ηα(u1

T − u2
T ) = −σ1

T a.e on ΓC (60)
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3.2 Minimization formulation for the regularized problem

The variational inequality of the problem is recalled below.
Find u ∈ K such that

a(u,v − u) + jα,τ (v)− jα,τ (u) ≥ f(v − u) ∀v ∈ K (61)

As before, let Ep denotes the total potential energy of the two bodies

Ep(v) :=
1

2
a(v,v)− f(v) (62)

Consider the energy functional Jα,τ given by

Jα,τ (v) := Ep(v) + jα,τ (v) (63)

where as before, the functional is given by

jα,τ (v) =

∫
ΓC

τ.ηα(v1
T − v2

T ) ds (64)

The functional jα,τ is lower semicontinuous, and because ηα is convex then jα,τ is
convex. Therefore by applying the theorem 2.1 above, by taking F = Jα,τ , F1 = Ep
and Φ = jα,τ , the frictional problem (61) is equivalent to the following minimization
problem

Find u ∈ K such that

Jα,τ (u) ≤ Jα,τ (v) ∀v ∈ K (65)

Otherwise the energy functional Jα,τ is convex, Gâteaux differentiable (or contin-
uous) because ηα is differentiable (or continuous), and coercive because Ep is coercive
and the functional jα,τ is positive. We conclude that there exits a solution of the min-
imization problem (65), in addition this minimizer is unique because Jα,τ is strictly
convex.

3.3 Error between Tresca’s solution and regularized Tresca’s
solution

Theorem 3.2. Let u ∈ K be the Tresca solution, in other words solution of

a(u,v − u) + jτ (v)− jτ (u) ≥ f(v − u) ∀v ∈ K (66)

and let uα ∈ K be the regularized Tresca solution, otherwise speaking solution of

a(uα,v − uα) + jα,τ (v)− jα,τ (uα) ≥ f(v − uα) ∀v ∈ K (67)

then there exists a constant C ≥ 0 such that

‖uα − u‖1 ≤ Cα (68)

Proof. Replacing v by uα in the equation (66), and v by u in the equation (67), one
obtains {

a(u,uα − u) + jτ (uα)− jτ (u) ≥ f(uα − u)

a(uα,u− uα) + jα,τ (u)− jα,τ (uα) ≥ f(u− uα)
(69)
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Adding these two equations, we obtain

a(u− uα,uα − u) + jτ (uα)− jα,τ (uα) + jα,τ (u)− jτ (u) ≥ 0 (70)

Thus

a(uα − u,uα − u) ≤ jτ (uα)− jα,τ (uα) + jα,τ (u)− jτ (u)

≤
∫

ΓC

τ.|ηα(u1
α,T − u2

α,T )− |u1
α,T − u2

α,T || ds

+

∫
ΓC

τ.|ηα(u1
T − u2

T )− |u1
T − u2

T || ds

≤ 2‖τ‖L2(ΓC).
√

meas(ΓC).α (ηα ∈ Ξα) (71)

Because a is elliptic then
‖uα − u‖1 ≤ C

√
α (72)

Note that the differentiability of ηα is not needed.

Corollary 3.1. If ηα(v) =
√
|v|2 + α2 then

‖uα − u‖1 ≤ Cα1/2 (73)

3.4 Coulomb’s criterion as a fixed point problem for the
regularized problem

Given a regularized parameter α > 0, consider the following application

T (τ) = −µσ1
N (uτ ) (74)

where σ1
N is the normal stress and uτ the solution of the Tresca problem with the

sliding limit τ ≥ 0 ∈ L2(ΓC), otherwise speaking, solution of the following problem
Find uτ ∈ K such that

a(uτ ,v − uτ ) + jα,τ (v)− jα,τ (uτ ) ≥ f(v − uτ ) ∀v ∈ K (75)

or equivalently
Find uτ ∈ K such that

Jα,τ (uτ ) ≤ Jα,τ (v) ∀v ∈ K (76)

Let τ∗ = T (τ∗) = −µσ1
N (uτ∗) be the fixed point of the application T and let u = uτ∗ ,

the corresponding displacement which is supposed to be sufficiently regular, there-
fore according to the theorem 3.1, the equations (28) and (29) are verified and the
regularized Coulomb’s criterion becomes

σ1
T = −σ2

T

σ1
T = µσ1

N (u).∇ηα(u1
T − u2

T )

= µσ1
N (u)

(u1
T−u2

T )√
|u1

T
−u2

T
|2+α2

if ηα(v) =
√
|v|2 + α2

(77)

In the section 5 we prove for the discretized case, the existence and the uniqueness of
a fixed point for the application T (where σ1

N ∈ H−1/2(ΓC), the dual of H1/2(ΓC)), in
addition to the convergence of the fixed point algorithm to solve the frictional contact
problem.
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3.5 Quasi-static problem for the regularized one

Given the displacement solution ui = (u1
i ,u

2
i ) of the previous step, then for each

sliding limit τ ≥ 0 ∈ L2(ΓC) of the fixed point algorithm, the following problem is
considered

Find uτ,i+1 ∈ K such that

a(uτ,i+1,v−uτ,i+1)+ jα,τ (v−ui)− jα,τ (uτ,i+1−ui) ≥ f(v−uτ,i+1) ∀v ∈ K (78)

or equivalently
Find uτ,i+1 ∈ K such that

Jα,τ (uτ,i+1) ≤ Jα,τ (v) ∀v ∈ K (79)

where jα,τ (v) is replaced by jα,τ (v − ui) which is given by

jα,τ (v − ui) =

∫
ΓC

τ.ηα((v1
T − u1

T,i)− (v2
T − u2

T,i)) ds (80)

As u1
T,i and u2

T,i are given, then using the same proof of the theorem 3.1, the two
problems (78) and (79) will generate the same equations (28) and (29) of the theorem
3.1, except the friction criterion (30) which will be slightly changed to

σ1
T = −σ2

T

σ1
T = −τ.∇ηα((u1

T,τ,i+1 − u1
T,i)− (u2

T,τ,i+1 − u2
T,i))

= −τ
(u1
T,τ,i+1 − u1

T,i)− (u2
T,τ,i+1 − u2

T,i)√
|(u1

T,τ,i+1 − u1
T,i)− (u2

T,τ,i+1 − u2
T,i)|2 + α2

if ηα(v) =
√
|v|2 + α2

(81)
Let ui+1 be the displacement corresponding to the fixed point of the application T
already defined, the regularized Coulomb’s criterion for the quasi-static problem be-
comes
σ1
T = −σ2

T

σ1
T = µσ1

N (ui+1).∇ηα((u1
T,i+1 − u1

T,i)− (u2
T,i+1 − u2

T,i))

= µσ1
N (ui+1)

(u1
T,i+1 − u1

T,i)− (u2
T,i+1 − u2

T,i)√
|(u1

T,i+1 − u1
T,i)− (u2

T,i+1 − u2
T,i)|2 + α2

if ηα(v) =
√
|v|2 + α2

(82)

4 Finite deformation

We consider here the Signorini’s problem for simplicity, indeed the contact between
more than one body can be treated in the same manner. As before a fixed point
algorithm is used in order to write the frictional contact problem as a sequence of Tresca
contact problems until convergence, here the regularization of the Tresca frictional
problem is considered. In the following, and for the sake of convenience, our unknown
will be the actual position φ instead of the displacement u, which is not very different
because φ = X + u.

In the following theorem, Ω is the body domain in R3 (also works for R2). In
addition, let the borders Γ0,Γ1,ΓC be disjoint relatively to ∂Ω, and Γ = ∂Ω = Γ0 ∪
Γ1 ∪ ΓC . The area of the border ΓC is supposed to be strictly positive.
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Γ0 is the border where a displacement is imposed, Γ1 is the border where a surface
traction is applied, finally ΓC is the potential contact area, otherwise speaking if φ(ΓC)
is ΓC in the actual configuration, then the actual contact area is included in φ(ΓC).

The body force f is applied over the body Ω, the surface traction g is applied over
Γ1, and finally φ0 is the imposed position on Γ0.

The obstacle is described by the open set C ⊂ R3, the strain energy function is

denoted by Ŵ , and the first Piola-Kirchhoff stress by P. We have that P = ∂Ŵ
∂F

,
where F is the deformation gradient tensor.

The admissible solutions set Φ is defined by:

Φ = {ψ : Ω̄→ R3; det(∇ψ) > 0 in Ω̄;ψ = φ0 on Γ0 with ψ(ΓC) ⊆ Cc} (83)

The condition ψ(ΓC) ⊆ Cc (the complement of C) describes the non-penetration
of the body into the obstacle.

The potential energy of the body is given by

Ep(ψ) =

∫
Ω

Ŵ (∇ψ) dx−
∫

Ω

f .ψ dx−
∫

Γ1

g.ψ dS (84)

We define the mapping T : Φ→ Φ, which for a given ζ ∈ Φ, T (ζ) is the solution
of the following constrained minimization problem

min
ψ∈Φ

(
Ep(ψ) +

∫
ζ(ΓC)∩∂C

τ.ηα(vT ) ds

)
(85)

where v(x) = ψ(ζ−1(x)) − ζ−1(x), ∀x ∈ ζ(ΓC) ∩ ∂C. Moreover τ(x) = τ0(ζ−1(x))
where τ0 ∈ L2(ΓC) ≥ 0 is the sliding limit of the Tresca criterion and ηα : R3 → R+

a regularization function belonging to Ξα, defined before ( for example ηα(x, y, z) =√
x2 + y2 + z2 + α2 with α > 0). Finally vT is the tangential part of v, and can be

given by vT = v − vnn with vn its normal component and n the normal vector at
ζ(ΓC) ∩ ∂C.

In the following theorem, the elements proof where the friction is not taken into
account, are taken from [2].

Theorem 4.1. Let φ ∈ Φ be the fixed point of the application T defined above,
otherwise speaking φ = T (φ), which means also that φ is solution of

min
ψ∈Φ
E(ψ) (86)

where

E(ψ) = Ep(ψ) +

∫
φ(ΓC)∩∂C

τ.ηα(vT ) ds (87)

If φ is smooth enough, then φ satisfies formally the following properties, corresponding
to the frictional contact between a body and an obstacle, with a regularized Tresca
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criterion.



−div P = f in Ω

φ = φ0 on Γ0

P.N = g on Γ1

φ(ΓC) ⊆ Cc

P.N = 0 if X ∈ ΓC and φ(X) ∈ Cc (/∈ C ∪ ∂C)
(P.N).n = λn if X ∈ ΓC and x = φ(X) ∈ ∂C where λn ≤ 0

σT = −τ∇ηα(uT ) = −τ uT√
|uT |2+α2

on γC = φ(ΓC) ∩ ∂C (if ηα(v) =
√
|v|2 + α2)

(88)
where σT ,uT are respectively the tangential stress and displacement, N and n are
respectively the unit outer normal vector on the initial and on the deformed surface of
the body. σ is the Cauchy stress tensor and σn has the same direction of PN. Finally
∇ηα(uT ) is supposed to belong to the tangent plane (it is true if ηα(v) =

√
|v|2 + α2).

Proof. The function φ is a solution of the minimization problem (86), therefore

E(φ) ≤ E(ψ) ∀ψ ∈ Φ (89)

In the following we need the Green formula, which for a smooth enough tensor T
states ∫

Ω

T : ∇θ dx = −
∫

Ω

div(T).θ dx+

∫
Γ

TN.θ dS ∀θ (90)

Consider θ a sufficient smooth function that vanishes in a neighborhood of Γ0 ∪ ΓC .
There exists ε0 = ε(θ) > 0 such that φε = φ+ εθ ∈ Φ ∀ |ε| ≤ ε0.

E(φε)− E(φ) ≥ 0 (91)

E(φε)− E(φ) = E(φ+ εθ)− E(φ)

=

∫
Ω

(
Ŵ (∇φ+ ε∇θ)− Ŵ (∇φ)

)
dx− ε

(∫
Ω

f .θ dx+

∫
Γ1

g.θ dS

)
(92)

Otherwise we have:

Ŵ (∇φ+ ε∇θ)− Ŵ (∇φ) = ε
∂Ŵ

∂F
: ∇θ + o(ε)

= εP : ∇θ + o(ε)

(93)

Using the Green formula in equation (90) and the fact that θ vanishes in a neighbor-
hood of Γ0 ∪ ΓC , we obtain :∫

Ω

(
Ŵ (∇φ+ ε∇θ)− Ŵ (∇φ)

)
dx = ε

∫
Ω

P : ∇θ dx+ o(ε)

= −ε
∫

Ω

div(P).θ dx+ ε

∫
Γ1

PN.θ dS + o(ε)

(94)
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Thus

E(φε)− E(φ) =− ε
∫

Ω

div(P).θ dx+ ε

∫
Γ1

PN.θ dS

− ε
(∫

Ω

f .θ dx+

∫
Γ1

g.θ dS

)
+ o(ε)

=ε

{∫
Ω

(− div(P)− f) .θ dx+

∫
Γ1

(PN− g) .θ dS +
o(ε)

ε

}
≥ 0

(95)

Taking ε > 0 and taking the limit ε→ 0+ we have:∫
Ω

(−div(P)− f) .θ dx+

∫
Γ1

(PN− g) .θ dS ≥ 0 (96)

Let X ∈ Ω and B(X, r) ⊂ Ω the open ball of center X with a small radius r > 0
(see Figure 2). Consider θ a sufficient smooth function with support in B(X, r), thus
we deduce that − div(P) = f in B(X, r), and then it’s true in Ω.

Figure 2: The initial and actual configuration

The equation (96) can always be used, thus using the fact that − div(P) = f in
Ω, we obtain: ∫

Γ1

(PN− g) .θ dS ≥ 0 (97)

We deduce that PN = g on Γ1.
Let X ∈ ΓC such that φ(X) ∈ Cc (see Figure 3), consider any smooth function

θ : Ω̄ → R3 with a support in B(X, r) ∩ Ω̄ where r > 0 and small, there exists a
ε2(θ) > 0 such that φε = φ+ εθ ∈ Φ ∀ |ε| ≤ ε2. As before, E(φε)− E(φ) ≥ 0 , thus
using Green’s formula and the equations of equilibrium we obtain:

ε

{∫
ΓC

PN.θ dS +
o(ε)

ε

}
≥ 0 (98)
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Figure 3: The case where the stress is zero for the point X

We deduce that PN = 0 for X ∈ ΓC such that φ(X) ∈ Cc.
Let γC = φ(ΓC) ∩ ∂C. We will prove next that the coefficient λn in the equation

(88) is negative. We consider Y ∈ ΓC such that y = φ(Y) ∈ γC (see Figure 4).
Consider any positive smooth function θ : Ω̄ → R+ with support in B(Y, r), then
∃ ε4(θ) > 0 such that:

φε = φ− εθn ∈ Φ ∀ 0 ≤ ε ≤ ε4 (99)

Thus by the same procedure we obtain:

ε

{∫
ΓC

−PN.nθ dS +
o(ε)

ε
+
j(uε)− j(u)

ε

}
≥ 0 (100)

where uε, u are respectively the displacement fields of φε and φ, j is defined by

j(v) =

∫
γC

τ.ηα(vT ) ds (101)

As the normal direction is considered then j(uε)− j(u) = 0. If ε→ 0+ then we have:∫
ΓC

PN.nθ dS ≤ 0 (102)

Thus λn = PN.n ≤ 0 at X ∈ ΓC where φ(X) ∈ γC .
We still have the last equation of the problem (88) to demonstrate. We also

consider Y ∈ ΓC such that y = φ(Y) ∈ γC , supposing that the boundaries of φ(Ω),
C are smooth enough, then we can assume that φ(ΓC) and ∂C have the same tangent
space at the point y = φ(Y). Let V (Y) be a neighborhood of y and t1, t2,n a 3
smooth fields, such that t1, t2 span the tangent space at V ∩ γC and ‖t1‖ = ‖t2‖ = 1
, n is the outer normal vector on the body. Consider the ball B(Y, r) such that
B(Y, r) ∩ Γ ⊂ ΓC and φ(B(Y, r)) ⊂ V (see Figure 4), therefore given two smooth
functions θ1, θ2 : Ω̄ → R with support in B(Y, r), there exist ε3(θ1, θ2) > 0 and two
functions λε1, λ

ε
2 : Ω̄→ R with support in B(Y, r) such that:

For β = 1, 2 {
φε = φ+ ε(θβtβ + λεβn) ∈ Φ ∀ |ε| ≤ ε3
|λεβ | = o(ε)

(103)

Figure 4: The point y = φ(Y) and its neighborhood

17



Taking E(φε)−E(φ) ≥ 0 and repeating the same procedure as before, we obtain:

ε

{∫
ΓC

PN.θβtβ dS +
1

ε
(j(uε)− j(u)) + o(ε) +

o(ε)

ε

}
≥ 0 (104)

Now the stress tensor P is transformed into the Cauchy one σ, which acts on the
actual configuration. We can use also the fact that P.NdS = σnds, where dS and ds
are respectively the area measures in the initial and actual configuration. Therefore

ε

{∫
γC

σn.θβtβ ds+

∫
γC

τ.
1

ε
(ηα(uT + εθβtβ + εo(ε))− ηα(uT )) ds+ o(ε) +

o(ε)

ε

}
≥ 0

(105)
Using Taylor’s theorem we obtain∫

γC

σn.θβtβ ds+

∫
γC

τ.∇ηα(uT ).(θβtβ) ds+ o(ε) +
o(ε)

ε
≥ 0 (106)

By taking ε→ 0 we obtain that∫
γC

σn.θβtβ ds+

∫
γC

τ.∇ηα(uT ).(θβtβ) ds ≥ 0 (107)

which is equivalent to∫
γC

σT .θβtβ ds+

∫
γC

τ.∇ηα(uT ).(θβtβ) ds ≥ 0 (108)

and thus we have ∫
γC

σT .θβtβ ds+

∫
γC

τ.∇ηα(uT ).(θβtβ) ds = 0 (109)

We conclude as before that for β = 1, 2 we have

σT .tβ = −τ∇ηα(uT ).tβ (110)

= −τ uT√
|uT |2 + α2

.tβ if ηα(v) =
√
|v|2 + α2 (111)

∇ηα(uT ) is supposed to belong to the tangent plane (it’s true if ηα(v) =
√
|v|2 + α2).

Therefore for any tangential vector t we have

(σT + τ∇ηα(uT )).t = 0 (112)

We deduce then that σT = −τ∇ηα(uT ) = −τ uT√
|uT |2+α2

.

Remark 4.1. From an algorithmic point of view, we remark that the problem (88)
can be solved as a fixed point algorithm. Thus at each step k

φk+1 = T (φk) (113)
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5 Fixed point algorithm convergence for the fric-
tional regularized discretized problem

In the paper [23], the discretized frictional Signorini’s problem, using P1 finite elements
was written in term of a fixed point algorithm, and it was proven that there exit
a solution for this latter and this algorithm converges for small friction coefficient.
In [15], a mixed finite element method was considered, and the friction coefficient
threshold for the uniqueness of the solution, depends on the mesh size and on the
regularization parameter α. However we will follow the most part of the proof of
[23] with several modifications, in order to treat our regularized problem also for the
Signorini’s case. Like [23], the friction coefficient threshold for the uniqueness of the
solution depends only on the mesh size.

First consider the following finite element spaces for the body Ωh ⊂ Rd, where
d = 2, 3 

Xh =
{
v ∈ C0(Ωh) | v|Ti

∈ P1, ∀Ti triangle of Ωh
}

Vh =
{
v = (v1, v2) ∈ (Xh)d | v = 0 on Γ0

}
Kh = {v ∈ Vh | vn = v.n ≤ 0 on ΓC}
X̂h = the trace space of Xh on ΓC

V̂h = the trace space of Vh on ΓC

where as before ΓC denotes the contact potential area, Vh the admissible set and Kh

the set describing the non-penetration between the body and the obstacle with n the
outward unit normal vector on ΓC .

Let {ŵi ∈ X̂h | i = 1, . . . , nC} be a basis of X̂h, otherwise speaking each vector
of this basis is the non-zero trace of a vector of the basis of Xh on ΓC . The linear
application R : V̂h → Vh is defined such that, it associates to v̂ ∈ V̂h, a unique vector
v = Rv̂ ∈ Vh such that this latter is equal to zero at all nodes outside ΓC .

Let Πh denotes the interpolation operator on X̂h, Πh has the following property
(see [23])

|Πh(|vh|)|L2(ΓC) ≤ c(h)|vh|L2(ΓC) ∀vh ∈ V̂h (114)

where c(h) a constant depending on h. In addition Πh has the following useful prop-
erties

Lemma 5.1. Let φ, φ1, φ2 ∈ L2(ΓC), we have
Πh(φ) ≥ 0 if φ ≥ 0

Πh(φ1) ≤ Πh(φ2) if φ1 ≤ φ2

|Πh(φ)| ≤ Πh(|φ|)
(115)

Proof. First of all Πh(φ) is given by

Πh(φ) =
∑
i

φiŵi (116)

The shape functions ŵi ≥ 0 because we use P1 finite elements, thus if φ ≥ 0, then
Πh(φ) ≥ 0. In addition if φ1 ≤ φ2, then Πh(φ2 − φ1) ≥ 0 and we obtain the second
equation of (115). Finally

|Πh(φ)| ≤
∑
i

|φi|ŵi = Πh(|φ|) (117)
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According to [23], one can defines two applications{
< σ(v), v̂ > = a(v, Rv̂)− f(Rv̂) ∀v ∈ Vh and ∀ v̂ ∈ V̂h

< σn(v), ŵ > =< σ(v), ŵn > ∀v ∈ Vh and ∀ ŵ ∈ X̂h
(118)

The first one describes the stress vector on ΓC and the second one describes the normal
stress on ΓC corresponding to a displacement test vector v.

Remark 5.1. If v is sufficiently regular (let’s say v ∈ H2), then the Green formula
can be used as in theorem 3.1, to obtain

< σn(v), ŵ >=

∫
ΓC

σn(v)ŵ ds (119)

In the following, the regularization function ηα approximating the module of a
vector, belongs to the set Ξα, defined before.

Our regularized frictional problem, approximating Coulomb’s criterion is given by
Find uh ∈ Kh such that

a(uh,v − uh)− < µσn(uh),Πh(ηα(vT )− ηα(uhT )) >≥ f(v − uh) ∀v ∈ Kh (120)

where µ is the friction coefficient.
Let H denotes the set of all positive linear applications on X̂h, otherwise speaking,

the set of applications τ such that

< τ, ŵ >≥ 0 ∀ ŵ ∈ X̂h ≥ 0 (121)

For τ ∈ H, the application T is defined by

< T (τ), ŵ >= − < µσn(uhτ ), ŵ > (122)

where uhτ is the solution of the frictional regularized problem seen before with the
sliding limit τ , otherwise speaking uhτ is the solution of the following problem

Find uhτ ∈ Kh such that

a(uhτ ,v − uhτ )+ < τ,Πh(ηα(vT )− ηα(uhτ,T )) >≥ f(v − uhτ ) ∀v ∈ Kh (123)

Remark 5.2. The problem (123) has a unique solution, indeed consider the following
energy

E(v) :=
1

2
a(v,v)− f(v)+ < τ,Πh(ηα(vT )) > (124)

The functional v →< τ,Πh(ηα(vT )) > is positive, convex and continuous, therefore
the problem (123) is equivalent to the minimization of E over the closed and convex
set Kh, which assure the existence and the uniqueness of the solution.

If T (τ) ∈ H , ∀ τ ∈ H, then we can deduce that the frictional problem (120) is
equivalent to

Find a fixed point of the application T

T (τ) = τ (125)

So we want to prove that T (τ) ∈ H. Let ŵ ≥ 0 ∈ X̂h, using the definition 118 one
obtains

< σn(uhτ ), ŵ >= a(uhτ , R(ŵn))− f(R(ŵn)) ∀ ŵ ∈ X̂h (126)
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where R is a linear application previously defined. As ŵ ≥ 0 then v = uhτ −R(ŵn) ∈
Kh, so we can inject it in the variational inequality (123) to obtain

< σn(uhτ ), ŵ >= a(uhτ , R(ŵn))− f(R(ŵn)) ≤ 0 (127)

Therefore < T (τ), ŵ >≥ 0 and T (τ) ∈ H.
In the following we will present some results in order to prove that the application

T has a fixed point, which implies the existence of a solution of the problem (120).
In addition it will be shown that for a small friction coefficient µ, the application T
is a contraction which implies a unique fixed point of T , and the uniqueness of the
solution can be proven. Finally the fixed point algorithm can be easily given in order
to solve the problem (120) as a sequence of the problem (123).

Lemma 5.2.

|T (τ1)− T (τ2)|∗ ≤ µC(h) |τ1 − τ2|∗ ∀ τ1, τ2 ∈ H (128)

where C(h) a constant which depends on the mesh size, and the dual norm | · |∗ is
defined as follows

|τ |∗ = sup
φ∈X̂h

| < τ, φ > |
|φ|H1/2(ΓC)

(129)

Proof. Let τ1, τ2 ∈ H, and u1, u2 respectively the solutions of the equation (123) for
τ = τ1 and τ = τ2. Taking v = u2 in the equation (123) for τ = τ1 and v = u1 in the
equation (123) for τ = τ2, one obtains{

a(u1,u2 − u1)+ < τ1,Πh(ηα(u2T )− ηα(u1T )) >≥ f(u2 − u1)

a(u2,u1 − u2)+ < τ2,Πh(ηα(u1T )− ηα(u2T )) >≥ f(u1 − u2)
(130)

equivalently{
a(u1,u2 − u1)+ < τ1,Πh(ηα(u2T )− ηα(u1T )) >≥ f(u2 − u1)

a(−u2,u2 − u1)+ < τ2,Πh(ηα(u1T )− ηα(u2T )) >≥ f(u1 − u2)
(131)

Adding these two equations, one obtains

a(u1 − u2,u2 − u1)+ < τ1 − τ2,Πh(ηα(u2T )− ηα(u1T )) >≥ 0 (132)

Thus
a(u2 − u1,u2 − u1) ≤< τ1 − τ2,Πh(ηα(u2T )− ηα(u1T )) > (133)

Hence

a(u2 − u1,u2 − u1) ≤ |τ1 − τ2|∗ |Πh(ηα(u2T )− ηα(u1T ))|H1/2(ΓC)

≤ C|τ1 − τ2|∗ |Πh(ηα(u2T )− ηα(u1T ))|L2(ΓC) (134)

The last inequality is due to the equivalence between the norms | · |L2 and | · |H1/2 on
a finite dimensional space.
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Using the fact ηα ∈ Ξα (see the definition 3.1) and the properties of Πh, one
obtains

a(u2 − u1,u2 − u1) ≤ C|τ1 − τ2|∗ |Πh(ηα(u2T )− ηα(u1T ))|L2(ΓC)

≤ C|τ1 − τ2|∗ |Πh(|ηα(u2T )− ηα(u1T )|)|L2(ΓC)

≤ C|τ1 − τ2|∗ |Πh(| |u2T | − |u1T | |) |L2(ΓC)

≤ C|τ1 − τ2|∗ |Πh(|u2T − u1T |) |L2(ΓC)

≤ C|τ1 − τ2|∗ |Πh(|u2 − u1|) |L2(ΓC)

≤ c.|τ1 − τ2|∗ |u2 − u1 |L2(ΓC) (135)

Using the fact that a is elliptic, the above equation becomes

|u2 − u1|21 ≤ C1|τ1 − τ2|∗ |u2 − u1 |L2(ΓC) (136)

Considering the trace theorem, we obtain

|u2 − u1|21 ≤ C2|τ1 − τ2|∗ |u2 − u1|1 (137)

Finally
|u2 − u1|1 ≤ C2|τ2 − τ1|∗ (138)

Besides, from the definition 122, for ŵ ∈ X̂h

< T (τ2)− T (τ1), ŵ >= µ < σn(u1)− σn(u2), ŵ > (139)

Otherwise, using the definition 118 one obtains{
< σn(u1), ŵ >= a(u1, R(ŵn))− f(R(ŵn)) ∀ ŵ ∈ X̂h
< σn(u2), ŵ >= a(u2, R(ŵn))− f(R(ŵn)) ∀ ŵ ∈ X̂h

(140)

where R is a linear application previously defined. Hence

< T (τ2)− T (τ1), ŵ >= µ.a(u1 − u2, R(ŵn)) (141)

Therefore

| < T (τ2)− T (τ1), ŵ > | ≤ µ.|u1 − u2|1|R(ŵn)|1 (continuity of a)

≤ µ.C2|τ2 − τ1|∗|R(ŵn)|1 (equation (138))

≤ µ.C3|τ2 − τ1|∗|ŵn|L2 (continuity of R)

= µ.C3|τ2 − τ1|∗|ŵ|L2

≤ µ.C4|τ2 − τ1|∗|ŵ|H1/2 (142)

We conclude that

|T (τ2)− T (τ1)|∗ ≤ µC4 |τ2 − τ1|∗ ∀ τ1, τ2 ∈ H (143)

The existence and the uniqueness of the solution of the regularized frictional prob-
lem (120) depend on the existence and the uniqueness of the fixed point of the appli-
cation T . We have the following theorem
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Theorem 5.1. If µ < 1
C(h)

, the application T has a unique fixed point, and the
following fixed point algorithm converges to the fixed point

τn+1 = T (τn) (144)

In addition if un+1 is the solution of the problem (123) for τ = τn+1 then

un+1 −→
n→∞

u∗ (145)

where u∗ is the unique solution of (120).

Proof. From the lemma 5.2, T is a contraction mapping, then using the Banach fixed-
point theorem, T admits a unique fixed point τ∗ and τn+1 converges to τ∗.

Moreover from the equation (138) we have

|un+1 − u∗|1 ≤ C2|τn+1 − τ∗|∗ (146)

Because τn+1 −→
n→∞

τ∗ then un+1 −→
n→∞

u∗.

Next we want to prove only the existence of a solution for the problem (120)
without any restriction on the friction coefficient. First let’s introduce the following
lemma

Lemma 5.3. There exists a constant C > 0 such that

|T (τ)|∗ ≤ C ∀ τ ∈ H (147)

Proof. Let u be a solution of the problem (123) for the sliding limit τ ∈ H, therefore
taking v = 0 ∈ Kh in the inequality (123) one obtains

a(u,−u)+ < τ,Πh(ηα(0)− ηα(uT )) >≥ f(−u) (148)

Hence
a(u,u) ≤< τ,Πh(ηα(0)− ηα(uT )) > +f(u) (149)

Because τ ∈ H and ηα ∈ Ξα (see the definition 3.1), we have< τ,Πh(ηα(0)−ηα(uT )) >
≤ 0, and thus

a(u,u) ≤ f(u) (150)

Using the fact that a is elliptic and f is continuous, we deduce the existence of a
constant C2 ≥ 0 such that

|u|1 ≤ C2 (151)

Besides

|T (τ)|∗ = sup
φ∈X̂h

| < T (τ), φ > |
|φ|H1/2(ΓC)

= µ sup
φ∈X̂h

|a(u, R(φn))− f(R(φn))|
|φ|H1/2(ΓC)

(equation (140))

(152)

From the continuity of a and f we have

|a(u, R(φn))− f(R(φn))| ≤ C3|u|1|R(φn)|1 + C4|R(φn)|1
≤ C5|u|1|φ|H1/2 + C6|φ|H1/2 (like equation (142))

= (C5|u|1 + C6)|φ|H1/2

≤ C7|φ|H1/2(ΓC) (equation (151)) (153)
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Therefore
|T (τ)|∗ ≤ µC7 (154)

Finally we have the following theorem

Theorem 5.2. There exists a fixed point for the application T .

Proof. We are in a finite dimensional space, thus if we take M = H ∩ B̄(0, C) as
the intersection of H with the closed ball B̄(0, C), M is compact and convex of the
dual of X̂h. From the lemma 5.3 we deduce that T (M) ⊆ M and we know that T is
continuous, therefore by applying Brouwer’s fixed-point theorem we conclude that T
admits a fixed point.

Note that all the above constants do not depend on the regularization parameter α
and all previous results can be generalized for the case of contact between two bodies.

5.1 Error between Tresca’s discretized solution and regu-
larized Tresca’s discretized solution

For the sake of clarity we consider only the Signorini case. We have the following
theorem

Theorem 5.3. Let u ∈ Kh be the Tresca solution, in other words, solution of

a(u,v − u)+ < τ,Πh(|vT | − |uT |) >≥ f(v − u) ∀v ∈ Kh (155)

and let uα ∈ Kh be the regularized Tresca solution, otherwise speaking, solution of

a(uα,v − uα)+ < τ,Πh(ηα(vT )− ηα(uα,T )) >≥ f(v − uα) ∀v ∈ Kh (156)

then there exists a constant C ≥ 0 such that

|uα − u|1 ≤ C
√
α (157)

Proof. Replacing v by uα in the equation (155), and v by u in the equation (156),
one obtains{

a(u,uα − u)+ < τ,Πh(|uα,T | − |uT |) >≥ f(uα − u)

a(uα,u− uα)+ < τ,Πh(ηα(uT )− ηα(uα,T )) >≥ f(u− uα)
(158)

Adding these two equations, we obtain

a(u− uα,uα − u)+ < τ,Πh(|uα,T | − ηα(uα,T ) + ηα(uT )− |uT |) >≥ 0 (159)

Thus

a(uα − u,uα − u) ≤ |τ |∗ |Πh(|uα,T | − ηα(uα,T ) + ηα(uT )− |uT |)|H1/2(ΓC)

≤ C|τ |∗ |Πh(|uα,T | − ηα(uα,T ) + ηα(uT )− |uT |)|L2(ΓC)

≤ C|τ |∗ |Πh(||uα,T | − ηα(uα,T )|) + Πh(|ηα(uT )− |uT ||)|L2(ΓC)

≤ 2C|τ |∗|Πh(1)|L2(ΓC).α (ηα ∈ Ξα) (160)

Because a is elliptic then
|uα − u|1 ≤ C1

√
α (161)
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Corollary 5.1. If ηα(v) =
√
|v|2 + α2 then

|uα − u|1 ≤ Cα1/2 (162)

6 The Algorithm

Using the finite element approach, for l = 1 or 2, let Ωlh be the mesh of the body Ωl,
which is composed from the triangles family {T li | i = 1, . . . , nlT }. In addition, consider
the following spaces

Vl
h =

{
v = (v1, v2) ∈ C0(Ωlh)× C0(Ωlh) | v|T l

i
∈ Pr × Pr, ∀i = 1, . . . , nlT and v = 0 on Γl0

}
(163)

where C0(Ωlh) denotes the set of the continuous functions on Ωlh, and Pr denotes the
linear finite elements for r = 1 and the quadratic ones for r = 2.

Consider the space Vh defined as follows

Vh = V1
h ×V2

h (164)

Let uh = (u1
h,u

2
h) ∈ Vh, the displacement vector field ulh on the mesh Ωlh is given by

ulh =
∑
i

(
Uxi
Uyi

)
ŵli (165)

where ŵli are the shape functions on the mesh Ωlh, and
(
Uxi Uyi

)T
are the degrees

of freedom of ulh, otherwise speaking Uxi and Uyi represent respectively the horizontal
and vertical displacement of the node i in the mesh. In the following U ∈ Rn denotes
the vector of all degrees of freedom of uh, otherwise stated

U =
(
. . . Uxi Uyi . . .

)T
(166)

We will present the algorithm to solve frictional contact problem in general case,
otherwise speaking in the case of large deformations. For the sake of simplicity and in
order to be more clear, the algorithm will be split into several algorithms.

The idea behind the algorithm is first to loop on the sliding limits τ until con-
vergence, more precisely at each iteration k, the regularized frictional problem for a
given sliding limit τk is solved, which corresponds to a minimization problem, then
we retrieve the normal pressure σn,k on the contact area, and the next sliding limit
τk+1 is computed via τk+1 = −µσn,k. This process continues until the relative error
between two successive sliding limits is small enough.

In the sequel, [[τ ]] denotes an array containing the value of τ at the integration
points of the contact area.

The algorithm solving the frictional problem is shown in algorithm 1.

25



Algorithm 1 Regularized frictional algorithm using the fixed point method

Set the error tolerance εtol = 10−6

Compute σn,0 the normal stress pressure at the contact area for the frictionless
problem
Compute τ0 = −µσn,0, the first sliding limit
while error ≥ εtol do

1. For a given sliding limit τk, solve Tresca’s regularized problem, given
in the algorithm 2

2. Retrieve the displacement field uh
3. Compute the normal pressure σn,k(uh) on the contact surface
4. Compute the new sliding limit τk+1 = −µσn,k
5. error=

‖[[τk+1]]− [[τk]]‖∞
‖[[τk]]‖∞

end while

The resolution of the contact problem without friction, is to solve the following
constrained minimization problem

uh = arg min
v∈Vh

(Ep(v)) s.t∫
ΓC1

((x− x̄2)n).φ
(1)
i dS ≥ 0 ∀ i = 1, . . . , nC1∫

ΓC2

((x− x̄1)n).φ
(2)
i dS ≥ 0 ∀ i = 1, . . . , nC2

(167)

where x = X + v the actual position of a material point, with X the initial position
of this same point. ΓCl is the initial potential contact area of the body Ωlh . x̄l is
the projection point of x on the body Ωlh, where l = 1, 2 and n is the outward unit
normal vector at x̄l. Note that the two constraints in the problem (167) describe the
non-penetration in a weak sense, and it is a symmetric formulation, in other words the
user does not need to specify anymore a slave and a master body, see [16] for details.

φ
(l)
i are the shape functions on the nCl nodes of the contact area ΓCl.

In addition Ep is the total potential energy defined by
Ep(v) = 1

2
a(v,v)− f(v) for linear elastic problems

Ep(v) =

∫
Ω1

h
∪Ω2

h

Ŵ (v)dv − f(v) for large deformations and hyperelastic problems

(168)
where Ŵ is the strain energy function.

Moreover, in the case of large deformations, we can remark that the projection
points x̄l for l = 1, 2 in the non-penetration constraints (167) depend on the actual
solution of the problem. Thus we will use a fixed point algorithm to deal with this
issue. Indeed in the fixed point algorithm iteration, we will use the displacement of the
previous iteration, and based on this displacement we will compute for each point x its
closest segment or triangle in the body Ωlh and its projection parameter, and therefore
the projection point x̄l now depends linearly on the actual displacements. Otherwise
speaking we obtain a sequence of minimization problems with linear constraints.

The resolution of the Tresca regularized problem, presented in the algorithm 2,
will use the theorem 4.1 and therefore as we saw, we can use a fixed point algorithm.
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We used the same fixed point algorithm treating the constraints. Therefore in the
fixed point algorithm iteration, let’s say n+ 1, we minimize the following energy En+1

submitted to the linear constraints.

En+1(v) = Ep(v) +

∫
γn
C

τk.ηα(v1
T − v̄2

T ) ds (169)

where τk is the sliding limit at the iteration k of the algorithm 1. v1 is the admissible
displacement field of the first body and v̄2 is the admissible displacement field of
the second body applied on the projection points of the first body on the second
one. Finally γnC is the actual contact area based on the displacements of the previous
iteration n.

Algorithm 2 Symmetric algorithm using the fixed point method for Tresca’s
regularized problem

Initialization of the displacement U0 and setting the tolerance εtol = 10−6

while error ≥ εtol do
1. Using the displacement vector Un of the previous iteration n:

- Compute the projection points’ parameters {η∗i | i = 1, . . . , nS} of
all slave integration points

- Compute the normal at the projection points {ni | i = 1, . . . , nS}
(Using smoothing techniques)

- Compute the contact area γnC
2. For each integration point, its projection point x̄i depends linearly on

the actual displacement
3. Reverse the role of the master and the slave bodies
4. Form the Energy En+1 (Equation (169)) and the symmetric linear

constraints
5. Use the interior point method in order to solve the minimization

problem with linear constraints, and to obtain the actual displacement
Un+1

6. error=
‖Un+1 −Un‖∞
‖Un‖∞

end while

7 Numerical validations

7.1 Validation of the regularized friction law

In this first example we will try to validate the regularized friction law given in the
equation (77). Indeed we will take an elastic rectangular body of dimensions (40UL×
20UL) laid on a rigid rectangle body (see Figure 5 ). The elastic body has the following
material properties, a Young’s modulus E = 103 UF

UL2 and a poisson’s ratio ν = 0, note
that UF , UL denote respectively the force and the length unit. A vertical force of
−30UF

UL
is uniformly distributed along its top area.
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Ω

Rigid body

Figure 5: Problem geometry

At the first stage we impose a sliding conditions on its left boundary, and we
apply a sequence of an uniformly distributed tangential force on its right boundary
pointing to the right, with the following values 2, 5, 10, 20, 30 UF

UL
. In the second stage

the sliding conditions are imposed on its right boundary and we apply a sequence of
tangential pressure on its left boundary pointing to the left, with the following values
−2,−5,−10,−20,−30 UF

UL2 . Considering the midpoint of the contact area, the goal of
this example is to plot the ratio of the tangential and normal stresses σT

σn
against the

tangential displacement uT , and to compare it with the theoretical one seen in the
equation (77).

In all next examples the regularization function will be ηα(v) =
√
|v|2 + α2 for

v ∈ R2 or R3. Taking α = 10−2, then according to the equation (77) we have

σT
σn

= µ
uT√

u2
T + α2

(170)

We consider a friction coefficient µ = 0.1, and linear finite elements. The normal
stress at the contact area is equal to σn = σyy and the tangential stress on the contact
area is equal to σT = −σxy, moreover the tangential displacement is equal to uT = ux.
In the Figure 6, the ratio σT

σn
against the tangential displacement uT is plotted for the

different loads mentioned above, and is compared with the theoretical one given by
the equation (170).

−0.5 0.5

−0.1

0.1

uT

σT

σnsimulation

theoritical

Figure 6: σT

σn
vs uT
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We can see the consistency between the simulation and the theoretical results, and
how regularization can approach Coulomb’s law. We saw similar results for quadratic
finite elements, three dimensional case and for hyperelastic materials.

7.2 Frictional Hertz contact

We consider a contact between a half elastic cylinder Ω1 (E1 = 200 UF
UL2 , ν1 = 0.3) and

an elastic half-space Ω2 (E2 = 200 UF
UL2 , ν2 = 0.3), the geometry and the dimensions

are shown in the Figure 7 (units in UL). The Frictional coefficient is taken relatively
big, µ = 0.8, and the lower area of Ω2 is fixed. First, we impose a downward vertical
displacement of 4.55UL in 3 steps on the top of the half cylinder, then a total horizontal
load of q = 0.05 UF

UL
is applied in 7 steps, again on the top of the half cylinder.

Obviously it’s a quasi-static study.

Ω2

Ω1

800

2800

14
00

x
y

Figure 7: The geometry and the mesh of the problem

The imposed vertical displacement gives an equivalent maximal normal pressure
of p0 = 2.93 UF

UL
. Thus the equivalent vertical force is equal to

P =
πRp2

0

E∗
(171)

where R is the cylinder radius, and E∗ the effective Young modulus given by

E∗ =
E1E2

E1(1− ν2
2 ) + E2(1− ν2

1 )
(172)

According to [18] and with the small deformations hypothesis, there exist two slip
zones {c ≤ |x| ≤ a} and one stick zone {|x| ≤ c}, wherea =

√
4PR
πE∗

c = a
√

1− Q
µP

(173)

with Q = 2Rq and a the half contact width, moreover the normal and tangential
stresses are given by the following.
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The normal pressure at the contact zone:

pn =
p0

a

√
a2 − x2 (174)

The tangential pressure at the contact zone:{
pt = µ p0

a
(
√
a2 − x2 −

√
c2 − x2) if |x| ≤ c

pt = µ p0
a

√
a2 − x2 if c ≤ |x| ≤ a

(175)

The mesh of the two bodies is shown in the Figure 7. Using the quadratic finite
elements (P2), and a regularization parameter α = 10−3, the computed normal and
tangential stresses, in addition to the theoretical ones, are depicted in the Figure 8.

−40 −20 20 40

1

2

3.1

x (UL)

stresses ( UFUL2 )
pn
pt

pn (simulation)

pt (simulation)

Figure 8: The stresses on the contact area

7.3 Shallow ironing

This example was studied by many papers, we can cite for example [13, 29, 31]. A small
indenter Ω1 is pressed into a less stiffer rectangular body Ω2 at the first stage , and
pulled horizontally to the right at the second stage. The geometries of the two bodies
are shown in the Figure 9 (units in UL), in addition the bottom of the rectangular
body is fixed. Neo-Hookean material is assumed for the two bodies (see [29]), with
(E1 = 68.96 × 102 UF

UL2 , ν = 0.32) for the small indenter and (E2 = 6.896 × 102 UF
UL2 ,

ν = 0.32) for the rectangular body, which is 10 times softer than the indenter.
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Figure 9: The geometry of the shallow ironing problem

At the first stage a downward vertical displacement of 8UL is applied in 8 time
steps on the top of the indenter, in the second stage a horizontal displacement of
100UL is applied on the top of the indenter to the right in 500 time steps. This is a
quasi-static study with a friction coefficient µ = 0.3.

Using the quadratic finite elements (P2), and a regularization parameter α = 10−2,
the mesh of the two bodies and the deformation shapes at some time steps are shown
in the Figure 10.

Figure 10: The deformation shapes at t = 8, 254, 508

The vertical and horizontal reactions on the indenter, are depicted in the Figure
11.
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Figure 11: The vertical and horizontal reaction Fv, Fh on the indenter

There was no agreement on the results between the papers which studied this
test. However, in order to show that our results are reasonable, we computed the
ratio between the horizontal and the vertical reaction, when the indenter slide on the
second body. We obtained a ratio approximately equal to 0.32, which is very close to
the friction coefficient µ = 0.3.

8 Conclusions

The frictional contact problem was transformed into a sequence of Tresca’s problems
which are based on a minimization principle, where we can use several optimization
techniques in order to converge faster to the solution. In addition, a regularization was
used in order to eliminate the non-smooth character of the friction behavior, and the
interior point method was employed to solve the generated minimization problems.
A fixed point method was used in the case of finite deformation, and symmetrical
non-penetration constraints were considered. Finally, our algorithm gives satisfactory
results and has been validated on several contact examples.
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