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A B S T R A C T

We propose a new and simple method to extend any two-fluid dimension-
ally split VOF schemes on Cartesian meshes to N-fluid problems in 2D and
3D. The method is symmetric by permutation of the fluids, so that it is in-
dependent of the ordering of materials and guarantees natural properties of
the volume fractions. It relies on a new algorithm to post-process N indepen-
dent calls to two-fluid numerical fluxes. Termination proof of the algorithm is
given. Various numerical test cases for rigid body advection and rotation of
three or four fluids in 2D are presented, along with a 3D example.

1. Introduction

When dealing with multi-fluid or multi-phase flows, numerically computing the evolution of interfaces between
immiscible components is a challenging problem. Beyond interfaces dynamics – that has to be modeled and correctly
discretized – one the main issues concerns the numerical advection of sharp interfaces between materials. This
subject has been widely studied since the early 80’s and as one of the main sources of weaknesses for multimaterial
hydrocodes in an Eulerian or ALE context, it is still today an active research field. Different approaches have been
investigated to address this issue, such as the Front Tracking [31, 13], the Level Set [19] or the Volume-Of-Fluid
(VOF) [14] methods. In the context of Finite Volume numerical schemes and for applications that require exact
conservation, the latter is today the most commonly used in the CFD community.

Within the VOF-type methods and in the general case of N components, fluid distributions are modeled by a field
α(x, t) ∈ {0, 1}N of the form α(x, t) = (0, . . . , 0, 1, 0, . . . , 0) where a 1 in position k denotes that the fluid at time t and
point x is the fluid of index k. For a divergence-free velocity field u, the evolution of α requires the resolution of the
advection equation:

∂t α + u · ∇α = ∂t α + ∇ · (αu) = 0. (1)

In the Finite Volume context, spatial averages of α called volume fractions are computed in each cell. From these
discrete volume fractions, a numerical flux Φ = (Φk)1≤k≤N is computed at each face of the mesh to determine the
amount of each material that crosses the face during a time step (see Figure 1 for a two-fluid illustration in 2D). At
the end of the time step, to be physically relevant, new volume fractions must satisfy what we will call in the sequel
a positivity property (∀k αk ≥ 0) and a normalization property (

∑
k αk = 1). Another – not necessary but highly
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desirable – feature of a VOF flux is that it does not depend on the materials ordering. This point will be discussed in
the sequel.

Exact distribution (unknown)

0.0 0.0 0.0

0.8 0.3 0.0

1.0 0.8 0.0

Discrete volume fractions Flux

numerical flux Φ

Fig. 1. Schematics of a two-fluid VOF method on a 3 × 3 stencil. The exact distribution of the blue and the white fluids (top) has been
integrated in each cell (bottom left). The exact distribution could have been used to evaluate the flux exchanged between two cells (bottom
right), but only the averaged values in each cell are available to define the numerical flux Φ.

Volume fractions on the mesh being known, most of VOF methods use a sub-cell interface reconstruction to
estimate the distribution of the fluids inside a mixed cell. Once the content of a cell has been reconstructed, the
Finite Volume flux Φ is then deduced by geometrical considerations [1, 25, 26, 27]. Within this class of methods, the
most popular approach to reconstruct two-fluid mixed cells is the Piecewise-Linear Interface Calculation (PLIC): the
content of each mixed cell is reconstructed as an interface line (or plane in 3D), independently from the reconstructions
in the other cells. Given a normal vector to the interface and the average volume fraction in a cell, an unique interface
can be positioned. The normal vector can be determined in several ways: in the original Youngs methods [35, 36],
the normal vector is the gradient of α computed with a Finite Difference scheme in a 3 × 3 stencil in 2D. However,
even when the exact interface is a straight line (in 2D) or a plane (in 3D) it does not always retrieve the correct
interface. The LVIRA (Least-square Volume-of-fluid Interface Reconstruction Algorithm) and ELVIRA (Efficient
LVIRA) methods have then been proposed [21] to circumvent this issue: a least-square minimization problem is
solved to fit the reconstructed interface to the volume fractions of the local 3 × 3 stencil. They are able to perfectly
capture straight lines (or planes for the 3D extension). Later, Weymouth and Yue [33] showed that computing the
normal vector with a height-function technique could also be used to perfectly reconstruct straight lines or planes at
a much cheaper computational cost than the least-square optimization method of LVIRA and ELVIRA. Alternatively,
the Moment-Of-Fluid (MOF) [12] method does not evaluate the normal vector using a stencil of neighboring cells, but
instead stores the center of mass of the fluid as one more variable in each cell (similarly to the Discontinuous Galerkin
method). Recent works have been tackling the issues of PLIC reconstructions on unstructured unsplit meshes, such
as efficiently positioning the interface [10, 5] or evaluating the flux [4, 17]. The PLIC reconstruction usually leads
to discontinuity of the reconstructed interface between the cells and some methods aim at making the reconstruction
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globally more coherent such as [11].
The PLIC reconstruction and its higher-order extensions [24, 23, 34] describe the content of a cell as a dis-

continuity between two pure phases. Alternatively, sub-cell reconstructions with continuous functions have been
employed, such as linear reconstructions in the MUSCL method [22] or hyperbolic tangent reconstructions in the
THINC method [29].

Beside the above methods involving geometrical reconstructions in each cell, purely algebraic methods have also
been proposed, such as the method of Després and Lagoutière [7, 8] and its extension to unstructured meshes [9]. A
radically different approach has also been proposed more recently: Després and Jourdren [6] use a Neural Network
trained on examples of exact interfaces to evaluate the Finite Volume flux without any explicit interface reconstruction.

Most of the above cited works are essentially dedicated to the two-fluid configuration. In such a case, the normal-
ization property is generally easily satisfied and the result does not depend on the ordering of materials. In a word, for
most of two-fluid VOF methods, it is equivalent to independently compute fluxes for both materials or to compute the
flux for only one of them, let say Φ1, and deduce the flux for the other one the following way: Φ2 = 1−Φ1. This kind
of property can be proved for many PLIC-type methods, for the limited downwind scheme [8], etc. Unfortunately,
this is no more true in the general case N > 2.

The PLIC approach can be extended to N-fluid problems by doing successive PLIC reconstructions [12, 28, 16].
The simplest method of this kind is the onion-skin approach in which the normal vector of one interface is used for all
other ones so that the resulting reconstruction is a layer of parallel interfaces [1, 2]. More elaborate successive PLIC
reconstructions can be designed to better handle triple points such as T-junctions [3]. However, in all these methods
the final result is sensitive to the ordering of the successive PLIC reconstructions and the symmetry of the problem
by permutation of fluids is generally not respected. Several strategies have been proposed to chose an ordering,
such as a priori heuristics, or a posteriori comparison of several orderings [18, 12, 30]. Successive higher-order
reconstructions [23] exhibit the same fluid ordering issue. Examples of N-fluid extensions of other reconstruction
techniques can be found in [32] for MUSCL or [20] for THINC.

Also for algebraic methods, ordering of the fluids might be an issue. Jaouen and Lagoutière’s method [15] is the
N-fluid extension of the work of Després and Lagoutière [7]. In this method, the TVD stability condition is enforced
successively on each fluid, in a way that is not symmetric by permutation of the fluids: stability bounds for fluid k
depends on fluxes computed for the k − 1 previous fluids.

In this paper, we propose a new and simple method to extend two-fluid VOF numerical fluxes to N-fluid problems.
It will preserve the positivity and normalization properties, and will be symmetric by permutation of the fluids. Thus,
VOF numerical fluxes will also be independent of the material ordering. We insist on the fact that the method proposed
here is general and applies to any two-fluid VOF algorithm. In particular, this work has been inspired by the recent
study of Després and Jourdren [6] on VOF-Machine Learning (VOF-ML) algorithms for two-fluid flow calculations
on Cartesian grids, trying to answer the question of how using their two-fluid neural networks to the general case
N > 2, without having to design new specific networks for three, four or more materials in a mixed cell. As an
illustration, the algorithm proposed in this work will be applied to two different VOF-PLIC methods and to the VOF-
ML flux presented in [6]. Extension to three space dimensions is also straightforward, provided a 3D VOF method
for the two-fluid case is available.

As described in Section 2.1, our algorithm is based on N calls to a two-fluid VOF method, that can be seen here
as a black box. The resulting flux might lead to nonphysical results. To guarantee that at the end of the time step
the sum of volume fractions equals one, two cheap post-processing steps are required: first a renormalization phase
presented in Section 2.2 and second the enforcement of positivity bounds presented in Section 2.3. Algorithm 1 of
Section 2.3 is one of the main contributions of this work. The accuracy and the main features of this new approach to
extend two-fluid VOF methods to the general case N > 2 is evaluated in Section 3 on several test cases for N = 3 and
N = 4 fluids, in two and three space dimensions.

2. Method

2.1. Context and notations
Let us consider the linear advection equation (1) in dimension d. The initial condition α0(x) is a distribution of N

immiscible fluids, that is a vector of characteristic functions of the form:

∀x, ∃k, α0
k(x) = 1 and ∀k′ , k, α0

k′ (x) = 0.
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The problem is solved with the Finite Volume method: we denote by αn
k,i the volume fraction of fluid k in cell i at time

step n, that is

αn
k,i =

1
|Ki|

∫
Ki

αk(tn, x)dx,

where Ki is the cell of index i and |Ki| is its surface (resp. volume). The discretization of the exact solution of (1)
follows the normalization property

∀n,∀i,
N∑

k=1

αn
k,i = 1, (2)

and the positivity property
∀n,∀i,∀k, 0 ≤ αn

k,i. (3)

In the present paper, only Cartesian meshes are considered and the PDE is discretized using dimensional splitting.
For the sake of readability, the following 1D notations are used for the Finite Volume scheme

αn+1
k,i = αn

k,i −
u∆t
∆x

(
αn

k,i+ 1
2
− αn

k,i− 1
2

)
. (4)

A Finite Volume numerical flux must be chosen to compute αn
k,i± 1

2
, the amount of each material that crosses

interfaces during a time step. We impose three constraints on the design of such a numerical flux:

• the numerical solution should be symmetric by permutation of the fluids,

• the numerical solution should follow the normalization property (2),

• the numerical solution should follow the positivity property (3).

Note that combining the normalization property (2) and the positivity property (3) leads to

∀n,∀i,∀k, 0 ≤ αn
k,i ≤ 1,

so that they are sufficient for the L∞ stability of the scheme.

Let Φ be such a numerical flux (using the notation of Figure 1) that is evaluated on volume fractions in a stencil
md (typically, m = 3 or m = 5):

Φ : [0, 1]md
−→ R.

A N-fluid numerical flux can be defined by calling Φ on each fluid independently (see Figure 2). The N-fluid
numerical flux resulting of the combination of N calls to the numerical flux Φ is denoted here as a tensor product
Φ ⊗ Φ ⊗ . . . ⊗ Φ = ΦN , that is:

ΦN :
(
[0, 1]md )N

−→ RN

α 7−→
(
Φ(α1),Φ(α2), . . . ,Φ(αN)

)
.

This numerical flux is symmetric by permutation of the fluids. When applied to PLIC reconstructions, this strategy
means that N independent PLIC reconstructions are done, each between one fluid and the others. As noticed in
previous works such as [12], the N independent PLIC reconstructions may not form a physically relevant geometric
reconstruction of the N fluids distribution inside the cell. In particular, the numerical solution will not follow the
normalization property (2).

Remark 1. In the specific two-fluid case it is almost quite easy to satisfy (2) while keeping the same result with
permutation of the components. Indeed, it is sufficient to build Φ such that Φ(1 − α1) = 1 − Φ(α1) 1. We therefore
immediately get that

2∑
k=1

Φ2
k(α) = Φ(α1) + 1 − Φ(α1) = 1,

which implies that relation (2) will be satisfied as proved in the following lemma 2.

1Most of two-fluid VOF methods (such as PLIC or limited downwind [8] methods) discussed in introduction satisfy this property.
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Fig. 2. Proposed N-fluid scheme: the numerical flux Φ is called independently on each fluid taken alone. The N resulting fluxes are
recombined to form the N-fluid flux.

In general, for N > 2 and a given numerical flux Φ, the N-fluid numerical flux ΦN will not follow the normalization
property (2), nor the positivity property (3). The following sections present a novel method to enforce these both
properties while keeping the symmetry by permutation of the fluids.

2.2. Renormalization

In this Section, we discuss the enforcement of the normalization property while keeping the symmetry but ignoring
the positivity property.

2.2.1. Sufficient condition for normalized solutions
As said above, physically relevant volume fractions should satisfy the normalization property (2). To ensure this,

a sufficient condition can be imposed on the flux, using the following lemma.

Lemma 2. Let n be a given time step. Assume that the states αn
k,i follow the normalization property (2). Assume the

fluxes αn
k,i+ 1

2
follow the same normalization property∑

k

αn
k,i+ 1

2
= 1 (5)

at each face i + 1
2 . Then, at the next time step, the states αn+1

i computed with the Finite Volume scheme (4) follow the
normalization property (2).

Proof. Directly from the expression of the Finite Volume scheme (4).

In the next paragraphs, we introduce two natural variants for the enforcement of relation (5). It will be completed
in Section 2.3 by the enforcement of the positivity property.
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2.2.2. First variant: linear renormalization
The first variant tested in this paper is the following linear normalization operator N : RN −→ RN :

∀k, (N(α))k = αk +
1 −

∑N
k′=1 αk′

N
, (6)

which can be seen as the orthogonal projection on the hyperplane of equation
∑

k′ αk′ = 1. One obtains a flux which
satisfies (5) by post-processing ΦN with N: (

αn
k,i+ 1

2

)
1≤k≤N

= N ◦ ΦN(α).

2.2.3. Second variant: keeping the N − 1 most accurate components
A second variant consists in calling Φ only N − 1 times and compute the fluid of index N as the complement of

the others:

αN,i+ 1
2

= 1 −
N−1∑
k=1

αk,i+ 1
2
.

It is equivalent to say that instead of ΦN , we consider

ΦN(α) =

Φ(α1), . . . ,Φ(αN−1), 1 −
N−1∑
k=1

Φ(αk)

 .
This strategy breaks the independence of the method to the indexing of the fluids, which is a strict requirement in this
work. However, a strategy of this kind can be independent of the indexing of the fluids if the component computed as
the complement to the others is chosen with a criterion that is independent of the indexing of the fluids. We present
such a criterion in the next paragraph.

Among the N two-fluid problems, some might be easier to solve than the others (this will be illustrated in Sec-
tion 3.3). It means that some evaluations of the numerical flux Φ give more trustworthy results than others. For
two-fluid methods such as LVIRA and ELVIRA, this can be easily quantified. We recall that both methods consists in
solving a minimization problem for the l2 error between trial straight line interfaces and the input volume fractions.
The error of the best trial interface gives a quantitative measure of the pertinence of the flux returned by the method: if
it is near zero, the volume fractions in the stencil correspond exactly to an averaged straight line interface, and thus the
PLIC reconstruction is very accurate. If the error is high, the optimization method could not accurately fit a straight
line relative to the input volume fractions, and thus the flux evaluated from the PLIC reconstruction is probably not
very accurate. This measure of accuracy for each individual evaluations of the numerical flux Φ can be used when
combining them into a N-fluid flux. As an example, the following procedure will be evaluated on a thin layer test-case
in Section 3.3:

• The PLIC numerical flux Φ is modified to return both the flux at the interface and the error between the straight
line reconstruction and the input volume fractions. In the case of ELVIRA, this is done at no cost, since it is the
cost function of the optimization problem and it is computed anyway.

• The N components are sorted by accuracy using the error of the PLIC reconstruction.

• Instead of the renormalization (6), the N − 1 most accurate components are kept and the worst one is replaced
by 1 −

∑
k,k′ αk.

In other words, among the N independent PLIC reconstructions, the one that was the worst fitting the input data has
been discarded.

2.3. Enforcing the positivity of the solution
2.3.1. Sufficient condition for positivity of the solution

Using one of the two renormalization methods presented in the previous section allows us to ensure that the
solution computed with numerical flux ΦN follows the normalization property (2) and is symmetric by permutation
of the fluids. Another criterion needs to be met by the numerical flux: the positivity of the solution.
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Lemma 3. Let n be a given time step. Assume that u > 0 (in other words, the cell i is the upwind cell for face i + 1
2 ).

Assume that the states αn
k,i follow the positivity property (3) in each cell i, and that the fluxes αn

k,i+ 1
2

are such that

0 ≤ αn
k,i+ 1

2
≤
αn

k,i

β
, ∀k, (7)

at each face i + 1
2 , where β =

|u|∆t
∆x ≤ 1 is the Courant number. Then, at the next time step, the states αn+1

k,i computed
with the discretization (4) follow the positivity property (3).

Proof. Let k be the index of any fluid. The right-hand-side inequality of (7) reads

0 ≤ αn
k,i − βα

n
k,i+ 1

2
.

Besides, using the left-hand-side inequality of (7) on face i − 1
2 , one has

0 ≤ βαn
k,i− 1

2
.

Thus, combining the two previous inequalities, one has

0 ≤ αn
k,i − βα

n
k,i+ 1

2
+ βαn

k,i− 1
2
.

Since u > 0, β =
|u|∆t
∆x = u∆t

∆x and the Finite Volume scheme (4) can be rewritten as

αn+1
k,i = αn

k,i − βα
n
k,i+ 1

2
+ βαn

k,i− 1
2
,

hence we have proved that αn+1
k,i ≥ 0.

For readability, we will drop the indices of the time step n and the face i+ 1
2 in the sequel and denote α̂k the volume

fraction flux αn
k,i+ 1

2
. We will also consider generic bounds of the following form:

∀k, mk ≤ α̂k ≤ Mk, (8)

with
∑

mk ≤ 1 and
∑

Mk ≥ 1 (so that at least one normalized α̂k respects the inequality). In applications proposed in
Section 3, we will take mk = 0 and Mk = αn

k,i/β as in lemma 3 but other bounds could be imposed, such as the more
restrictive TVD conditions of [15].

2.3.2. An algorithm to enforce the positivity bounds
Enforcing inequalities (8) while keeping the normalization condition (5) is one of the main difficulties. In [15],

an algorithm has been proposed for this purpose: TVD stability bounds are successively enforced for each component
while keeping the normalization of the flux. But this algorithm is dependent on the fluids ordering, and thus does not
respect the symmetry of the problem by permutation of the fluids, since stability bounds for fluid k depend on fluxes
of previous k − 1 fluids. One of the main novelty of the present work lies in Algorithm 1 which enforces an upper
bound on the values of the flux, without losing the normalization condition, while being totally independent on the
ordering of the fluids.

In Algorithm 1, the upper index ` is unrelated to the time step n (which is constant) but stands for the iteration of
the algorithm. Note also that the line 6 is actually a special case of line 4, and both lines could be merged. They have
been written separately here only for the sake of clarity. In Appendix A, a reformulation of algorithm 1 is written in
a less mathematical formalism more convenient for implementation.

Lemma 4. The while loop of Algorithm 1 finishes after at most N iterations.

Proof. Let us first note that
∀`, (K`

+ ∪ K`
0) ⊆ K`+1

0 .

Then, at each iteration `:
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Algorithm 1: Enforcement of the upper bounds Mk from (8) while preserving the normalization condition∑
k α̂k = 1.

Input: Initial volume fractions fluxes α̂0 ∈ RN , such that
∑

k α̂
0
k = 1;

Input: Upper bounds Mk for k = 1 to N, such that
∑

k Mk ≥ 1;
Result: Volume fractions α̂∗ ∈ RN such that

∑
k α̂
∗
k = 1 and ∀k, α̂∗k ≤ Mk.

1 ` = 0;
2 while ∃k, α̂`k > Mk do
3 K`

+ ← {k | α̂
`
k > Mk};

4 foreach k ∈ K`
+ do α̂`+1

k ← Mk;
5 K`

0 ← {k | α̂
`
k = Mk};

6 foreach k ∈ K`
0 do α̂`+1

k ← α̂`k;
7 K`

− ← {k | α̂
`
k < Mk};

8 foreach k ∈ K`
− do α̂`+1

k ← α̂`k + (
∑

j∈K`
+
α̂`j − α̂

`+1
j )/card(K`

−);
9 ` ← ` + 1;

10 end
11 return α̂∗ = α̂`

• either K`
+ = ∅ and the program finishes,

• or card
(
K`

0

)
strictly increases.

Since card
(
K`

0

)
is bounded by N, the algorithm halts after at most N iterations.

A direct corollary of this lemma is that the final state α̂∗ is such that the condition of the while loop is false, that
is ∀k, α̂∗k ≤ Mk.

The algorithm preserves the normalization of its inputs.

Lemma 5. Let α̂0 ∈ RN such that
∑

k α̂
0
k = 1. Then applying Algorithm 1 to α̂0 returns an output α̂∗ such that∑

k α̂
∗
k = 1.

Proof. Let us first show that for all `, K`
− , ∅. We remind that

∑
k α̂

0
k = 1 and

∑
k Mk ≥ 1. Since ∃k, α̂`k > Mk, then

∃k′ , k, α̂`k′ < Mk, therefore K`
− , ∅. So, at any step ` of the while loop, one has

N∑
k=1

α̂`+1
k =

∑
k∈K`

+

α̂`+1
k +

∑
k∈K`

0

α̂`+1
k +

∑
k∈K`

−

α̂`+1
k ,

=
∑
k∈K`

+

α̂`+1
k +

∑
k∈K`

0

α̂`k +
∑
k∈K`

−

α̂`k +
1

card(K`
−)

∑
j∈K`

+

(
α̂`j − α̂

`+1
j

) ,
=

∑
k∈K`

+

α̂`k +
∑
k∈K`

0

α̂`k +
∑
k∈K`

−

α̂`k,

=

N∑
k=1

α̂`k.

Hence the result.

Enforcing the lower bound of (8) can be done by applying the same algorithm to 1 − α̂. This is possible because
of the following result:

Lemma 6. Let m and M ∈ RN , such that ∀k, mk ≤ Mk. Let α̂0 ∈ RN such that
∑

k α̂
0
k = 1 and ∀k, mk ≤ α̂

0
k . Then

applying Algorithm 1 to α̂0 to enforce the upper bounds M returns an output α̂∗ such that ∀k, mk ≤ α̂
∗
k.
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Proof. At the end of the algorithm, one has either α̂∗k = Mk ≥ mk or α̂∗k ≥ α̂
0
k ≥ mk.

In other words, Algorithm 1 conserves the lower bounds while enforcing the upper ones. Firstly applying the
algorithm on α̂ and secondly on 1 − α̂ therefore gives a result that respects both lower and the upper bounds, as well
as the normalization condition.

Algorithm 2: Full algorithm to evaluate the numerical flux for the N-fluid problem.

Input: Volume fractions α ∈
(
Rmd

)N
of N fluids in a stencil of size m in dimension d

Result: Numerical flux α̂ ∈ RN , respecting the symmetry, the normalization sufficient condition (5) and the
positivity sufficient condition (7)

1 foreach k ∈ {1, . . . ,N} do α̂k ← Φ(αk);
2 Normalize α̂← N((α̂1, . . . , α̂N)) with the linear renormalization of Section 2.2.2 or the weighted method of

Section 2.2.3;
3 Apply Algorithm 1 on α̂ to enforce the upper bounds Mk;
4 Apply Algorithm 1 on 1 − α̂ to enforce the lower bounds 1 − mk;

3. Numerical results and discussion

The general method to evaluate the N-fluid numerical fluxes is presented in Algorithm 2. Three different instances
are tested in this section. They are based on different numerical fluxes Φ and renormalization methods. They are
summarized in Table 1.

Numerical flux Φ Renormalization Positivity bounds Name
Height Function [33] Sec. 2.2.2 Alg. 1 HFN

ELVIRA [21] Sec. 2.2.3 Alg. 1 ELVIRAN

VOFML-19 [6] Sec. 2.2.2 Alg. 1 VOFMLN

Table 1. Summary of the variants of the N-fluid methods tested in this section. The bounds for Alg. 1 are the sufficient positivity condition
(7).

.

“VOFML-19” refers to a particular two-fluid VOF numerical flux expressed as a 5-layers neural network2, trained
on examples of straight and curved interfaces [6]. Its accuracy is of the same order of magnitude as PLIC recon-
structions on most of the test-cases, although the VOFML scheme can be slightly better for corners. It is expected
that better machine-learning-based two-fluid schemes can be trained, providing a much greater accuracy than PLIC
methods in presence of curves and corners. However, the training of such schemes is out of the scope of the present
paper and we only present results based on state-of-the-art training of [6].

The novel schemes of Table 1 are compared with:

• the TVD-limited downwind method [15], which can be seen as an instance of the methodology presented in the
present paper for which the base numerical flux Φ is the downwind flux and the renormalization is done with
the TVD sufficient conditions instead of the positivity condition (7).

• an “onion-skin” PLIC reconstruction, where the normal is computed with the ELVIRA method and an arbitrary
fixed ordering of the fluids is used. Once the N − 1 first material fluxes are computed, the one for fluid N is
deduced as the complement.

2Available online at https://github.com/mancellin/VOFML-19

https://github.com/mancellin/VOFML-19
https://github.com/mancellin/VOFML-19
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Except for the results of Section 3.4, all results have been computed with a prototype code written in the Julia
language 3. This Finite Volume code solves the advection equation (1) on a fixed 2D regular Cartesian mesh, using
dimensional splitting, without any coupling to hydrodynamics. Initial volume fractions are computed using exact
integration for polygonal shapes, while circles are approximated as regular polygons with 100 edges. The error is
computed as the mean `1 distance of the volume fractions of each fluids with the exact volume fractions at the final
time, that is

1
N

N∑
k=1

nbcells∑
j=1

|αn
k, j − α

exact
k, j | vol j,

where αn
k, j and αexact

k, j are respectively the computed and the exact volume fractions of fluid k in cell j at time step n
and vol j is the volume of cell j,

To plot multi-fluid simulations results, some software do an interface reconstruction as a post-processing step.
When the numerical flux involves a sub-cell reconstruction, it makes sense to also use the same reconstruction to
visualize the results. In our case, no reconstruction of the N-fluid distribution is done. In the following figures we
therefore have chosen to display volume fractions with mixed cells colored by the pure fluids ones weighted by their
volume fractions (linear combination in RGB space).

3.1. Advection of three-fluid and four-fluid periodic patterns

The first test-cases are periodic rectangular tilling of the 2D plane with three or four fluids. In both cases, the
pattern is advected diagonally with velocity (1, 1) in a square domain of side 1 with periodic boundary conditions.
These two-test cases evaluate the ability of the method to capture T-shaped triple points and X-shaped quadruple
points respectively.

Fig. 3. Linear advection in direction (1, 1) during 10 periods with a Courant number ∼ 0.28, of a periodic three-fluid tilling pattern on a
40 × 40 mesh, for several methods. Red, yellow and blue colors corresponds respectively to fluid 1, 2 and 3.

Figure 3 displays the fluid distribution at time t = 10 for a three-fluid pattern. The exact solution is periodic
in time, so the Exact distribution on Figure 3 is both the initial condition and the exact solution at time t = 10.

3Source code is available at https://ancell.in/tmp/source_multifluid.tar.gz (temporary location, a more perennial repository will
be set once the paper is finalized.)

https://ancell.in/tmp/source_multifluid.tar.gz
https://ancell.in/tmp/source_multifluid.tar.gz
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Downwind+TVD method provides the best results in this case. This kind of method is known to very accurately
captures lines with a 45° angle. With the onion-skin PLIC method, a thin layer of fluid 2 (green) is trapped between
fluid 1 and 3 (red and blue). This is a direct consequence of the fluid ordering (1, 2, 3) used in the reconstruction:
another ordering would have led to another kind of artifact. Straight lines are slightly distorted and the angles of the
triple points are changed.

The HF3, ELVIRA3 and VOFML3 methods show accuracy of the same order of magnitude, with different small
deformations of the triple points.

Fig. 4. Linear advection in direction (1, 1) during 10 periods with a Courant number ∼ 0.28, of a periodic four-fluid tilling pattern on a
40 × 40 mesh, for several methods. Red, green, yellow and blue colors corresponds respectively to fluid 1, 2, 3 and 4.

Figure 4 is a similar test case with a four-fluid pattern with X-shaped quadruple points advected during ten periods.
Conclusions are overall similar to the three-fluid test case. Downwind+TVD method has a very good accuracy due
to its accuracy on grid-aligned lines. The Onion-skin method with a fixed arbitrary ordering performs the worst due
to thin layers of some fluids appearing between others. HF4 and ELVIRA4 show good results, but the best one is
obtained with the VOFML4 scheme. The better accuracy of VOFML to advect right angle corners in comparison with
PLIC methods is a possible reason for this good performance.

3.2. Three-fluid cross on circle advection

This three-fluid test-case is based on a similar test-case as the one presented in [15]. It is a cross of material 1 on
top of an empty circle of material 2 in a square domain with periodic boundary conditions. Figure 5 presents the shape
after the diagonal advection of the pattern for several periods. Downwind+TVD method deforms the circle into an
octagon, as does its two-fluid counterpart. As discussed for test-cases of Section 3.1, the onion-skin method creates
a thin layer of fluid 2 between fluid 1 and 3. HF3, ELVIRA3 and VOFML3 methods perform similarly to onion-skin
method but without the thin layer artifact.

The numerical wetting α(1 − α) is another magnitude of interest to assess the quality of the scheme. On Figure 6,
the field α2(1 − α2) is plotted in log scale. A lot of residuals of the order of 10−5 appear with the Downwind+TVD
scheme, as already mentioned in [15]. Our interpretation is that a lot of residuals of this kind are due to the TVD
bounds imposed on the flux. Indeed, they also appear in other renormalization methods when the TVD bounds are
used instead of the positivity bounds (7) (not plotted here). This is one of the reasons why the positivity bounds (7)
have been preferred in the present work. For the onion-skin method, the thin nonphysical layer of material 2 is clearly
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Fig. 5. Linear advection in direction (1, 1) during 5 periods with a Courant number ∼ 0.28, of [15] test-case (rotated by π/8) on a 60 × 60
mesh with periodic boundary conditions. Red, yellow and blue colors corresponds respectively to material 1, 2 and 3.

Fig. 6. Value of α2(1 − α2) in log scale after the linear advection in direction (1, 1) during 5 periods with a Courant number ∼ 0.28, of [15]
test-case (rotated by π/8) on a 60 × 60 mesh.

visible. Small residuals of the order of 10−5 are also visible near the boundaries in the results of HF3 and to a lower
extent for VOFML3. On the other hand, ELVIRA3 result is perfectly clean.

Figure 7 shows the convergence of the upwind flux and the different methods when the mesh is refined. For most
of the resolutions considered here, the upwind scheme leads to results that are diffused over the whole domain. The
theoretical asymptotic order of convergence

√
∆x needs even finer meshes to be retrieved. All other methods follow

a ∆x order of convergence. As already discussed before, ELVIRA3 and VOFML3 are slightly better than HF3 and the
onion-skin method.
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Fig. 7. Error in l1 norm of [15] test-case (rotated by π/8) after its linear advection in direction (1, 1) for 1 period with a CFL ∼ 0.28 for
several methods and several mesh resolutions.

Fig. 8. Rotation around the center point (0.5, 0.5) for one period (t = 2π), of [15] test-case on a 60 × 60 mesh. Red, yellow and blue colors
corresponds respectively to material 1, 2 and 3.

Finally, Figure 8 presents the result of the rigid body rotation of the cross and circle around their center point. This
figure illustrates that similar conclusions can be drawn for rotation as for the advection test-cases presented before.
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Exact distribution Averaged discrete field

0.0 0.5 0.0
1.0 0.25 0.0
0.0 0.25 1.0

0.0 0.5 0.0
1.0 0.25 0.0
0.0 0.25 1.0

0.0 0.5 0.0
1.0 0.25 0.0
0.0 0.25 1.0

Fig. 9. Example of exact distribution and discrete field for a three-fluid thin layer problem on a 3 × 3 stencil. Red, yellow and blue colors
corresponds respectively to material 1, 2 and 3.

3.3. Three-fluid thin layer advection
This test-case discusses the ability of the scheme to capture thin layers of width smaller than the mesh size. An

example of such a distribution is shown on Figure 9. When taken alone, the thin layer of fluid 1 (in red) cannot be
reconstructed, because its horizontal position within the cell is unknown. However, when the thin layer is in sandwich
between two different fluids as here, its position can be unambiguously retrieved.

Fig. 10. Linear advection in direction (1, 1) during 5 periods with a Courant number ∼ 0.28, of a thin layer of fluid 1 (in red) of width ∆x/2
on a 40 × 40 mesh with periodic boundary conditions. Red, yellow and blue colors corresponds respectively to material 1, 2 and 3.

On Figure 10, a test-case involving such a thin layer is presented. It consists in a circle of fluid 2 (in yellow)
surrounded by a thin layer of fluid 1 (in red). The width of the layer is half the width of a cell in the 40 × 40 mesh.
Most methods show either a diffusion of the thin layer (Downwind+TVD) or a coalescence of the thin layer into
droplets of the size of a few cells (onion-skin, HF3, VOFML3). Here the Onion-skin method has been computed with
the wrong ordering of the fluids. The result could have been much better with another ordering. The test case is meant
to compare the results in the worst case when the best ordering is not known.

The ELVIRA3 method is able to capture the thin layer, because it implements the renormalization method pre-
sented in Section 2.2.3. Assuming Φ is a PLIC-type numerical flux and α is a fluid distribution such as the one
of Figure 9, Φ(α2) and Φ(α3) are very accurate, whereas Φ(α1) is very inaccurate. The evaluation of the numer-
ical flux on fluid 1 Φ(α1) is detected as being inaccurate and not used. The renormalized flux is constructed as
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(1 − Φ(α2) − Φ(α3),Φ(α2),Φ(α3)) which is the best we can do for this problem.

3.4. 3D example
As a final test-case, the result of a 3D simulation is presented. Unlike previous results, these have been computed

with the 3D research hydrocode ARMEN of the CEA which is based on dimensionally split Lagrange - remap schemes
on AMR Cartesian meshes, used here in the degenerate case of linear advection. The existing 3D two-fluid PLIC
method (based on [33]) has been extended to N-fluids using the methodology of the present paper. Results are
compared to the onion-skin method also available in this code.

This test-case is a 3D extension of the cross on circles presented in Section 3.2. On Figure 11, the fluid filling the
box as well as the outer sphere are not plotted. As in the 2D case, the onion-skin method leads to the spread of fluid 2
(the inner sphere, here in yellow) between fluid 1 (the outer sphere, not plotted here) and 3 (the cross, here in purple).
This effect does not appear with the novel renormalization method and the simulation is far much cleaner. Since most
of numerical issues in multimaterial Eulerian hydrodynamics simulations are largely due to mixed cells, we infer that
the method proposed in this paper will largely contribute to improve robustness of this hydrocode4.

Fig. 11. On top: onion-skin method. On the bottom: novel method with renormalized independent two-fluid PLIC calls. From left to right:
Yellow fluid only (inner sphere), purple fluid only (cross), both fluids. For readability, the outer sphere as well as the ambient fluid are not
plotted.

4. Conclusion

In this paper, a novel method for the design of N-fluid advection schemes is presented. It is based on several inde-
pendent calls to a two-fluid VOF method, followed by a renormalization. The main ingredient of the renormalization
is the enforcement of positivity bounds for the flux with a simple projection algorithm.

This approach has several advantages:

4Note that a rare configuration in a 2D simulation such as a three materials T-junction leads to only one intersection point and thus to only cell
containing all fluids. In three space dimensions it becomes a line and the number of cells with three materials can become important.
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• generality: the method can extend any two-fluid VOF method, whereas it involves a geometric reconstruction
(as in PLIC-type methods) or not. In particular we are interested in applying it to machine-learning-trained
schemes for which no explicit reconstruction is done. Future improvements of the two-fluid methods will
straightforwardly lead to improvements of the N-fluid method.

• simplicity: the method is relatively simple to implement and cheap to compute. The recombination of the
information of the N two-fluid subproblems only involves scalar values of the fluxes, which are much easier to
manipulate than geometric descriptions of 2D or 3D interfaces.

• symmetry: the method is independent of the fluids ordering and thus symmetric by permutation of the materi-
als.

The most expensive part of the method is usually the evaluations of N numerical flux Φ. Since they are indepen-
dent, multithreading can be used to reduce the computational cost in most cases.

Only the case of a Cartesian mesh with dimensional splitting has been presented. Positivity bounds (7) are less
straightforward for truly multidimensional problems without dimensional splitting: the inequalities involve the sum of
the outgoing fluxes around a given cell. Preliminary tests let us believe that an extension of the present methodology
is nevertheless possible in these situations.

More variants of this methodology could be investigated in the future. For instance, when N > 3, the number of
two-fluid subproblems that can be found in a N-fluid problem is actually 2N−1 − 1. For N = 4, seven partitions of the
fluids in two groups can be found:

1/(2, 3, 4), 2/(1, 3, 4), 3/(1, 2, 4), 4/(1, 2, 3), (1, 2)/(3, 4), (1, 3)/(2, 4), (1, 4)/(2, 3).

In principle, calling the two-fluid scheme on the extra subproblems could allow to extract more information about the
underlying fluid distribution. In practice, early tests show that the small gain in precision is not worth the increased
cost. Improving the precision of the two-fluid numerical flux seems to be more efficient to increase the precision of
the N-fluid numerical flux. In particular, one needs to develop methods that are more accurate than PLIC for corner
interfaces.
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Appendix A. Reformulation of the bound enforcement algorithm

Algorithm 3: Reformulation of Algorithm 1 in a lower level formalism

Input: Initial volume fractions fluxes α̂0 ∈ RN , such that
∑

k α̂
0
k = 1;

Input: Upper bounds Mk for k = 1 to N, such that
∑

k Mk ≥ 1;
Result: Volume fractions α̂∗ ∈ RN such that

∑
k α̂
∗
k = 1 and ∀k, α̂∗k ≤ Mk.

for ` = 1 to N do
overflow← 0 ;
cardKminus← 0 ;
for k = 1 to N do

if α̂`k ≥ Mk then
α̂`+1

k ← Mk;
overflow← overflow + α̂`k − Mk ;

else
cardKminus← cardKminus + 1;

end
end
for k = 1 to N do

if α̂`k < Mk then
α̂`+1

k ← α̂`k + overflow/cardKminus
end

end
if ∀k, α̂`k ≤ Mk then

break
end

end
return α̂∗ = α̂`
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