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The aim of this paper is to present an algorithm to solve frictional contact problems by considering the Coulomb's criterion. As it is known, the frictional contact problem using Coulomb's criterion has no minimization principle behind. However in order to use algorithms based on minimization methods, the frictional contact problem is written as an optimization one, more specifically as a sequence of Tresca contact problems. Moreover a family of regularization functions is introduced in order to regularize the non-smooth character of the Tresca criterion, which in some cases can have an experimental justifications. As each minimization problem becomes smooth enough, the interior point method is used to solve the generated optimization problem.

Introduction

The contact problems with friction were studied in many papers, for example in [START_REF] Eck | Existence results for the static contact problem with coulomb friction[END_REF] the existence of solutions for elastic static contact problems with a small coefficient of friction was proved in the case of Coulomb's friction, where a penalty method was used. In the paper [START_REF] Cocu | Existence of solutions of signorini problems with friction[END_REF], existence of solutions for static Signorini's problem with Coulomb friction was proved, where the normal component of the stress was replaced by a regularized one, in addition, the uniqueness of the solution was proved for a small friction coefficient. In the chapter 3 of [START_REF] Duvaut | Inequalities in mechanics and physics[END_REF] several studies for elastic frictional problems were done in addition to the formulation into a variational inequality for the Signorini's problem with Coulomb's friction.

In [START_REF] Licht | Remarks on a numerical method for unilateral contact including friction[END_REF] and in the case of linear elastic material, the Coulomb frictional contact problem is transformed into a sequence of Tresca frictional contact problems. Indeed the problem is transformed into a fixed point method where at each iteration a minimization problem over a convex set is solved. The bi-potential method was used for frictional dynamic problem in [START_REF] Feng | Un algorithme efficace pour les problémes d'impact avec frottement[END_REF][START_REF] Feng | Fer/impact: logiciel de simulation numérique des problémes d'impact[END_REF], indeed the contact forces are computed by a process of prediction and correction, by a projection on the Coulomb cone. Then the contact forces are considered as an external loading.

A penalty formulation based on the integration points was considered in [START_REF] Fischer | Mortar based frictional contact formulation for higher order interpolations using the moving friction cone[END_REF], to solve frictional contact problems. The integration in [START_REF] Fischer | Mortar based frictional contact formulation for higher order interpolations using the moving friction cone[END_REF] was done on the non-mortar segments (or the slave contact segments), with a fixed integration points on the nonmortar segment, and not on the overlapping regions between mortar and non-mortar areas, so the computational effort is reduced. In [START_REF] Lt Campos | A numerical analysis of a class of contact problems with friction in elastostatics[END_REF][START_REF] Oden | Numerical analysis of certain contact problems in elasticity with non-classical friction laws[END_REF][START_REF] Oden | Algorithms and numerical results for finite element approximations of contact problems with non-classical friction laws[END_REF] the elastic problems were considered, where a non-classical friction law was used in [START_REF] Oden | Numerical analysis of certain contact problems in elasticity with non-classical friction laws[END_REF][START_REF] Oden | Algorithms and numerical results for finite element approximations of contact problems with non-classical friction laws[END_REF], the idea was to fix the normal pressure at each iteration and update it for the next iteration.

The returning mapping method is a method used for the frictional contact problems, this method was already been used in plasticity problems (see [START_REF] Crisfield | Non-linear finite element analysis of solids and structures[END_REF][START_REF] Crisfield | Non-linear finite element analysis of solids and structures[END_REF]), where like the yield surface, a surface which is dependent on the normal and on the tangential stress is created (see [START_REF] Ae Giannakopoulos | The return mapping method for the integration of friction constitutive relations[END_REF]). We can cite for example [START_REF] Simo | An augmented lagrangian treatment of contact problems involving friction[END_REF] where the penalty and the augmented Lagrangian methods were used. The return mapping method and the penalty method were also presented in [START_REF] Wriggers | Finite element formulation of large deformation impact-contact problems with friction[END_REF] for contact problems with large deformations.

In this paper, we present an algorithm to solve frictional contact problems using Coulomb's criterion for elastic and finite deformation problems. As we know, the frictional contact problem using Coulomb's criterion has no minimization principle behind. However, expressing the contact problem in a minimization form and solve it with optimization methods can be a robust way to solve it, indeed we can use several optimization techniques (for example line search method) in order to converge faster to the solution which is a minimum. Therefore in order to use optimization algorithms, the frictional contact problem is written as an optimization one, more specifically as a sequence of Tresca contact problems until convergence (a fixed point method).

Each Tresca contact problem is equivalent to a minimization one, unfortunately the energy to minimize becomes not smooth enough, therefore we introduce a family of regularization functions in order to regularize the non-smooth part. In addition, in some cases, regularization can be justified because tangential slip always occurs, even for a small tangential stress [START_REF] Courtney | The effect of a tangential force on the contact of metallic bodies[END_REF][START_REF] Tinsley | Nonlocal and nonlinear friction laws and variational principles for contact problems in elasticity[END_REF]. We can also cite [START_REF] Langstreth | Surface interaction between elastically loaded bodies under tangential forces[END_REF], where a micro-displacement is produced between a hard steel ball and the flat end of a hard steel roller in contact, when the tangential force applied on the ball is less than the value necessary to produce slip.

In the case of large deformations, the non-penetration constraints are non-linear, therefore the contact problem is written into a sequence of problems with linear constraints, more specifically as a fixed point (more like [START_REF] De | Finite element code aster , analysis of structures and thermomechanics for studies and research[END_REF]8,[START_REF] Ad Kudawoo | Computational contact problems: Investigations on the robustness of generalized newton method, fixed-point method and partial newton method[END_REF]). In addition the non-penetration constraints are imposed in a symmetrical manner, in other words, non-penetration constraints are prescribed on the slave body to forbid the penetration of the latter into the master one, in addition to non-penetration constraints which are prescribed on the master body to forbid the penetration of the latter into the slave one. Generally, the symmetrical non-penetration constraints can be redundant or linearly dependent therefore numerical difficulties can be generated, we can see in [START_REF] Houssein | Contact problems in industrial applications using freefem[END_REF] how these numerical difficulties are avoided when using the interior point method. In short, we have two loops, the exterior one is for the Tresca problems and the interior one is for the non-linearity of the constraints in the finite deformation case.

This paper is organized as follows: in section 2, we present several reminders about frictional contact problems. A family of regularization functions to make the Tresca problem smooth enough in addition to the corresponding frictional regularized problems, are introduced in section 3. The finite deformation case is discussed in section 4. The existence and the uniqueness of a solution in addition to the convergence of the frictional fixed point algorithm in the discretized case are shown in section 5.

The algorithm can be found in section 6. Finally, in section 7 our method is validated against several contact examples.

Linear elasticity

We consider here two elastic bodies Ω l ⊂ R 2 or R 3 with l = 1, 2 initially in contact at the border ΓC (see Figure 1), the contact area after loading is supposed to be included in ΓC . Let Γ l 0 be the border of the body Ω l where a null displacement is imposed, and Γ l 1 where a surface traction t l is imposed, in addition Ω = Ω 1 ∪ Ω 2 . We call n := n 1 , n 2 respectively the outward unit normal vector on ∂Ω1 and on ∂Ω2. Finally, the body force f l is applied on Ω l .

Figure 1: The two bodies in contact

The frictional contact problem using Coulomb's criterion is given as follows

         ∇.σ l + f l = 0 in Ω l σ l = C l l
in Ω l (Hook's law)

u l = 0 on Γ l 0 σ l .n l = t l on Γ l 1 (1) 
with the following contact conditions

     [u.n] = u 1 .n 1 + u 2 .n 2 = (u 1 -u 2 ).n ≤ 0 on ΓC σn = (σ 1 .n 1 ).n 1 = (σ 2 .n 2 ).n 2 ≤ 0 on ΓC σn.[u.n] = 0 on ΓC (2) 
Here the normal vector n is considered to be equal to n 1 , in addition at the contact area we have n 1 = -n 2 . Given a friction coefficient µ, the static Coulomb criterion on ΓC states

         σ 1 T = -σ 2 T |σ 1 T | ≤ µ|σn| if |σ 1 T | < µ|σn| ⇒ u 1 T -u 2 T = 0 if |σ 1 T | = µ|σn| ⇒ ∃λ ≥ 0 s.t u 1 T -u 2 T = -λσ 1 T ( 3 
)
where the subscript T means the tangential part, otherwise speaking, for a vector v l , v l T = v l -(v l .n l )n l . Moreover the symbol | • | for a vector means its module.

Tresca criterion

Let τ ∈ L 2 (ΓC ) ≥ 0, be the sliding limit of the Tresca criterion, the governing equations are the same, except the system (3), which becomes

         σ 1 T = -σ 2 T |σ 1 T | ≤ τ if |σ 1 T | < τ ⇒ u 1 T -u 2 T = 0 if |σ 1 T | = τ ⇒ ∃λ ≥ 0 s.t u 1 T -u 2 T = -λσ 1 T ( 4 
)
where µ|σn| was replaced by the sliding limit τ .

Variational formulation for Tresca criterion

The displacement field u is defined by u = (u 1 , u 2 ). We define the admissible set as

V = V 1 × V 2 where V l = {v ∈ H 1 (Ω l ) = H 1 (Ω l ) × H 1 (Ω l ) | v = 0 a.e on Γ l 0 } (5) 
where H 1 (Ω l ) is the Sobolev space endowed with the norm • 1. The space V is endowed with the broken norm:

u 1 = (u 1 , u 2 ) 1 = u 1 2 1 + u 2 2 1 1 2 (6) 
where u l 1 is the broken norm of the space V l . Let the applications a :

V × V → R and f : V → R be defined by a(u, v) = a 1 (u, v) + a 2 (u, v) f (v) = f 1 (v) + f 2 (v) (7) 
where for l = 1, 2

       a l (u, v) = Ω l σ(u l ) : (v l ) dv f l (v) = Ω l f l .v l dv + Γ l 1 t l .v l ds (8) 
We also consider the application jτ : V → R+ defined by

jτ (v) = Γ C τ |v 1 T -v 2 T | ds (9) 
The convex and closed set K describes the non-penetration between the two bodies, and is defined by

K = {v ∈ V | [v.n] ≤ 0 a.e on ΓC } (10) 
where

[v.n] = (v 1 -v 2 ).n = (v 1 -v 2 ).n 1 .
The variational formulation of the frictional contact problem using Tresca's criterion can be proven to be equal to Find u ∈ K such that

a(u, v -u) + jτ (v) -jτ (u) ≥ f (v -u) ∀ v ∈ K (11)

Minimization formulation for the Tresca criterion

Before giving the minimization formulation, let's recall a theorem which can be found in [START_REF] Kikuchi | Contact problems in elasticity: a study of variational inequalities and finite element methods[END_REF].

Theorem 2.1. Let K be a nonempty, closed and convex, subset of the normed linear space V, and consider a function F : K ⊂ V → R of the form F = F1 + Φ where F1 and Φ are convex and lower semicontinuous and F1 is Gâteaux differentiable on K.

Then u is a minimizer of F on K if and only if,

< DF1(u), v -u > +Φ(v) -Φ(u) ≥ 0 ∀ v ∈ K (12) 
Let Ep denotes the total potential energy of the two bodies, Ep can be given by

Ep(v) := 1 2 a(v, v) -f (v) (13) 
Consider the energy functional Jτ given by

Jτ (v) := Ep(v) + jτ (v) (14) 
Then by applying the theorem 2.1 above, by taking F = Jτ , F1 = Ep and Φ = jτ , the frictional problem [START_REF] Feng | Un algorithme efficace pour les problémes d'impact avec frottement[END_REF] is equivalent to the following minimization problem Find u ∈ K such that

Jτ (u) ≤ Jτ (v) ∀ v ∈ K (15)

Coulomb's criterion as a fixed point problem

The idea to study the Tresca criterion, is that the Coulomb criterion can be equivalent to the fixed point of the following application (see [START_REF] Lebon | Multibody contact problem including friction in structure assembly[END_REF][START_REF] Raous | Quasistatic signorini problem with coulomb friction and coupling to adhesion[END_REF])

T (τ ) = -µσN (uτ ) (16) 
where σN the normal stress and uτ the solution of the Tresca problem with the sliding limit τ ≥ 0, otherwise speaking, solution of the following problem Find uτ ∈ K such that

a(uτ , v -uτ ) + jτ (v) -jτ (uτ ) ≥ f (v -uτ ) ∀ v ∈ K (17) 
or equivalently Find uτ ∈ K such that

Jτ (uτ ) ≤ Jτ (v) ∀ v ∈ K (18) 
Otherwise speaking, if τ * is the fixed point of the application T , τ * = -µσN (uτ * ), then uτ * is the solution of the frictional problem using Coulomb's criterion.

The quasi-static problem for Coulomb's criterion

In reality the friction depends on the history of the loading, indeed the Coulomb criterion depends on the velocity rather than the displacement, and therefore the friction depends on the state of the previous time step. However the static criterion is very useful to treat the quasi-static case, because as we will see the quasi-static criterion can be written as a sequence of a static criterion when the velocity is discretized. The quasi-static criterion is given by the following

     |σ 1 T | ≤ µ|σn| if |σ 1 T | < µ|σn| ⇒ u1 T -u2 T = 0 if |σ 1 T | = µ|σn| ⇒ ∃λ ≥ 0 s.t u1 T -u2 T = -λσ 1 T ( 19 
)
where u denotes the velocity. For a time step ∆t the velocities u1 T and u2 T are discretized as follows

     u1 T = u 1 T,i+1 -u 1 T,i ∆t u2 T = u 2 T,i+1 -u 2 T,i ∆t (20) 
where i + 1 and i denotes respectively the actual and the previous state. Therefore the quasi-static criterion becomes

     |σ 1 T | ≤ µ|σn| if |σ 1 T | < µ|σn| ⇒ (u 1 T,i+1 -u 1 T,i ) -(u 2 T,i+1 -u 2 T,i ) = 0 if |σ 1 T | = µ|σn| ⇒ ∃λ ≥ 0 s.t (u 1 T,i+1 -u 1 T,i ) -(u 2 T,i+1 -u 2 T,i ) = -λσ 1 T ( 21 
)
3 Regularization of the Tresca frictional problem

Recall that the frictional problem using Tresca's criterion is given by Find u ∈ K such that

a(u, v -u) + jτ (v) -jτ (u) ≥ f (v -u) ∀ v ∈ K (22) 
The application jτ is not differentiable because of its module term. For this reason and for an algorithmic point of view, in order to obtain a smooth problem, the module vector | • | is approximated by an application ηα.

We suppose that the regularization function ηα approximating the module of a vector in R d (d = 2, 3), belongs to the set Ξα, defined below. Definition 3.1. Define Ξα, for α > 0, the set of functions such that 

ηα ∈ Ξα ⇐⇒                    ηα ∈ C 2 (R d ) ηα is convex ηα(v) = ηα(-v) ∀ v ∈ R d ηα(v) ≥ 0 ∀ v ∈ R d |ηα(v) -|v|| ≤ α ∀ v ∈ R d |ηα(v1) -ηα(v2)| ≤ | |v1| -|v2| | ∀ v1, v2 ∈ R d
ηα(v) = |v| 2 + α 2 ∀ v ∈ R d (24) 
belongs to Ξα.

In the following we take a regularization function ηα such that ηα ∈ Ξα. Our regularized frictional problem becomes Find u ∈ K such that

a(u, v -u) + jα,τ (v) -jα,τ (u) ≥ f (v -u) ∀ v ∈ K (25) 
where the application jα,τ is given by

jα,τ (v) = Γ C τ.ηα(v 1 T -v 2 T ) ds (26) 
Note that the regularization of frictional problems was considered in many papers like [START_REF] Lt Campos | A numerical analysis of a class of contact problems with friction in elastostatics[END_REF][START_REF] Lebon | Two-grid method for regularized frictional elastostatics problems[END_REF][START_REF] Tinsley | Nonlocal and nonlinear friction laws and variational principles for contact problems in elasticity[END_REF].

Frictional criterion generated from the regularized problem

In most papers and for Signorini's contact problem, one can cite [START_REF] Duvaut | Inequalities in mechanics and physics[END_REF][START_REF] Kikuchi | Contact problems in elasticity: a study of variational inequalities and finite element methods[END_REF], the variational inequality ( 11) is proved to be equivalent to the contact problem equations ( 1), ( 2), with Tresca's frictional criterion [START_REF] Courtney | The effect of a tangential force on the contact of metallic bodies[END_REF]. Otherwise, regularizing the frictional criterion can be found in [START_REF] Raous | Quasistatic signorini problem with coulomb friction and coupling to adhesion[END_REF], and in [START_REF] Tinsley | Nonlocal and nonlinear friction laws and variational principles for contact problems in elasticity[END_REF] where a nonlocal friction is used (the normal stress is replaced by a weighed average of the normal stress in the friction criterion) and where we can find a physical interpretation for the regularization, as the elastic and elastoplastic deformation of the junctions (a region in the contact area where an adhesion take place). Here we prove formally, in the case of contact between two bodies, that if the variational inequality [START_REF] Oden | Numerical analysis of certain contact problems in elasticity with non-classical friction laws[END_REF] is satisfied then the equations of the contact problem (1), (2) are satisfied with a special regularized frictional criterion. In order to obtain the frictional criterion generated by the regularized problem, we present the following theorem Theorem 3.1. Let u ∈ K be sufficiently regular (H 2 ), and satisfying the following variational inequality

a(u, v -u) + jα,τ (v) -jα,τ (u) ≥ f (v -u) ∀ v ∈ K ( 27 
)
Then u satisfies the following equations for l = 1, 2

         ∇.σ l + f l = 0 in Ω l σ l = C l l
in Ω l (Hook's law)

u l = 0 on Γ l 0 σ l .n l = t l on Γ l 1 ( 28 
)
with the following contact conditions:

     [u.n] = u 1 .n 1 + u 2 .n 2 = (u 1 -u 2 ).n ≤ 0 on ΓC σn := (σ 1 .n 1 ).n 1 = (σ 2 .n 2 ).n 2 ≤ 0 on ΓC σn.[u.n] = 0 on ΓC ( 29 
)
with the following regularized frictional criterion on ΓC

       σ 1 T = -σ 2 T σ 1 T = -τ.∇ηα(u 1 T -u 2 T ) = -τ (u 1 T -u 2 T ) √ |u 1 T -u 2 T | 2 +α 2 if ηα(v) = |v| 2 + α 2 (30) 
where ∇ηα(u

1 T -u 2 T ) is supposed to be in the same tangent space of σ 1 T (true if ηα(v) = |v| 2 + α 2 ).
Proof. We recall the Green formula which will be useful in the sequel. For l = 1 or 2

Ω l σ l (u l ) : (v l ) dv = - Ω l ∇.σ l (u l ).v l dv + ∂Ω l σ l (u l ).n l .v l ds (31) 
Therefore

a(u, v -u) = l=1,2
-

Ω l ∇.σ l (u l ).(v l -u l ) dv + ∂Ω l σ l (u l ).n l .(v l -u l ) ds (32)
First consider an application φ ∈ D 2 (Ω 1 ) (C 2 (Ω 1 ) with a compact support in Ω 1 ), we will take the test function

v = (v 1 , v 2 ) such that v 1 = u 1 ± φ and v 2 = u 2 .
Then using the variational inequality ( 27), the Green formula (32) and the fact that φ is equal to zero on the borders, one obtains

-

Ω 1 ∇.σ 1 (u 1 ).φ dv - Ω 1 f 1 .φ dv ≥ 0 (33) 
and

Ω 1 ∇.σ 1 (u 1 ).φ dv + Ω 1 f 1 .φ dv ≥ 0 (34) Thus Ω 1 (∇.σ 1 (u 1 ) + f 1 ).φ dv = 0 (35) Otherwise speaking ∇.σ 1 (u 1 ) + f 1 = 0 a.e on Ω 1 (36) 
In the same manner if we take v such that v 1 = u 1 and v 2 = u 2 ± φ, we obtain

∇.σ 2 (u 2 ) + f 2 = 0 a.e on Ω 2 (37) Consider the test function v = (v 1 , v 2 ) such that v 1 = u 1 ± φ and v 2 = u 2
, then using the two equilibrium equations ( 36) and (37) the variational inequality becomes

∂Ω 1 σ 1 (u 1 ).n 1 .(±φ) ds - Γ 1 1 t 1 .(±φ) ds + Γ C τ.(ηα(v 1 T -u 2 T ) -ηα(u 1 T -u 2 T )) ds ≥ 0
(38) In the inequality (38) we can take φ ∈ H 1/2 (∂Ω 1 ) with supp(φ) ⊂ Γ 1 1 , and we will obtain then -

Γ 1 1 (σ 1 (u 1 ).n 1 -t 1 ).φ ds ≥ 0 (39)
and

Γ 1 1 (σ 1 (u 1 ).n 1 -t 1 ).φ ds ≥ 0 (40)
Otherwise speaking

Γ 1 1 (σ 1 (u 1 ).n 1 -t 1 ).φ ds = 0 (41) Therefore σ 1 (u 1 ).n 1 = t 1 a.e on Γ 1 1 (42) 
In the same manner if we take

v = (v 1 , v 2 ) such that v 1 = u 1 and v 2 = u 2 ± φ we obtain σ 2 (u 2 ).n 2 = t 2 a.e on Γ 2 1 ( 43 
)
Because u ∈ K, then by definition [u.n] ≤ 0 on ΓC and u l = 0 on Γ l 0 . So it remains to verify the last two equations of ( 29) and the two equations of [START_REF] Wriggers | Finite element formulation of large deformation impact-contact problems with friction[END_REF].

Using the equations ( 36), ( 37), ( 42), ( 43) and the Green formula, the variational inequality [START_REF] Raous | Quasistatic signorini problem with coulomb friction and coupling to adhesion[END_REF] becomes

l=1,2 Γ C σ l (u l ).n l .(v l -u l ) ds + Γ C τ.(ηα(v 1 T -v 2 T ) -ηα(u 1 T -u 2 T )) ds ≥ 0 ∀ v ∈ K (44) Taking v = (v 1 , v 2 ) such that v 1 = φ.n 1 + u 1 and v 2 = -φ.n 2 + u 2 , we have the fact that v ∈ K because [v.n] = v 1 .n 1 + v 2 .n 2 = u 1 .n 1 + u 2 .n 2 = [u.n] ≤ 0. Thus if we inject v in the inequality (44) one obtains Γ C (σ 1 (u 1 ).n 1 ).n 1 -(σ 2 (u 2 ).n 2 ).n 2 φ ds ≥ 0 (45) 
In addition if we consider -φ instead of φ, we can obtain thus

Γ C (σ 1 (u 1 ).n 1 ).n 1 -(σ 2 (u 2 ).n 2 ).n 2 φ ds ≤ 0 (46) Therefore Γ C (σ 1 (u 1 ).n 1 ).n 1 -(σ 2 (u 2 ).n 2 ).n 2 φ ds = 0 (47)
We can deduce that σn := (σ 1 .n 1 ).n 1 = (σ 2 .n 2 ).n 2 a.e on ΓC which is the second equation of ( 29). Now we take

v = (v 1 , v 2 ) such that v 1 = λ.φ.n 1 + u 1 T and v 2 = u 2 T , where λ ≥ 0 and φ ∈ H 1/2 (∂Ω 1 ) ≤ 0 with supp(φ) ⊂ ΓC . Clearly v ∈ K because [v.n] = v 1 .n 1 + v 2 .n 2 = λ.φ ≤ 0.
Injecting v in the inequality (44) and using the fact that

u 1 = (u 1 .n 1 )n 1 + u 1 T and u 2 = (u 2 .n 2 )n 2 + u 2 T , one obtains Γ C (σ 1 (u 1 ).n 1 ).λ.φn 1 ds- Γ C (σ 1 (u 1 ).n 1 ).(u 1 .n 1 )n 1 ds- Γ C (σ 2 (u 2 ).n 2 ).(u 2 .n 2 )n 2 ds ≥ 0 (48) Then Γ C σn.λ.φ ds - Γ C σn.(u 1 .n 1 ) ds - Γ C σn.(u 2 .n 2 ) ds ≥ 0 (49) which is equivalent to λ Γ C σn.φ ds - Γ C σn.[u.n] ds ≥ 0 (50) If λ → 0 then Γ C σn.[u.n] ds ≤ 0 (51)
If we divide the inequality (50) by λ and taking λ → +∞ then

Γ C σn.φ ds ≥ 0 (52)
From the inequality (52) and from the fact that φ ≤ 0 we deduce that σn ≤ 0. By definition [u.n] ≤ 0, thus σn.[u.n] ≥ 0, therefore from the inequality (51) we deduce that σn.[u.n] = 0. Therefore the equations of ( 29) are verified and it remains to prove the two equations of [START_REF] Wriggers | Finite element formulation of large deformation impact-contact problems with friction[END_REF].

Let φ = φnn 1 + φ T ∈ H 1/2 (∂Ω 1 ) with supp(φ) ⊂ ΓC . Take v = (v 1 , v 2 ) such that v 1 = u 1 ± φ T and v 2 = u 2 , where ∈ [0, 1]. Clearly v ∈ K, thus injecting v in (44) one obtains Γ C σ 1 (u 1 ).n 1 .(± φ T ) ds + Γ C τ.(ηα(u 1 T -u 2 T ± φ T ) -ηα(u 1 T -u 2 T )) ds ≥ 0 (53)
thus and after dividing by

Γ C σ 1 T .(±φ T ) ds + Γ C τ. ηα(u 1 T -u 2 T ± φ T ) -ηα(u 1 T -u 2 T ) ds ≥ 0 (54)
Thanks to the differentiability of ηα, we obtain the following inequality when → 0

Γ C σ 1 T .(±φ T ) ds + Γ C τ.∇ηα(u 1 T -u 2 T ).(±φ T ) ds ≥ 0 (55) 
We deduce that

Γ C σ 1 T .φ T ds + Γ C τ.∇ηα(u 1 T -u 2 T ).φ T ds = 0 (56) Otherwise σ 1 T .φ T = σ 1 T .φ and ∇ηα(u 1 T -u 2 T ).φ T = ∇ηα(u 1 T -u 2 T ).φ, (indeed ∇ηα(u 1 T - u 2 
T ) is supposed to be in the same tangent space, it's true if ηα(v) = |v| 2 + α 2 ), thus

Γ C (σ 1 T + τ.∇ηα(u 1 T -u 2 T )).φ ds = 0 (57) 
We conclude that

σ 1 T = -τ.∇ηα(u 1 T -u 2 T ) = -τ u 1 T -u 2 T u 1 T -u 2 T 2 + α 2 a.e on ΓC (58) 
In the same manner, we take

v = (v 1 , v 2 ) such that v 1 = u 1 and v 2 = u 2 ± φ T ,
where ∈ [0, 1], and we inject v in (44). We obtain

Γ C σ 2 (u 2 ).n 2 .(± φ T ) ds + Γ C τ.(ηα(u 1 T -u 2 T ∓ φ T ) -ηα(u 1 T -u 2 T )) ds ≥ 0 (59)
As before we conclude that

σ 2 T = τ.∇ηα(u 1 T -u 2 T ) = -σ 1 T a.e on ΓC (60)

Minimization formulation for the regularized problem

The variational inequality of the problem is recalled below.

Find u ∈ K such that a(u, v -u) + jα,τ (v) -jα,τ (u) ≥ f (v -u) ∀ v ∈ K (61)
As before, let Ep denotes the total potential energy of the two bodies

Ep(v) := 1 2 a(v, v) -f (v) (62) 
Consider the energy functional Jα,τ given by

Jα,τ (v) := Ep(v) + jα,τ (v) ( 63 
)
where as before, the functional is given by

jα,τ (v) = Γ C τ.ηα(v 1 T -v 2 T ) ds (64) 
The functional jα,τ is lower semicontinuous, and because ηα is convex then jα,τ is convex. Therefore by applying the theorem 2.1 above, by taking F = Jα,τ , F1 = Ep and Φ = jα,τ , the frictional problem (61) is equivalent to the following minimization problem Find u ∈ K such that

Jα,τ (u) ≤ Jα,τ (v) ∀ v ∈ K (65) 
Otherwise the energy functional Jα,τ is convex, Gâteaux differentiable (or continuous) because ηα is differentiable (or continuous), and coercive because Ep is coercive and the functional jα,τ is positive. We conclude that there exits a solution of the minimization problem (65), in addition this minimizer is unique because Jα,τ is strictly convex.

Error between Tresca's solution and regularized Tresca's solution

Theorem 3.2. Let u ∈ K be the Tresca solution, in other words solution of

a(u, v -u) + jτ (v) -jτ (u) ≥ f (v -u) ∀ v ∈ K (66)
and let uα ∈ K be the regularized Tresca solution, otherwise speaking solution of

a(uα, v -uα) + jα,τ (v) -jα,τ (uα) ≥ f (v -uα) ∀ v ∈ K (67)
then there exists a constant C ≥ 0 such that

uα -u 1 ≤ Cα (68)
Proof. Replacing v by uα in the equation (66), and v by u in the equation (67), one obtains a(u, uαu)

+ jτ (uα) -jτ (u) ≥ f (uα -u) a(uα, u -uα) + jα,τ (u) -jα,τ (uα) ≥ f (u -uα) (69) 
Adding these two equations, we obtain

a(u -uα, uα -u) + jτ (uα) -jα,τ (uα) + jα,τ (u) -jτ (u) ≥ 0 (70) Thus a(uα -u, uα -u) ≤ jτ (uα) -jα,τ (uα) + jα,τ (u) -jτ (u) ≤ Γ C τ.|ηα(u 1 α,T -u 2 α,T ) -|u 1 α,T -u 2 α,T || ds + Γ C τ.|ηα(u 1 T -u 2 T ) -|u 1 T -u 2 T || ds ≤ 2 τ L 2 (Γ C ) . meas(ΓC ).α (ηα ∈ Ξα) (71) Because a is elliptic then uα -u 1 ≤ C √ α (72)
Note that the differentiability of ηα is not needed.

Corollary 3.1. If ηα(v) = |v| 2 + α 2 then uα -u 1 ≤ Cα 1/2 (73)

Coulomb's criterion as a fixed point problem for the regularized problem

Given a regularized parameter α > 0, consider the following application

T (τ ) = -µσ 1 N (uτ ) (74)
where σ 1 N is the normal stress and uτ the solution of the Tresca problem with the sliding limit τ ≥ 0 ∈ L 2 (ΓC ), otherwise speaking, solution of the following problem Find uτ ∈ K such that

a(uτ , v -uτ ) + jα,τ (v) -jα,τ (uτ ) ≥ f (v -uτ ) ∀ v ∈ K (75) or equivalently Find uτ ∈ K such that Jα,τ (uτ ) ≤ Jα,τ (v) ∀ v ∈ K (76) 
Let τ * = T (τ * ) = -µσ 1 N (uτ * ) be the fixed point of the application T and let u = uτ * , the corresponding displacement which is supposed to be sufficiently regular, therefore according to the theorem 3.1, the equations ( 28) and ( 29) are verified and the regularized Coulomb's criterion becomes

       σ 1 T = -σ 2 T σ 1 T = µσ 1 N (u).∇ηα(u 1 T -u 2 T ) = µσ 1 N (u) (u 1 T -u 2 T ) √ |u 1 T -u 2 T | 2 +α 2 if ηα(v) = |v| 2 + α 2 (77) 
In the section 5 we prove for the discretized case, the existence and the uniqueness of a fixed point for the application T (where σ 1 N ∈ H -1/2 (ΓC ), the dual of H 1/2 (ΓC )), in addition to the convergence of the fixed point algorithm to solve the frictional contact problem.

Quasi-static problem for the regularized one

Given the displacement solution ui = (u 1 i , u 2 i ) of the previous step, then for each sliding limit τ ≥ 0 ∈ L 2 (ΓC ) of the fixed point algorithm, the following problem is considered Find uτ,i+1 ∈ K such that

a(uτ,i+1, v -uτ,i+1) + jα,τ (v -ui) -jα,τ (uτ,i+1 -ui) ≥ f (v -uτ,i+1) ∀ v ∈ K (78) or equivalently Find uτ,i+1 ∈ K such that Jα,τ (uτ,i+1) ≤ Jα,τ (v) ∀ v ∈ K (79)
where jα,τ (v) is replaced by jα,τ (v -ui) which is given by

jα,τ (v -ui) = Γ C τ.ηα((v 1 T -u 1 T,i ) -(v 2 T -u 2 T,i )) ds (80) 
As u 1 T,i and u 2 T,i are given, then using the same proof of the theorem 3.1, the two problems (78) and (79) will generate the same equations ( 28) and ( 29) of the theorem 3.1, except the friction criterion (30) which will be slightly changed to

           σ 1 T = -σ 2 T σ 1 T = -τ.∇ηα((u 1 T,τ,i+1 -u 1 T,i ) -(u 2 T,τ,i+1 -u 2 T,i )) = -τ (u 1 T,τ,i+1 -u 1 T,i ) -(u 2 T,τ,i+1 -u 2 T,i ) |(u 1 T,τ,i+1 -u 1 T,i ) -(u 2 T,τ,i+1 -u 2 T,i )| 2 + α 2 if ηα(v) = |v| 2 + α 2
(81) Let ui+1 be the displacement corresponding to the fixed point of the application T already defined, the regularized Coulomb's criterion for the quasi-static problem becomes

           σ 1 T = -σ 2 T σ 1 T = µσ 1 N (ui+1).∇ηα((u 1 T,i+1 -u 1 T,i ) -(u 2 T,i+1 -u 2 T,i )) = µσ 1 N (ui+1) (u 1 T,i+1 -u 1 T,i ) -(u 2 T,i+1 -u 2 T,i ) |(u 1 T,i+1 -u 1 T,i ) -(u 2 T,i+1 -u 2 T,i )| 2 + α 2 if ηα(v) = |v| 2 + α 2 (82)

Finite deformation

We consider here the Signorini's problem for simplicity, indeed the contact between more than one body can be treated in the same manner. As before a fixed point algorithm is used in order to write the frictional contact problem as a sequence of Tresca contact problems until convergence, here the regularization of the Tresca frictional problem is considered. In the following, and for the sake of convenience, our unknown will be the actual position φ instead of the displacement u, which is not very different because φ = X + u.

In the following theorem, Ω is the body domain in R 3 (also works for R 2 ). In addition, let the borders Γ0, Γ1, ΓC be disjoint relatively to ∂Ω, and Γ = ∂Ω = Γ0 ∪ Γ1 ∪ ΓC . The area of the border ΓC is supposed to be strictly positive. Γ0 is the border where a displacement is imposed, Γ1 is the border where a surface traction is applied, finally ΓC is the potential contact area, otherwise speaking if φ(ΓC ) is ΓC in the actual configuration, then the actual contact area is included in φ(ΓC ).

The body force f is applied over the body Ω, the surface traction g is applied over Γ1, and finally φ 0 is the imposed position on Γ0.

The obstacle is described by the open set C ⊂ R 3 , the strain energy function is denoted by Ŵ , and the first Piola-Kirchhoff stress by P. We have that P = ∂ Ŵ ∂F , where F is the deformation gradient tensor.

The admissible solutions set Φ is defined by:

Φ = {ψ : Ω → R 3 ; det(∇ψ) > 0 in Ω; ψ = φ 0 on Γ0 with ψ(ΓC ) ⊆ C c } (83) 
The condition ψ(ΓC ) ⊆ C c (the complement of C) describes the non-penetration of the body into the obstacle.

The potential energy of the body is given by

Ep(ψ) = Ω Ŵ (∇ψ) dx - Ω f .ψ dx - Γ 1 g.ψ dS (84) 
We define the mapping T : Φ → Φ, which for a given ζ ∈ Φ, T (ζ) is the solution of the following constrained minimization problem

min ψ∈Φ Ep(ψ) + ζ(Γ C )∩∂C τ.ηα(vT ) ds (85) 
where

v(x) = ψ(ζ -1 (x)) -ζ -1 (x), ∀ x ∈ ζ(ΓC ) ∩ ∂C. Moreover τ (x) = τ0(ζ -1 (x))
where τ0 ∈ L 2 (ΓC ) ≥ 0 is the sliding limit of the Tresca criterion and ηα : R 3 → R+ a regularization function belonging to Ξα, defined before ( for example ηα(x, y, z) = x 2 + y 2 + z 2 + α 2 with α > 0). Finally vT is the tangential part of v, and can be given by vT = v -vnn with vn its normal component and n the normal vector at ζ(ΓC ) ∩ ∂C.

In the following theorem, the elements proof where the friction is not taken into account, are taken from [START_REF] Ciarlet | Mathematical Elasticity: Volume I: three-dimensional elasticity[END_REF]. Theorem 4.1. Let φ ∈ Φ be the fixed point of the application T defined above, otherwise speaking φ = T (φ), which means also that φ is solution of

min ψ∈Φ E(ψ) (86) 
where

E(ψ) = Ep(ψ) + φ(Γ C )∩∂C τ.ηα(vT ) ds ( 87 
)
If φ is smooth enough, then φ satisfies formally the following properties, corresponding to the frictional contact between a body and an obstacle, with a regularized Tresca criterion.

                         -div P = f in Ω φ = φ 0 on Γ0 P.N = g on Γ1 φ(ΓC ) ⊆ C c P.N = 0 if X ∈ ΓC and φ(X) ∈ C c ( / ∈ C ∪ ∂C) (P.N).n = λn if X ∈ ΓC and x = φ(X) ∈ ∂C where λn ≤ 0 σT = -τ ∇ηα(uT ) = -τ u T √ |u T | 2 +α 2 on γC = φ(ΓC ) ∩ ∂C (if ηα(v) = |v| 2 + α 2 ) (88)
where σT ,uT are respectively the tangential stress and displacement, N and n are respectively the unit outer normal vector on the initial and on the deformed surface of the body. σ is the Cauchy stress tensor and σn has the same direction of PN. Finally ∇ηα(uT ) is supposed to belong to the tangent plane (it is true if ηα(v) = |v| 2 + α 2 ).

Proof. The function φ is a solution of the minimization problem (86), therefore

E(φ) ≤ E(ψ) ∀ ψ ∈ Φ (89) 
In the following we need the Green formula, which for a smooth enough tensor T states

Ω T : ∇θ dx = - Ω div(T).θ dx + Γ TN.θ dS ∀θ (90) 
Consider θ a sufficient smooth function that vanishes in a neighborhood of Γ0 ∪ ΓC .

There

exists 0 = (θ) > 0 such that φ = φ + θ ∈ Φ ∀ | | ≤ 0. E(φ ) -E(φ) ≥ 0 (91) E(φ ) -E(φ) = E(φ + θ) -E(φ) = Ω Ŵ (∇φ + ∇θ) -Ŵ (∇φ) dx - Ω f .θ dx + Γ 1 g.θ dS (92) 
Otherwise we have:

Ŵ (∇φ + ∇θ) -Ŵ (∇φ) = ∂ Ŵ ∂F : ∇θ + o( ) = P : ∇θ + o( ) (93) 
Using the Green formula in equation ( 90) and the fact that θ vanishes in a neighborhood of Γ0 ∪ ΓC , we obtain :

Ω Ŵ (∇φ + ∇θ) -Ŵ (∇φ) dx = Ω P : ∇θ dx + o( ) = - Ω div(P).θ dx + Γ 1 PN.θ dS + o( ) (94) 
Thus

E(φ ) -E(φ) = - Ω div(P).θ dx + Γ 1 PN.θ dS - Ω f .θ dx + Γ 1 g.θ dS + o( ) = Ω (-div(P) -f ) .θ dx + Γ 1 (PN -g) .θ dS + o( ) ≥ 0 (95)
Taking > 0 and taking the limit → 0 + we have:

Ω (-div(P) -f ) .θ dx + Γ 1 (PN -g) .θ dS ≥ 0 (96)
Let X ∈ Ω and B(X, r) ⊂ Ω the open ball of center X with a small radius r > 0 (see Figure 2). Consider θ a sufficient smooth function with support in B(X, r), thus we deduce that -div(P) = f in B(X, r), and then it's true in Ω.

Figure 2: The initial and actual configuration

The equation (96) can always be used, thus using the fact that -div(P) = f in Ω, we obtain:

Γ 1 (PN -g) .θ dS ≥ 0 ( 97 
)
We deduce that PN = g on Γ1.

Let X ∈ ΓC such that φ(X) ∈ C c (see Figure 3), consider any smooth function θ : Ω → R 3 with a support in B(X, r) ∩ Ω where r > 0 and small, there exists a

2(θ) > 0 such that φ = φ + θ ∈ Φ ∀ | | ≤ 2.
As before, E(φ ) -E(φ) ≥ 0 , thus using Green's formula and the equations of equilibrium we obtain:

Γ C PN.θ dS + o( ) ≥ 0 (98)
Figure 3: The case where the stress is zero for the point X

We deduce that PN = 0 for X ∈ ΓC such that φ(X) ∈ C c .

Let γC = φ(ΓC ) ∩ ∂C. We will prove next that the coefficient λn in the equation (88) is negative. We consider Y ∈ ΓC such that y = φ(Y) ∈ γC (see Figure 4). Consider any positive smooth function θ : Ω → R+ with support in B(Y, r), then ∃ 4(θ) > 0 such that:

φ = φ -θn ∈ Φ ∀ 0 ≤ ≤ 4 (99) 
Thus by the same procedure we obtain:

Γ C -PN.nθ dS + o( ) + j(u ) -j(u) ≥ 0 ( 100 
)
where u , u are respectively the displacement fields of φ and φ, j is defined by

j(v) = γ C τ.ηα(vT ) ds (101) 
As the normal direction is considered then j(u ) -j(u) = 0. If → 0 + then we have:

Γ C PN.nθ dS ≤ 0 ( 102 
)
Thus λn = PN.n ≤ 0 at X ∈ ΓC where φ(X) ∈ γC . We still have the last equation of the problem (88) to demonstrate. We also consider Y ∈ ΓC such that y = φ(Y) ∈ γC , supposing that the boundaries of φ(Ω), C are smooth enough, then we can assume that φ(ΓC ) and ∂C have the same tangent space at the point y = φ(Y). Let V (Y) be a neighborhood of y and t1, t2, n a 3 smooth fields, such that t1, t2 span the tangent space at V ∩ γC and t1 = t2 = 1 , n is the outer normal vector on the body. Consider the ball B(Y, r) such that B(Y, r) ∩ Γ ⊂ ΓC and φ(B(Y, r)) ⊂ V (see Figure 4), therefore given two smooth functions θ1, θ2 : Ω → R with support in B(Y, r), there exist 3(θ1, θ2) > 0 and two functions λ 1 , λ 2 : Ω → R with support in B(Y, r) such that:

For Taking E(φ ) -E(φ) ≥ 0 and repeating the same procedure as before, we obtain:

β = 1, 2 φ = φ + (θ β t β + λ β n) ∈ Φ ∀ | | ≤ 3 |λ β | = o( ) (103) 
Γ C PN.θ β t β dS + 1 (j(u ) -j(u)) + o( ) + o( ) ≥ 0 (104)
Now the stress tensor P is transformed into the Cauchy one σ, which acts on the actual configuration. We can use also the fact that P.NdS = σnds, where dS and ds are respectively the area measures in the initial and actual configuration. Therefore We conclude as before that for β = 1, 2 we have

σT .t β = -τ ∇ηα(uT ).t β (110) = -τ uT |uT | 2 + α 2 .t β if ηα(v) = |v| 2 + α 2 (111) 
∇ηα(uT ) is supposed to belong to the tangent plane (it's true if ηα(v) = |v| 2 + α 2 ). Therefore for any tangential vector t we have

(σT + τ ∇ηα(uT )).t = 0 (112)
We deduce then that σT = -τ ∇ηα(uT

) = -τ u T √ |u T | 2 +α 2 .
Remark 4.1. From an algorithmic point of view, we remark that the problem (88) can be solved as a fixed point algorithm. Thus at each step k

φ k+1 = T (φ k ) (113)
5 Fixed point algorithm convergence for the frictional regularized discretized problem

In the paper [START_REF] Licht | Remarks on a numerical method for unilateral contact including friction[END_REF], the discretized frictional Signorini's problem, using P1 finite elements was written in term of a fixed point algorithm, and it was proven that there exit a solution for this latter and this algorithm converges for small friction coefficient.

In [START_REF] Hild | On finite element uniqueness studies for coulomb's frictional contact model[END_REF], a mixed finite element method was considered, and the friction coefficient threshold for the uniqueness of the solution, depends on the mesh size and on the regularization parameter α. However we will follow the most part of the proof of [START_REF] Licht | Remarks on a numerical method for unilateral contact including friction[END_REF] with several modifications, in order to treat our regularized problem also for the Signorini's case. Like [START_REF] Licht | Remarks on a numerical method for unilateral contact including friction[END_REF], the friction coefficient threshold for the uniqueness of the solution depends only on the mesh size. First consider the following finite element spaces for the body Ω h ⊂ R d , where

d = 2, 3                X h = v ∈ C 0 (Ω h ) | v |T i ∈ P1, ∀ Ti triangle of Ω h V h = v = (v1, v2) ∈ (X h ) d | v = 0 on Γ0 K h = {v ∈ V h | vn = v.n ≤ 0 on ΓC } Xh = the trace space of X h on ΓC Vh = the trace space of V h on ΓC
where as before ΓC denotes the contact potential area, V h the admissible set and K h the set describing the non-penetration between the body and the obstacle with n the outward unit normal vector on ΓC . Let { ŵi ∈ Xh | i = 1, . . . , nC } be a basis of Xh , otherwise speaking each vector of this basis is the non-zero trace of a vector of the basis of X h on ΓC . The linear application R : Vh → V h is defined such that, it associates to v ∈ Vh , a unique vector v = Rv ∈ V h such that this latter is equal to zero at all nodes outside ΓC .

Let Π h denotes the interpolation operator on Xh , Π h has the following property (see [START_REF] Licht | Remarks on a numerical method for unilateral contact including friction[END_REF])

|Π h (|v h |)| L 2 (Γ C ) ≤ c(h)|v h | L 2 (Γ C ) ∀ v h ∈ Vh ( 114 
)
where c(h) a constant depending on h. In addition Π h has the following useful properties Lemma 5.1. Let φ, φ1, φ2 ∈ L 2 (ΓC ), we have

     Π h (φ) ≥ 0 if φ ≥ 0 Π h (φ1) ≤ Π h (φ2) if φ1 ≤ φ2 |Π h (φ)| ≤ Π h (|φ|) (115) 
Proof. First of all Π h (φ) is given by

Π h (φ) = i φi ŵi ( 116 
)
The shape functions ŵi ≥ 0 because we use P1 finite elements, thus if φ ≥ 0, then Π h (φ) ≥ 0. In addition if φ1 ≤ φ2, then Π h (φ2 -φ1) ≥ 0 and we obtain the second equation of (115). Finally

|Π h (φ)| ≤ i |φi| ŵi = Π h (|φ|) (117) 
According to [START_REF] Licht | Remarks on a numerical method for unilateral contact including friction[END_REF], one can defines two applications

< σ(v), v > = a(v, Rv) -f (Rv) ∀ v ∈ V h and ∀ v ∈ Vh < σn(v), ŵ > =< σ(v), ŵn > ∀ v ∈ V h and ∀ ŵ ∈ Xh (118)
The first one describes the stress vector on ΓC and the second one describes the normal stress on ΓC corresponding to a displacement test vector v.

Remark 5.1. If v is sufficiently regular (let's say v ∈ H 2 ), then the Green formula can be used as in theorem 3.1, to obtain

< σn(v), ŵ >= Γ C σn(v) ŵ ds (119) 
In the following, the regularization function ηα approximating the module of a vector, belongs to the set Ξα, defined before.

Our regularized frictional problem, approximating Coulomb's criterion is given by Find

u h ∈ K h such that a(u h , v -u h )-< µσn(u h ), Π h (ηα(vT ) -ηα(u h T )) > ≥ f (v -u h ) ∀ v ∈ K h ( 120 
)
where µ is the friction coefficient. Let H denotes the set of all positive linear applications on Xh , otherwise speaking, the set of applications τ such that

< τ, ŵ > ≥ 0 ∀ ŵ ∈ Xh ≥ 0 (121)
For τ ∈ H, the application T is defined by

< T (τ ), ŵ >= -< µσn(u h τ ), ŵ > (122)
where u h τ is the solution of the frictional regularized problem seen before with the sliding limit τ , otherwise speaking u h τ is the solution of the following problem Find

u h τ ∈ K h such that a(u h τ , v -u h τ )+ < τ, Π h (ηα(vT ) -ηα(u h τ,T )) > ≥ f (v -u h τ ) ∀ v ∈ K h ( 123 
)
Remark 5.2. The problem (123) has a unique solution, indeed consider the following energy

E(v) := 1 2 a(v, v) -f (v)+ < τ, Π h (ηα(vT )) > (124) 
The functional v →< τ, Π h (ηα(vT )) > is positive, convex and continuous, therefore the problem ( 123) is equivalent to the minimization of E over the closed and convex set K h , which assure the existence and the uniqueness of the solution.

If T (τ ) ∈ H , ∀ τ ∈ H, then we can deduce that the frictional problem (120) is equivalent to Find a fixed point of the application T

T (τ ) = τ (125)
So we want to prove that T (τ ) ∈ H. Let ŵ ≥ 0 ∈ Xh , using the definition 118 one obtains

< σn(u h τ ), ŵ >= a(u h τ , R( ŵn)) -f (R( ŵn)) ∀ ŵ ∈ Xh ( 126 
)
where R is a linear application previously defined. As ŵ ≥ 0 then v = u h τ -R( ŵn) ∈ K h , so we can inject it in the variational inequality (123) to obtain

< σn(u h τ ), ŵ >= a(u h τ , R( ŵn)) -f (R( ŵn)) ≤ 0 (127)
Therefore < T (τ ), ŵ > ≥ 0 and T (τ ) ∈ H.

In the following we will present some results in order to prove that the application T has a fixed point, which implies the existence of a solution of the problem (120). In addition it will be shown that for a small friction coefficient µ, the application T is a contraction which implies a unique fixed point of T , and the uniqueness of the solution can be proven. Finally the fixed point algorithm can be easily given in order to solve the problem (120) as a sequence of the problem (123).

Lemma 5.2.

|T (τ1) -T (τ2)| * ≤ µ C(h) |τ1 -τ2| * ∀ τ1, τ2 ∈ H ( 128 
)
where C(h) a constant which depends on the mesh size, and the dual norm | • | * is defined as follows

|τ | * = sup φ∈ Xh | < τ, φ > | |φ| H 1/2 (Γ C ) (129) 
Proof. Let τ1, τ2 ∈ H, and u1, u2 respectively the solutions of the equation ( 123) for τ = τ1 and τ = τ2. Taking v = u2 in the equation ( 123) for τ = τ1 and v = u1 in the equation ( 123) for τ = τ2, one obtains

a(u1, u2 -u1)+ < τ1, Π h (ηα(u2T ) -ηα(u1T )) > ≥ f (u2 -u1) a(u2, u1 -u2)+ < τ2, Π h (ηα(u1T ) -ηα(u2T )) > ≥ f (u1 -u2) (130) 
equivalently

a(u1, u2 -u1)+ < τ1, Π h (ηα(u2T ) -ηα(u1T )) > ≥ f (u2 -u1) a(-u2, u2 -u1)+ < τ2, Π h (ηα(u1T ) -ηα(u2T )) > ≥ f (u1 -u2) (131) 
Adding these two equations, one obtains

a(u1 -u2, u2 -u1)+ < τ1 -τ2, Π h (ηα(u2T ) -ηα(u1T )) > ≥ 0 (132) Thus a(u2 -u1, u2 -u1) ≤ < τ1 -τ2, Π h (ηα(u2T ) -ηα(u1T )) > (133) 
Hence

a(u2 -u1, u2 -u1) ≤ |τ1 -τ2| * |Π h (ηα(u2T ) -ηα(u1T ))| H 1/2 (Γ C ) ≤ C|τ1 -τ2| * |Π h (ηα(u2T ) -ηα(u1T ))| L 2 (Γ C ) (134) 
The last inequality is due to the equivalence between the norms

| • | L 2 and | • | H 1/2 on a finite dimensional space.
Using the fact ηα ∈ Ξα (see the definition 3.1) and the properties of Π h , one obtains

a(u2 -u1, u2 -u1) ≤ C|τ1 -τ2| * |Π h (ηα(u2T ) -ηα(u1T ))| L 2 (Γ C ) ≤ C|τ1 -τ2| * |Π h (|ηα(u2T ) -ηα(u1T )|)| L 2 (Γ C ) ≤ C|τ1 -τ2| * | Π h (| |u2T | -|u1T | |) | L 2 (Γ C ) ≤ C|τ1 -τ2| * | Π h (|u2T -u1T |) | L 2 (Γ C ) ≤ C|τ1 -τ2| * | Π h (|u2 -u1|) | L 2 (Γ C ) ≤ c.|τ1 -τ2| * | u2 -u1 | L 2 (Γ C ) (135) 
Using the fact that a is elliptic, the above equation becomes

|u2 -u1| 2 1 ≤ C1|τ1 -τ2| * | u2 -u1 | L 2 (Γ C ) (136) 
Considering the trace theorem, we obtain

|u2 -u1| 2 1 ≤ C2|τ1 -τ2| * |u2 -u1|1 (137) 
Finally |u2 -u1|1 ≤ C2|τ2 -τ1| * (138) 
Besides, from the definition 122, for ŵ ∈ Xh

< T (τ2) -T (τ1), ŵ >= µ < σn(u1) -σn(u2), ŵ > (139) 
Otherwise, using the definition 118 one obtains

< σn(u1), ŵ >= a(u1, R( ŵn)) -f (R( ŵn)) ∀ ŵ ∈ Xh < σn(u2), ŵ >= a(u2, R( ŵn)) -f (R( ŵn)) ∀ ŵ ∈ Xh ( 140 
)
where R is a linear application previously defined. Hence

< T (τ2) -T (τ1), ŵ >= µ.a(u1 -u2, R( ŵn)) (141) 
Therefore

| < T (τ2) -T (τ1), ŵ > | ≤ µ.|u1 -u2|1|R( ŵn)|1 (continuity of a) ≤ µ.C2|τ2 -τ1| * |R( ŵn)|1 (equation (138)) ≤ µ.C3|τ2 -τ1| * | ŵn| L 2 (continuity of R) = µ.C3|τ2 -τ1| * | ŵ| L 2 ≤ µ.C4|τ2 -τ1| * | ŵ| H 1/2 (142) 
We conclude that

|T (τ2) -T (τ1)| * ≤ µ C4 |τ2 -τ1| * ∀ τ1, τ2 ∈ H (143) 
The existence and the uniqueness of the solution of the regularized frictional problem (120) depend on the existence and the uniqueness of the fixed point of the application T . We have the following theorem Theorem 5.1. If µ < 1 C(h) , the application T has a unique fixed point, and the following fixed point algorithm converges to the fixed point

τn+1 = T (τn) (144) 
In addition if un+1 is the solution of the problem (123) for τ = τn+1 then

un+1 -→ n→∞ u * (145)
where u * is the unique solution of (120).

Proof. From the lemma 5.2, T is a contraction mapping, then using the Banach fixedpoint theorem, T admits a unique fixed point τ * and τn+1 converges to τ * . Moreover from the equation ( 138) we have

|un+1 -u * |1 ≤ C2|τn+1 -τ * | * (146) Because τn+1 -→ n→∞ τ * then un+1 -→ n→∞ u * .
Next we want to prove only the existence of a solution for the problem (120) without any restriction on the friction coefficient. First let's introduce the following lemma Lemma 5.3. There exists a constant C > 0 such that

|T (τ )| * ≤ C ∀ τ ∈ H (147) 
Proof. Let u be a solution of the problem (123) for the sliding limit τ ∈ H, therefore taking v = 0 ∈ K h in the inequality (123) one obtains

a(u, -u)+ < τ, Π h (ηα(0) -ηα(uT )) > ≥ f (-u) (148) Hence a(u, u) ≤ < τ, Π h (ηα(0) -ηα(uT )) > +f (u) (149) 
Because τ ∈ H and ηα ∈ Ξα (see the definition 3.1), we have < τ, Π h (ηα(0)-ηα(uT )) > ≤ 0, and thus

a(u, u) ≤ f (u) (150) 
Using the fact that a is elliptic and f is continuous, we deduce the existence of a constant C2 ≥ 0 such that |u|1 ≤ C2

Besides

|T (τ )| * = sup φ∈ Xh | < T (τ ), φ > | |φ| H 1/2 (Γ C ) = µ sup φ∈ Xh |a(u, R(φn)) -f (R(φn))| |φ| H 1/2 (Γ C ) (equation (140)) (152) 
From the continuity of a and f we have

|a(u, R(φn)) -f (R(φn))| ≤ C3|u|1|R(φn)|1 + C4|R(φn)|1 ≤ C5|u|1|φ| H 1/2 + C6|φ| H 1/2 (like equation (142)) = (C5|u|1 + C6)|φ| H 1/2 ≤ C7|φ| H 1/2 (Γ C ) (equation (151)) (153) 
Therefore

|T (τ )| * ≤ µC7 (154) 
Finally we have the following theorem Theorem 5.2. There exists a fixed point for the application T .

Proof. We are in a finite dimensional space, thus if we take M = H ∩ B(0, C) as the intersection of H with the closed ball B(0, C), M is compact and convex of the dual of Xh . From the lemma 5.3 we deduce that T (M ) ⊆ M and we know that T is continuous, therefore by applying Brouwer's fixed-point theorem we conclude that T admits a fixed point.

Note that all the above constants do not depend on the regularization parameter α and all previous results can be generalized for the case of contact between two bodies.

Error between Tresca's discretized solution and regularized Tresca's discretized solution

For the sake of clarity we consider only the Signorini case. We have the following theorem Theorem 5.3. Let u ∈ K h be the Tresca solution, in other words, solution of

a(u, v -u)+ < τ, Π h (|vT | -|uT |) > ≥ f (v -u) ∀ v ∈ K h (155) 
and let uα ∈ K h be the regularized Tresca solution, otherwise speaking, solution of a(uα, vuα)+ < τ, Π h (ηα(vT ) -ηα(uα,T ))

> ≥ f (v -uα) ∀ v ∈ K h (156)
then there exists a constant C ≥ 0 such that

|uα -u|1 ≤ C √ α (157) 
Proof. Replacing v by uα in the equation (155), and v by u in the equation ( 156), one obtains

a(u, uα -u)+ < τ, Π h (|uα,T | -|uT |) > ≥ f (uα -u) a(uα, u -uα)+ < τ, Π h (ηα(uT ) -ηα(uα,T )) > ≥ f (u -uα) (158) 
Adding these two equations, we obtain

a(u -uα, uα -u)+ < τ, Π h (|uα,T | -ηα(uα,T ) + ηα(uT ) -|uT |) > ≥ 0 (159) Thus a(uα -u, uα -u) ≤ |τ | * |Π h (|uα,T | -ηα(uα,T ) + ηα(uT ) -|uT |)| H 1/2 (Γ C ) ≤ C|τ | * |Π h (|uα,T | -ηα(uα,T ) + ηα(uT ) -|uT |)| L 2 (Γ C ) ≤ C|τ | * |Π h (||uα,T | -ηα(uα,T )|) + Π h (|ηα(uT ) -|uT ||)| L 2 (Γ C ) ≤ 2C|τ | * |Π h (1)| L 2 (Γ C ) .α (ηα ∈ Ξα) (160) Because a is elliptic then |uα -u|1 ≤ C1 √ α (161) Corollary 5.1. If ηα(v) = |v| 2 + α 2 then |uα -u|1 ≤ Cα 1/2 (162)
6 The Algorithm

Using the finite element approach, for l = 1 or 2, let Ω l h be the mesh of the body Ω l , which is composed from the triangles family {T l i | i = 1, . . . , n l T }. In addition, consider the following spaces

V l h = v = (v1, v2) ∈ C 0 (Ω l h ) × C 0 (Ω l h ) | v |T l i
∈ Pr × Pr, ∀i = 1, . . . , n l T and v = 0 on Γ l 0 (163) where C 0 (Ω l h ) denotes the set of the continuous functions on Ω l h , and Pr denotes the linear finite elements for r = 1 and the quadratic ones for r = 2.

Consider the space V h defined as follows

V h = V 1 h × V 2 h ( 164 
)
Let u h = (u 1 h , u 2 h ) ∈ V h , the displacement vector field u l h on the mesh Ω l h is given by

u l h = i U x i U y i ŵl i (165) 
where ŵl i are the shape functions on the mesh Ω l h , and U x i U y i T are the degrees of freedom of u l h , otherwise speaking U x i and U y i represent respectively the horizontal and vertical displacement of the node i in the mesh. In the following U ∈ R n denotes the vector of all degrees of freedom of u h , otherwise stated

U = . . . U x i U y i . . . T (166)
We will present the algorithm to solve frictional contact problem in general case, otherwise speaking in the case of large deformations. For the sake of simplicity and in order to be more clear, the algorithm will be split into several algorithms.

The idea behind the algorithm is first to loop on the sliding limits τ until convergence, more precisely at each iteration k, the regularized frictional problem for a given sliding limit τ k is solved, which corresponds to a minimization problem, then we retrieve the normal pressure σ n,k on the contact area, and the next sliding limit τ k+1 is computed via τ k+1 = -µσ n,k . This process continues until the relative error between two successive sliding limits is small enough.

In the sequel, [[τ ]] denotes an array containing the value of τ at the integration points of the contact area.

The algorithm solving the frictional problem is shown in algorithm 1.

Algorithm 1 Regularized frictional algorithm using the fixed point method Set the error tolerance tol = 10 -6 Compute σ n,0 the normal stress pressure at the contact area for the frictionless problem Compute τ 0 = -µσ n,0 , the first sliding limit while error ≥ tol do 1. For a given sliding limit τ k , solve Tresca's regularized problem, given in the algorithm 2 2. Retrieve the displacement field u h 3. Compute the normal pressure σ n,k (u h ) on the contact surface 4. Compute the new sliding limit τ k+1 = -µσ n,k

5. error= [[τ k+1 ]] -[[τ k ]] ∞ [[τ k ]] ∞ end while
The resolution of the contact problem without friction, is to solve the following constrained minimization problem

             u h = arg min v∈V h (Ep(v)) s.t Γ C1 ((x -x2)n).φ (1) i dS ≥ 0 ∀ i = 1, . . . , nC1 Γ C2 ((x -x1)n).φ (2) i dS ≥ 0 ∀ i = 1, . . . , nC2 (167) 
where x = X + v the actual position of a material point, with X the initial position of this same point. Γ Cl is the initial potential contact area of the body Ω l h . xl is the projection point of x on the body Ω l h , where l = 1, 2 and n is the outward unit normal vector at xl . Note that the two constraints in the problem (167) describe the non-penetration in a weak sense, and it is a symmetric formulation, in other words the user does not need to specify anymore a slave and a master body, see [START_REF] Houssein | Contact problems in industrial applications using freefem[END_REF] for details. φ (l) i are the shape functions on the n Cl nodes of the contact area Γ Cl . In addition Ep is the total potential energy defined by

     Ep(v) = 1 2 a(v, v) -f (v) for linear elastic problems Ep(v) = Ω 1 h ∪Ω 2 h Ŵ (v)dv -f (v)
for large deformations and hyperelastic problems (168) where Ŵ is the strain energy function.

Moreover, in the case of large deformations, we can remark that the projection points xl for l = 1, 2 in the non-penetration constraints (167) depend on the actual solution of the problem. Thus we will use a fixed point algorithm to deal with this issue. Indeed in the fixed point algorithm iteration, we will use the displacement of the previous iteration, and based on this displacement we will compute for each point x its closest segment or triangle in the body Ω l h and its projection parameter, and therefore the projection point xl now depends linearly on the actual displacements. Otherwise speaking we obtain a sequence of minimization problems with linear constraints.

The resolution of the Tresca regularized problem, presented in the algorithm 2, will use the theorem 4.1 and therefore as we saw, we can use a fixed point algorithm. We used the same fixed point algorithm treating the constraints. Therefore in the fixed point algorithm iteration, let's say n + 1, we minimize the following energy En+1 submitted to the linear constraints.

En+1(v) = Ep(v) + γ n C τ k .ηα(v 1 T -v2 T ) ds (169) 
where τ k is the sliding limit at the iteration k of the algorithm 1. v 1 is the admissible displacement field of the first body and v2 is the admissible displacement field of the second body applied on the projection points of the first body on the second one. Finally γ n C is the actual contact area based on the displacements of the previous iteration n.

Algorithm 2 Symmetric algorithm using the fixed point method for Tresca's regularized problem Initialization of the displacement U 0 and setting the tolerance tol = 10 -6 while error ≥ tol do 1. Using the displacement vector U n of the previous iteration n:

-Compute the projection points' parameters {η * i | i = 1, . . . , nS} of all slave integration points -Compute the normal at the projection points {n i | i = 1, . . . , nS} (Using smoothing techniques) -Compute the contact area γ n C 2. For each integration point, its projection point xi depends linearly on the actual displacement 3. Reverse the role of the master and the slave bodies 4. Form the Energy E n+1 (Equation (169)) and the symmetric linear constraints 5. Use the interior point method in order to solve the minimization problem with linear constraints, and to obtain the actual displacement

U n+1 6. error= U n+1 -U n ∞ U n ∞ end while 7 Numerical validations 7.

Validation of the regularized friction law

In this first example we will try to validate the regularized friction law given in the equation (77). Indeed we will take an elastic rectangular body of dimensions (40U L × 20U L) laid on a rigid rectangle body (see Figure 5 ). The elastic body has the following material properties, a Young's modulus E = 10 3 U F U L 2 and a poisson's ratio ν = 0, note that U F , U L denote respectively the force and the length unit. A vertical force of -30 U F U L is uniformly distributed along its top area.

Ω Rigid body

Figure 5: Problem geometry

At the first stage we impose a sliding conditions on its left boundary, and we apply a sequence of an uniformly distributed tangential force on its right boundary pointing to the right, with the following values 2, 5, 10, 20, 30 U F U L . In the second stage the sliding conditions are imposed on its right boundary and we apply a sequence of tangential pressure on its left boundary pointing to the left, with the following values -2, -5, -10, -20, -30 U F U L 2 . Considering the midpoint of the contact area, the goal of this example is to plot the ratio of the tangential and normal stresses σ T σn against the tangential displacement uT , and to compare it with the theoretical one seen in the equation ( 77).

In all next examples the regularization function will be ηα(v) = |v| 2 + α 2 for v ∈ R 2 or R 3 . Taking α = 10 -2 , then according to the equation (77) we have

σT σn = µ uT u 2 T + α 2 (170) 
We consider a friction coefficient µ = 0.1, and linear finite elements. The normal stress at the contact area is equal to σn = σyy and the tangential stress on the contact area is equal to σT = -σxy, moreover the tangential displacement is equal to uT = ux. In the Figure 6, the ratio σ T σn against the tangential displacement uT is plotted for the different loads mentioned above, and is compared with the theoretical one given by the equation (170). We can see the consistency between the simulation and the theoretical results, and how regularization can approach Coulomb's law. We saw similar results for quadratic finite elements, three dimensional case and for hyperelastic materials.

Frictional Hertz contact

We consider a contact between a half elastic cylinder Ω1 (E1 = 200 U F U L 2 , ν1 = 0.3) and an elastic half-space Ω2 (E2 = 200 U F U L 2 , ν2 = 0.3), the geometry and the dimensions are shown in the Figure 7 (units in U L). The Frictional coefficient is taken relatively big, µ = 0.8, and the lower area of Ω2 is fixed. First, we impose a downward vertical displacement of 4.55 U L in 3 steps on the top of the half cylinder, then a total horizontal load of q = 0.05 U F U L is applied in 7 steps, again on the top of the half cylinder. Obviously it's a quasi-static study. where R is the cylinder radius, and E * the effective Young modulus given by

E * = E1E2 E1(1 -ν 2 2 ) + E2(1 -ν 2 1 ) (172) 
According to [START_REF] Langstreth | Contact mechanics[END_REF] and with the small deformations hypothesis, there exist two slip zones {c ≤ |x| ≤ a} and one stick zone {|x| ≤ c}, where

   a = 4P R πE * c = a 1 -Q µP ( 173 
)
with Q = 2Rq and a the half contact width, moreover the normal and tangential stresses are given by the following.

The normal pressure at the contact zone:

pn = p0 a a 2 -x 2 (174) 
The tangential pressure at the contact zone:

pt = µ p 0 a ( √ a 2 -x 2 - √ c 2 -x 2 ) if |x| ≤ c pt = µ p 0 a √ a 2 -x 2 if c ≤ |x| ≤ a (175) 
The mesh of the two bodies is shown in the Figure 7. Using the quadratic finite elements (P2), and a regularization parameter α = 10 -3 , the computed normal and tangential stresses, in addition to the theoretical ones, are depicted in the Figure 8. 

Shallow ironing

This example was studied by many papers, we can cite for example [START_REF] Fischer | Mortar based frictional contact formulation for higher order interpolations using the moving friction cone[END_REF][START_REF] Wriggers | Computational Contact Mechanics[END_REF][START_REF] Yastrebov | Computational contact mechanics: geometry, detection and numerical techniques[END_REF]. A small indenter Ω1 is pressed into a less stiffer rectangular body Ω2 at the first stage , and pulled horizontally to the right at the second stage. The geometries of the two bodies are shown in the Figure 9 (units in U L), in addition the bottom of the rectangular body is fixed. Neo-Hookean material is assumed for the two bodies (see [START_REF] Wriggers | Computational Contact Mechanics[END_REF]), with (E1 = 68.96 × 10 2 U F U L 2 , ν = 0.32) for the small indenter and (E2 = 6.896 × 10 2 U F U L 2 , ν = 0.32) for the rectangular body, which is 10 times softer than the indenter. Using the quadratic finite elements (P2), and a regularization parameter α = 10 -2 , the mesh of the two bodies and the deformation shapes at some time steps are shown in the Figure 10. The vertical and horizontal reactions on the indenter, are depicted in the Figure 11. There was no agreement on the results between the papers which studied this test. However, in order to show that our results are reasonable, we computed the ratio between the horizontal and the vertical reaction, when the indenter slide on the second body. We obtained a ratio approximately equal to 0.32, which is very close to the friction coefficient µ = 0.3.

Conclusions

The frictional contact problem was transformed into a sequence of Tresca's problems which are based on a minimization principle, where we can use several optimization techniques in order to converge faster to the solution. In addition, a regularization was used in order to eliminate the non-smooth character of the friction behavior, and the interior point method was employed to solve the generated minimization problems. A fixed point method was used in the case of finite deformation, and symmetrical non-penetration constraints were considered. Finally, our algorithm gives satisfactory results and has been validated on several contact examples.
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