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Abstract—This paper describes a pipeline designed by 
INRIA, DIAGRAMS TECHNOLOGIES, APSYS, and NOKIA 
for addressing questions related to root-cause analysis. These 
different tools, enabling multivariate multiple change-point 
detection as well as the automatic detection of future failures, are 
part of the achievements  of the SYSBOOSTER project. For 
confidentiality reasons, many data and technical information 
have been changed or anonymized along the paper. 

Résumé—Cet article décrit un processus méthodologique 
supporté par une boîte à outils logiciels couplés conçus par 
INRIA, DIAGRAMS TECHNOLOGIES, APSYS, et NOKIA, afin 
d’adresser des questions relatives à l’analyse de cause. Ces 
différents outils, permettant la détection de phénomènes de 
dérives multi variables et multi points de vue, ouvrent également 
la porte à l’anticipation de défaillances futures, dans le cadre du 
projet européen SYSBOOSTER. Pour des raisons confidentielles, 
de nombreuses données et informations techniques ont été 
modifiées ou anonymisées tout au long du papier.    

Keywords—dysfunctions, failures, data science, predictive 
maintenance, diagnosis, troubleshooting, prognosis, HUMS 

I. INTRODUCTION 

One strength of SYSBOOSTER is its very broad audience 
since it provides benefits to any industrial actor concerned 
with operating on or maintaining industrial assets. In 
particular it allows for maximizing the Service Continuity in 
terms of reliability or availability.  

 
General description of the SYSBOOSTER product: 
The SYSBOOSTER project is a European EIT Digital 
project which has led to a methodological process 
(pipeline) and a software toolbox. Firstly, the 
SYSBOOSTER methodology is a strong support in terms of 
qualification of failures, diagnosis / identification of the root 
cause(s), and troubleshooting of these failures. Secondly, the 
SYSBOOSTER software toolbox is composed of 
elementary bricks which turn out to be a powerful package 
for operational surveillance and maintenance achievement. 
 
The first benefits of SYSBOOSTER have to do with failure 
detection, root cause analysis and identification, and 
troubleshooting process. One of the most striking asset of 
the SYSBOOSTER product is to warn against potential 
failures before any  significant deviation is observed on the 
operational field. 
For the SYSBOOSTER product to work properly on new 
data, it first requires a preliminary learning step based on 
labeled data, as any machine learning procedure would do. 
These labeled data have to be collected from the field and 
operational environment in the same way as the classical 
data that are to be dealt with usually. For every sample, it is 
important to collect and know:  
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• the recording of several descriptors (features) of 
the behavior along the time (multiple time-series, 
one for each recorded descriptor), 

• if the “object” described by these features has 
failed or not, 

• if the “object” has been already repaired or not 
(with success or not), 

• if the original root cause (internal or external) has 
been already identified or not.  

This amount of information constitutes the SYSBOOSTER 
input which will be integrated in final reporting concerning 
industrial use cases of end user. 
 
Description of the problem addressed by SYSBOOSTER: 
Our deliverable aim is to detect and characterize potential 
anomalies arising in the behavior of optical modules, those 
anomalies corresponding to early signs of future failures.  
This early detection and characterization will help the Root 
Cause Analysis of failure. Roughly speaking, after pre-
processing the end user’s data set collected for learning 
purposes, several machine/statistical learning procedures 
(issued from Artificial Intelligence domain) are combined to 
achieve our goal. The different steps of our process 
(pipeline) are the following ones: 

- Pre-processing of the (learning) dataset collected 
by the project end-user; 

- Simultaneously segmenting the multiple time-series 
corresponding to the recorded features describing 
the behavior of the module under analysis along the 
time; 

- Extracting meta-descriptors from each segment 
output by the previous simultaneous segmentation 
step; 

- Clustering of “failure” segments, using descriptors 
of “failure” segments, into homogeneous classes 
(each class corresponding to a type of failure); 

- Fitting classification models for learning the 
prediction rule of any potential failure. This is 
made from previously computed clusters combined 
with healthy segments. 

 

Using the clustering and classification models, we are 
able to highlight which meta-descriptors and which signals 
(recorded variables from the original dataset) are the most 
influential ones regarding a particular failure type. Each step 
will be further described into more details in what follows. 

II. LEARNING DATA DESCRIPTION 

The end-user’s equipment to be analyzed is composed of 
modules, which are parts of cards, which are put themselves 
into a specific shelf. The dataset was sorted shelf by shelf 
and in a chronological manner. These raw data are then 
gathered module per module. 
 
The total number of modules included in this learning step is 
3400. For each of them, 27 were categorical data and 20 
descriptors (features) have been recorded along the time (20 
time-series). The recording was 5-month long with one 

measurement every 30 minutes, which corresponds to time-
series with around 7000 timestamps for each of the 20 
descriptors. 
Strong changes in the regime of each variable along the time 
have not been necessarily related to real failure occurrence 
according to end-user from the field: In the following, the 
term “failure” will therefore be used to distinguish modules 
with abnormal behavior from those that show expected 
behavior. The related criteria to be abnormal has been 
delivered by the data provider along with the data samples. 
Abnormal modules have still been found operational in the 
field, only a few had really been sent for repair during 
sampling time. The data provider wanted to learn the reason 
for these abnormal (non-standard) indications in the sample 
data. 
Such changes can be related to environmental modifications 
(temperature, intensity of the workflow…) 
 

 
 

 
 

 
 

Figures 1-3: Examples of regime changes along time for 3 signals. 

 
Therefore all recordings have been normalized so that the 
signals have zero mean and unit variance for each recorded 
variable on each module. Missing data are taken into 
account by imputation techniques, or removed from the 
dataset when imputation was not relevant. 
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III.  MORE DETAILED DESCRIPTION OF THE PIPELINE STEPS 

Just after normalizing the (learning) data, the first step 
consists in automatically detecting “homogeneous” regions 
along the time across the different recorded features for a 
given module. This is what we call the (simultaneous) joint 
segmentation of multiple time-series. This step is all the 
more relevant in the present context as the learning data 
reflects such homogeneous regimes across the recorded 
features, with sudden abrupt changes between successive 
regimes. Such abrupt changes simultaneously arising in 
(multiple) signal(s) are called changepoints in what follows. 
The output of this joint segmentation step is therefore a 
collection of (temporal) segments (simultaneously shared by 
several features), which will serve as a basis for the 
subsequent steps. 

 

A. Segmentation 

The R package used for the joint segmentation step of our 
pipeline is called KernSeg and has been developed by 
INRIA. It is not only computationally efficient (by saving 
both time and memory consumptions), but it also provides a 
great improvement upon ongoing segmentation strategies in 
several respects.  
On the one hand, it takes advantage of the use of the so-
called reproducing kernels for detecting changes that are not 
limited to the mean or the variance of a time-series. On the 
contrary, any appropriate choice of such a reproducing 
kernel allows for detecting any change arising in the process 
that has generated the observations, which is particularly 
relevant in the present context. On the other hand, these 
reproducing kernels are powerful enough for allowing the 
simultaneous segmentation of multiple time-series along the 
time, under the assumption that the changepoints occur 
simultaneously in most of these time-series. From a more 
general perspective, the segmentation procedure involves 
sophisticated model selection strategies, which reaches a 
trade-off fitting the data and avoiding too complex models. 
 
Two-stage learning strategy: 
a- First stage: The kernel-based segmentation procedure is 
first applied to each recorded feature individually. The goal 
at this stage is checked if the corresponding feature exhibits 
(or not) any change in its behavior (characterized by a 
changepoint in the close neighborhood of a failure). This 
helps us identifying 6 relevant features among the 20 
candidates that carry some information about the failure 
occurrences. 
b- Second stage: As long as the 6 relevant features have 
been identified, the R package KernSeg is applied to the 6 
corresponding time-series to perform their joint 
segmentation for each module. This outputs homogeneous 
segments that are shared across these 6 features, which 
correspond to different regimes of the corresponding 
module during the recording. Moreover, this joint 
segmentation avoids being too sensitive to small events 
related to only one particular feature (which should be 
interpreted as part of the noise for the present purpose). In 
particular, this provides us with a partition of signals that is 
smoother than the one we would have got from the 
individual segmentation of time-series.  
 

Summary: 
1. Input: Multiple normalized time-series 
2. Use : 

a- Selection of the 6 most relevant variables, 

b- Automatic joint segmentation of these 6 time-
series, module by module.  

        3.     Results: 

a-    Detection of the 6 most relevant variables 

c- Output one joint segmentation for each module 

 
 
Figures 4: Preprocessed signal segmented. 
 
Performances: automatic identification of 11000 segments 
labeled as “failed”, and 120 000 segments labeled as 
“healthy”, for a total of 131 000 segments over all the 
modules. 
 

B. Meta-descriptors extraction for each segment 

The ability of KernSeg for detecting changes that are not 
limited to the mean or the variance of a signal (time-series) 
is especially useful in the present context since it turns out 
that interesting features of the distribution regarding our root 
cause analysis problem are precisely not carried out by the 
mean. As a result, the segments cannot be only 
characterized by their respective means. For instance, 
considering the  variance or the skewness within each 
segment could be relevant. Therefore our goal is to design 
descriptors of the segments that capture these different kinds 
of information that is likely to be relevant in our context. 
Therefore, a total of around 90 meta-descriptors of each 
segment has been computed among which the mean, the 
variance, some Fourier coefficient…. 

 
Summary: 

1. Input: jointly segmented times-series 
2. Output: Around 90 meta-descriptors for each 

segment (either “healthy” or “failure”). 
 

C. Clustering the segments towards homogeneous classes 

Once the “failure” and “healthy” segments have been 
labeled from the joint segmentation step, their respective 90 
meta-descriptors are computed from the previous step.  
However it turns out that the failure segments exhibit a 
strong heterogeneity which reflects that several different 
(abnormal) behaviors are likely to lead to a “failure“.  
A clustering strategy has been applied to “failure” segments 
for automatically defining homogeneous classes among 
them. This has been made possible by means of the 90 meta-
descriptors of each segment and a clustering procedure 
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relying on the MixtComp package that has been developed 
by INRIA. The output of the MixtComp package is two-
fold:  

i. the automatic choice of the (a priori unknown) 
number of clusters, 

 
ii.  the gathering of the “failure” segments into 

homogeneous classes (clusters). 
The MixtComp package relies on the mixture models 
technology for which efficient model selection techniques 
already exist. 
A striking byproduct of this clustering step is the data-driven 
identification of the unknown number of different abnormal 
behaviors, each of them being potentially responsible for a 
particular type of failure. 

First stage: Defining "failure" segments for learning 

The “failure” segments are defined as the segments 
immediately preceeding a failure occurrence, which seems 
relevant since the goal is to detect early (weak) signs of 
future failure. Actually, computing the descriptors for each 
such segment (mean, variance, Fourier coefficients…) 
requires a minimum number of points. By contrast, we also 
define healthy segments (that will serve in the classification 
task) as segments that do not come before any failure, and do 
not share any points with a failure segment.  

Second stage: Choose the number of clusters 

After some experiments, and following a decision 
criterion, we determined that the best trade-off was a mixture 
model with around 10 clusters, which makes a reasonable 
trade-off between interpretability and statistical performance. 
This model was reliable in term of coherence according to 
our criterion. By contrast, a higher number of clusters would 
have made the visualization of our classes impossible for the 
end-user. 

Summary: 

1. Input:  Failure segments meta-descriptors; 

2. Strategy: Clustering based on mixture models 
(MixtComp); 

3. Output: Number of and classes constituted of 
homogeneous individuals. Each class is 
described by probability laws for each meta-
descriptor (gaussian) with different parameters 
(mean & standard deviation). 

Performances: around 10 classes of failure 
segments, which can be interpreted as 10 typical 
abnormal behaviors that have been 
automatically detected. 

 
As a remark, the picture below illustrates that using the 
variance of a given meta-descriptor (1 among the 90 meta-
descriptors of each segment) for distinguishing between the 
different clusters would have been misleading. Actually 
most of the clusters share a similar mean (with widely 
overlapping 95 percents confidence intervals). By contrast, 
this illustrates the power of the present clustering step 
carried out by means of 90 meta-descriptors properly 
chosen. 

 
Figures 5: Variance of one particular meta-descriptor along the 10 clusters. 
 

D. Classification 

First stage: The classification task requires the 
comparison between “healthy” and “failure” segments. The 
“healthy” segments have been already defined in Section 3.B 
and then left aside. Taking into account that the previous 
clustering step has output 10 clusters of “failure” segments, it 
is necessary to determine to which cluster each “healthy” 
segment is the closest. This is done by computing the 
distance between each “healthy” segment and the center of 
each of the 10 clusters previously defined. This distance is 
evaluated on the basis of the 90 meta-descriptors of each 
segment. 

Second stage: For each of these clusters (which 
corresponds to a specific type of “failure”), the purpose of a 
classification procedure is to learn the rule which leads to 
predict the appropriate label (“healthy” or “failure”) for any 
new segment. This learning task has to be made for each 
cluster individually, by comparing between “healthy” and 
“failure” segments within each cluster. Once such a rule has 
been learned for each of the 10 clusters, then it gives rise to 
an “identity card” for the 10 classes of potential “failures”. 

Third stage: From the learned “identity card” of the 10 
“failure” types, the classification procedure can be applied to 
any new segment the label of which is unknown. The 
purpose is then to properly predict its label while voiding any 
mistake that is, avoiding false negatives (missing a “failure”) 
and false positives (falsely predicting a “failure”). It is 
noticeable that such a classification rule can be applied to 
any new segment in an online framework (by contrast with 
the offline framework) where the data come sequentially and 
the label has to be predicted before any new observation has 
been made. 

Learning the prediction rule with Random Forests: 

Random Forests are a predictive model often used in 
machine learning due to their overall good prediction 
performances (and sensible underlying mechanism). From a 
wide comparison between several such predictive models, 
Random forests were identified as the best procedure in the 
present setting. 
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Figure 6 : Illustration of the underlying mechanism within the Random 
Forests. 
 
Each random forest is made of several simple binary 
classification trees (CART) the outputs of which are 
combined in through a final majority-vote rule. At each node 
of a tree corresponds a variable and a threshold that have 
been learned from the training data. 

In the present situation, 80% of the segments of each cluster 
were used for the training, while the remaining 20% have 
been used to assess the performance of each learned rule 
(testing). The rule that is finally learned (“identity card”) is 
the one which achieves the best statistical performance one 
the testing data. 

Summary: 

1. Input: Labeled data from each cluster successively; 

2. Goal: Learning the “id” of each cluster; 

3. Output: Classification rule dedicated to each cluster; 

4. Byproduct: Access to influential meta-descriptors in 
the classification rule of each cluster (type of 
“failure”). 

Performances: 75% of accurate classifications on the 
validation set. 

 

Interpretation of the each classification rule: 

Once the predictive model (Random Forests) has been 
learned appropriately, the influence of each meta-descriptor 
in the classification rule of each cluster can be inferred for 
interpretation purposes. Accessing to which meta-descriptors 
play the most important role, is a crucial information since it 
clearly helps in the root cause analysis for further 
technological hardware improvements for instance. 

 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
Figures 7: Importance of specific descriptors in the classification process of 
a new segment. 

 

IV.  DESCRIPTION OF THE SYSBOOSTER PLATFORM 

Based on the end-user’s dataset, INRIA has developed a 
methodology (supported by a software tool organized as a 
pipeline combining elementary bricks) and its corresponding 
prototype.  

At the end of the project, the prototype consists of 
different software bricks (mainly R packages) that can be 
used either independently of each other, or rather 
sequentially applied carefully following the methodology 
(pipeline) earlier described. 

The following description intends to illustrate how these 
bricks behave as well as the different possibilities they give 
access to, namely as a Root Cause Analysis (RCA) solution 
or an “Anomaly Detection”  solution. 

Note: The statistical and practical efficiency of the 
different elementary bricks on the end-user’s dataset have 
been evaluated at the end of the project. 

 

A. Brick 1: Data processing, Visualizing a module 
behavior  

Characteristics of the dataset: the dataset consists of data 
from multiple modules, each module being described by: (i) 
multiple time-series (module temperature,…), and (ii) 
categorical variables (for instance describing if the module is 
working correctly or not). The time-series are normalized 
once uploaded on the platform.  

1. Joint segmentation brick 

This brick enables to perform the automatic detection of 
abrupt changes (changepoints) arising simultaneously across 
multiple time-series (features measured along the time) for 
each module. The resulting joint segmentation (shared by all 
recorded time-series) is not characteristic of any operating 
mode at this point, but only defined successive regimes. This 
joint segmentation brick also enables to reduce the quantity 
of information for the future analysis. It can be seen as a 
preliminary smoothing step. 

Output of the brick: segments along the time during which 
most of the recorded variables exhibit a stationary 
(homogeneous) behavior. 
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2. Analysis of the successive regimes for a module 
along the time and visualization 

The purpose of this step is to analyze (and visualize) the 
different regimes of a given module along the time to 
analyze how the module is operated. 

To this end, from the joint segmentation of a given 
module at the previous step, the output segments of this 
module are divided into the 10 clusters already defined from 
the SYSBOOSTER pipeline. The corresponding module is 
labeled along the time according to the successive labels of 
the classes to which the segment belongs. From a 
visualization perspective, this gives access to the successive 
labels of a given module along the time. For instance, this 
could help the end-user identifying complex patterns which 
would be characteristic of abnormal behaviors. 

In addition, for each label of a given module, the 
visualization allows for enumerating the most influential 
features defining the corresponding cluster (average 
temperature, …), which helps characterizing the current 
regime of the module along the time. 

THIS BRICK 1 IS A STEP TOWARDS RCA GIVING 
THE POSSIBILITY TO ANALYSE EASILY HOW A 
MODULE IS OPERATED. 

B. Brick 2: anomaly detection 

 The dataset consists of data from multiple modules, each 
module being described by multiple time-series without 
knowing if there are failures occurrences. From a new batch 
of data, the purpose is to predict/identify the periods of 
healthy or abnormal behaviors. For each module, the output 
is a list of time periods during which the operating mode is 
different from a healthy mode.  

Main steps: 

1. performing the joint segmentation of recorded 
features (time-series); 

2. compute the meta-descriptors of each segment; 

3. apply the classification rule already learned by 
means of random forests for classifying any new 
segments as “healthy” or “failure”. 

On the existing dataset, this brick allows for identifying 
all abnormal segments of a new module. Details about 
what are the possible anomalies are provided as well, for 
maximizing the interpretability by the end-user and for 
RCA purposes. 

THIS BRICK 2 CORRESPONDS TO ANOMALY 
DETECTION IN A BATCH OF NEW UNLABELED 
DATA  AND IDENTIFICATION OF WEAK EVENTS 
RELATED TO FUTURE FAILURES. 

C. Brick 3: Visualizing the module behavior before failure 

The module is described by multiple time-series. There 
are two possibilities for applying this functionality: either 
failures have been observed by the end-user, or there is no 
recorded failure but the output of Brick 2 is available (among 
which segments labeled as “failure” or “abnormal 
behavior”). 

The purpose of this functionality is mainly visualizing the 
possible symptoms related to a failure for a given module. It 

relies on the preliminary identification of such abnormal 
segments output by Brick 2 for instance. 

1. This functionality allows the end-user for 
exploring the time series before any failure (in 
the area of any segment labeled as “failure”). 
The expert can not only visualize the time-series 
corresponding to the recorded features (that he 
can individually select or remove), but he can 
also access to some information regarding the 
most influential meta-descriptors in the 
classification rule of this segment as “failure”. 
This kind of visual exploration can be done on 
ONE MODULE at a time. This is a key step 
towards RCA. 

THIS BRICK 3 CORRESPONDS TO RCA WORKS. Its 
use requires having identified potential failures (output of 
BRICK 2). 

V. RESULTS 

For monitoring the SYSBOOSTER performances, 
different KPIs have been defined related to both technical 
(statistical performance, computational efficiency) and 
business aspects. 

A. Number of categories of abnormal behaviors 

This KPI targets to measure how many groups (clusters) 
with an abnormal behavior can be identified from the end-
user’s use case. 

Objective: By discovering similarities in the apparent 
abnormal behavior of some segments compared to the others, 
the objective is to perform an automatic clustering of the 
“failure” modules. This is an important step in the 
SYSBOOSTER pipeline since it automatically identifies 
different categories of anomalies (which is not known a 
priori), and also allows for further exploration of the 
phenomenon that is responsible of this type of “failure”. 

Targeted result: Since nothing was known on this aspect 
at the beginning, we expected to find around 2 categories of 
abnormal behaviors. 

Obtained results : the SYSBOOSTER tools have  
automatically detected around 10 types of abnormal 
behaviors. 

Detail & explanation: 

We started by defining what is an abnormal behaviour for 
the end-user‘s experts. In the application domain of the end-
user, the equipments are highly reliable (99,999%) and a true 
failure for this kind of technology does not mean that the 
module broke or that it is in an irremediable state (which 
almost never happens).  

In a first step, we worked with the end-user to identify the 
abnormal behaviors for a module according to their field 
expertise (suboptimal behavior for instance). In a second 
step, we applied the SYSBOOSTER pipeline from these 
expert-based abnormal behaviors. 
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1. Abnormal behaviors based on experts 

 

Works with the end-user enabled to identify a list of 
behaviors which have to be considered as “abnormal 
functioning” (or to simplify “failures”): 

 
a- Fail message of a specific signal X : these 

failures are considered failures even if they do 
not correspond to an irremediable failure.  

b- Exchange of a specific module Y in the dataset. 
When a module is exchanged it is very likely 
due to a failure even if not yet confirmed by the 
repair department.  

c- Modules sent to repair and repaired (only one 
in the whole dataset). 
  

2. Automatic abnormal behaviors analysis based on data 

 

First achievement: 

As modules are operated under multiple field conditions, 
which lead to multiple behaviors along the time for a single 
module, a first step was to identify “homogeneous” segments 
along the time during which a module exhibits a stable 
(stationary) behavior. 
This step is done using an automatic joint segmentation 
method. 
 
Output 1: The automatic joint segmentation method allowed 
to select 6 recorded variables (features with time-series) 
which are informative for anomaly detection (during an 
“abnormal functioning”, the behavior of the module through 
the 6 selected variables seems different from the behavior 
before and after an “abnormal functioning”). 
>> This first output enables the end-user focusing on those 
specific features for future data collection, reducing its 
corresponding cost. 
 
Second achievement: 

The automatic segmentation, combined with classification, 
enables to define the time frame before a “failure” which has 
to be analyzed from the 6 parameters (for detecting a fail 
message of type X for instance). 
 
Output 2: On these particular experiments, the length of the 
time frame was 85mn (median). This would strongly depend 
on the “objects” under consideration as well as on the tuning 
of environmental conditions. 
>> This enables to focus the classification algorithm, in its 
prediction mode, on a reduced period of time ensuring a 
effective computation speed.  
 
Third achievement: 

After this first step, a clustering is applied on the segments 
extracted from modules (excluding period of time during 
abnormal behavior) to discover various types of “abnormal 
behaviors” within the dataset. 
Considering, the fact that the length of every segment is 
different (and consequently non informative), the segments 
are summarized by meta-descriptors (mean, variance, Fourier 
 

 
coefficients,...) and the clustering is done from these features 
(around 90 on this particular example). 
 
Output 3: The total number of clusters (that can be 
interpreted as the number of anomaly types) was estimated at 
10 “abnormal behaviors”. Each cluster has an identity card 
to ease the analysis.interpretability by end-user’s experts of 
these modes of operation.  

B. Number of detected unpredictable events 

This KPI targets to measure how many events end-user’s 
experts could not detect without data science for some 
specific module’s use cases. 
 
Objective: The goal was to find (a priori) unknown patterns 
in weak signals before failure occurrences (for a specific 
Function Y) which were unpredictable events for experts 
until now. Automatically identifying those patterns as soon 
as the signal starts to deviate gives rise to troubleshooting 
procedures before any strong failure occurs and also enables 
end-user’s experts to understand the reasons of such an 
abnormal behavior. 
 
Targeted result: We took 500 failures that were not used in 
the learning process. 
 
Obtained results: 375 abnormal events out of 500 have 
been automatically detected. 
 
Detail & explanation: 
In order to detect unpredictable events we learn a 
classification model based on random forests. It predicts the 
label (normal or abnormal) of any new segment for any 
given module. 
The learning step has been made using 80% of end-user’s 
dataset, while 20% has been kept aside for the performance 
evaluation.  
 
 
Output 1: 75% abnormal behaviors (Function Y)  classified 
accurately (375/500) 
 
Output 2: Far more, the classification of “abnormal 
behavior” is explained by meta-descriptors extracted from 
each segment. These meta-descriptors can be considered as 
symptomatic of “abnormal behavior” 
 

 
Figures 8: Importance of specific descriptors explaining abnormal 
behaviors 
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Thanks to these performances, it is then possible to: 

• identify at any time if one module has a normal 
behavior  

• identify any “abnormal behavior” for segments 
from multiple modules during a fixed period of time 

• analyze into more details the symptoms (as 
described above) of any abnormal behavior. 
 

Achievements: 

• Helps the support services in their understanding of 
the customer problems.  

• Helps the design department for analyzing the 
symptoms and possible causes of failures 

C. Speed performance (% of Maximum Performance) 

This KPI measures the speed performance of the method 
(computing speed and …). 
Goal: Determine the speed performance of the pipeline. 
 
Targeted result: We expected 85% of real time analysis. 
Obtained results: We were able to reach 100% 
 
Detail & explanation: 
2 metrics are used to quantify the speed performance of the 
pipeline. 
 

First achievement: 

Speed necessary to identify if a given segment of one 
particular module has a “normal” or “abnormal behavior” 
(based on the preliminary learning-step): less than 1s. 
 
Output:  The method has consequently a run time lower 
than the acquisition time of a new point which allows for 
applying the classification rule on line. 
 

Second achievement: 

Speed necessary to identify, from a dataset of 24H-long & 
100 modules, all the “abnormal behaviors” (based on the 
learning-step previously done ): 1mn30s. 
 
The segmentation and classification steps from the 
SYSBOOSTER pipeline have to be applied on the whole 
dataset (48 measurements for each recorded feature on each 
of the 100 modules). This explains the required time, which 
is longer than for the previous achievement, but still smaller 
than the acquisition time (every 30 minutes). Moreover in the 
present context, this process does not need to be fully real-
time since its goal is only to help the offline detection and 
analysis of abnormal behaviors made by the design 
department. 
 

D. Early detection of dysfunctions’ leading failures 

This KPI targets to measure how long before the end-user’s 
experts the SYSBOOSTER tool is able to detect a failure for 
a specific module use-case.  

 
Objective: Here, the objective is to detect a deviation (or 
dysfunction) leading to a failure. Until now, the end-user’s 
experts identify the failure during the maintenance process 

 
 
or in the SAV department, that is to say, after the failure has 
occurred. 
 
Targeted result: We expected to detect 80% of the failure 
before the end-user’s action during the maintenance process 
or in the SAV department. 
 
Obtained results: We were able to detect 75 % of these 
failure occurrences. 
 
Detail & explanation: 
In order to detect dysfunctions leading to failures, we 
learned a classification model based on random forests that 
will be able to predict if the behavior of a module during a 
period of time (segment) is normal or abnormal. 

 
Output  : 75% of abnormal behaviors (FunctionY) 
detection before the Function Y failure itself. 

VI.  CONCLUSIONS 

SYSBOOSTER has really been a very busy project where no 
contributor has spared his efforts to come to a high-value 
product in terms of methodology and final tools. 
The end-user never stopped providing datasets almost until 
the very end of the project. Eventhough at the beginning 
there were difficulties to find datasets with failures, the end-
user finally succeeded in collecting data corresponding to 
abnormal behaviors and failure cases. 
INRIA and DIAGRAMS technologies carried out several 
improvements on the methodology as well as the 
development of possible supporting tools in the framework 
of the SYSBOOSTER platform. 
 
The added values of the SYSBOOSTER product were 
numerous:   

• Perform automatic anomaly detection. These 
anomalies were discovered by means of 
technologies involving AI. 

• Disclose events otherwise usually not detected 
(detectable)  

• Characterize abnormal behavior classes derived 
from telecommunication system operation data  

• Compute and evaluate automatically most 
significant parameters  

• Understand complex correlations and indications 
• Ease the analysis of events as a relief for technical 

experts (engineers) 
• Optimize data capture and reduce number of  false 

positives 
Moreover we can identify additional benefits: 

• Data analysis with SYSBOOSTER on one module 
type also produces findings for other 
items/components 

• The versatile SYSBOOSTER platform has the 
potential to handle a huge amount of data quickly. 
This offers the potential to apply the analysis to 
other very complex scenarios usually left unsolved. 

• The SYSBOOSTER data analysis can lead to hints 
(trainings) for customer and system field operation     
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Therefore numerous may be the benefits in different 
perspectives: consultancy has really to accompany the 
SYSBOOSTER platform adaptation and methodological use 
to really fit best operational need and context of the client.  
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