
HAL Id: hal-03483963
https://hal.science/hal-03483963v1

Submitted on 16 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SYSBOOSTER, application of Data Science to
surveillance of systems for detection or anticipation of

dysfunctions or failures of systems
Alain Celisse, Olivier Gauriau, Margot Corréard, Jean-François Bouin,

Lennart Priester, Ronald Naumann, Emmanuel Arbaretier, Michel
Kaczmarek, Uwe Schmietainski, Hagen Friedrich

To cite this version:
Alain Celisse, Olivier Gauriau, Margot Corréard, Jean-François Bouin, Lennart Priester, et al.. SYS-
BOOSTER, application of Data Science to surveillance of systems for detection or anticipation of
dysfunctions or failures of systems. Congrès Lambda Mu 22 “ Les risques au cœur des transitions ”
(e-congrès) - 22e Congrès de Maîtrise des Risques et de Sûreté de Fonctionnement, Institut pour la
Maîtrise des Risques, Oct 2020, Le Havre (e-congrès), France. pp.1-9. �hal-03483963�

https://hal.science/hal-03483963v1
https://hal.archives-ouvertes.fr

22e Congrès de Maîtrise des Risques et Sûreté de Fonctionnement λµ22 Le Havre 12-15 octobre 2020

SYSBOOSTER, application of Data Science to
surveillance of systems for detection or anticipation

of dysfunctions or failures of systems

SYSBOOSTER, application de la Data Science à la surveillance de
systèmes pour la détection ou l’anticipation de dysfonctions ou

défaillances de ces systèmes

Alain Célisse
Olivier Gauriau

INRIA
Parc scientifique de la Haute-Borne

40, avenue Halley - Bât A - Park
Plaza, 59650 Villeneuve d'Ascq

alain.celisse@inria.fr

Margot Corréard, Jean-François Bouin
DIAGRAMS TECHNOLOGIES

Parc Euratechnologies
165 ave de Bretagne

59000 LILLE
mcorreard@diagrams-technologies.com

jfbouin@diagrams-technologies.com

Lennart Priester, Ronald Naumann, Dr
Uwe Schmietainski, Hagen Friedrich

NOKIA
Thurn-und-Taxis-Str. 10

90411 Nuremberg, Germany
lennart.priester@nokia.com

Emmanuel Arbaretier
Michel Kaczmarek

APSYS
1 boulevard Jean Moulin
78996 Élancourt Cedex

emmanuel.arbaretier@apsys-
airbus.com

Abstract—This paper describes a pipeline designed by
INRIA, DIAGRAMS TECHNOLOGIES, APSYS, and NOKIA
for addressing questions related to root-cause analysis. These
different tools, enabling multivariate multiple change-point
detection as well as the automatic detection of future failures, are
part of the achievements of the SYSBOOSTER project. For
confidentiality reasons, many data and technical information
have been changed or anonymized along the paper.

Résumé—Cet article décrit un processus méthodologique
supporté par une boîte à outils logiciels couplés conçus par
INRIA, DIAGRAMS TECHNOLOGIES, APSYS, et NOKIA, afin
d’adresser des questions relatives à l’analyse de cause. Ces
différents outils, permettant la détection de phénomènes de
dérives multi variables et multi points de vue, ouvrent également
la porte à l’anticipation de défaillances futures, dans le cadre du
projet européen SYSBOOSTER. Pour des raisons confidentielles,
de nombreuses données et informations techniques ont été
modifiées ou anonymisées tout au long du papier.

Keywords—dysfunctions, failures, data science, predictive
maintenance, diagnosis, troubleshooting, prognosis, HUMS

I. INTRODUCTION

One strength of SYSBOOSTER is its very broad audience
since it provides benefits to any industrial actor concerned
with operating on or maintaining industrial assets. In
particular it allows for maximizing the Service Continuity in
terms of reliability or availability.

General description of the SYSBOOSTER product:
The SYSBOOSTER project is a European EIT Digital
project which has led to a methodological process
(pipeline) and a software toolbox. Firstly, the
SYSBOOSTER methodology is a strong support in terms of
qualification of failures, diagnosis / identification of the root
cause(s), and troubleshooting of these failures. Secondly, the
SYSBOOSTER software toolbox is composed of
elementary bricks which turn out to be a powerful package
for operational surveillance and maintenance achievement.

The first benefits of SYSBOOSTER have to do with failure
detection, root cause analysis and identification, and
troubleshooting process. One of the most striking asset of
the SYSBOOSTER product is to warn against potential
failures before any significant deviation is observed on the
operational field.
For the SYSBOOSTER product to work properly on new
data, it first requires a preliminary learning step based on
labeled data, as any machine learning procedure would do.
These labeled data have to be collected from the field and
operational environment in the same way as the classical
data that are to be dealt with usually. For every sample, it is
important to collect and know:

22e Congrès de Maîtrise des Risques et Sûreté de Fonctionnement λµ22 Le Havre 12-15 octobre 2020

• the recording of several descriptors (features) of
the behavior along the time (multiple time-series,
one for each recorded descriptor),

• if the “object” described by these features has
failed or not,

• if the “object” has been already repaired or not
(with success or not),

• if the original root cause (internal or external) has
been already identified or not.

This amount of information constitutes the SYSBOOSTER
input which will be integrated in final reporting concerning
industrial use cases of end user.

Description of the problem addressed by SYSBOOSTER:
Our deliverable aim is to detect and characterize potential
anomalies arising in the behavior of optical modules, those
anomalies corresponding to early signs of future failures.
This early detection and characterization will help the Root
Cause Analysis of failure. Roughly speaking, after pre-
processing the end user’s data set collected for learning
purposes, several machine/statistical learning procedures
(issued from Artificial Intelligence domain) are combined to
achieve our goal. The different steps of our process
(pipeline) are the following ones:

- Pre-processing of the (learning) dataset collected
by the project end-user;

- Simultaneously segmenting the multiple time-series
corresponding to the recorded features describing
the behavior of the module under analysis along the
time;

- Extracting meta-descriptors from each segment
output by the previous simultaneous segmentation
step;

- Clustering of “failure” segments, using descriptors
of “failure” segments, into homogeneous classes
(each class corresponding to a type of failure);

- Fitting classification models for learning the
prediction rule of any potential failure. This is
made from previously computed clusters combined
with healthy segments.

Using the clustering and classification models, we are
able to highlight which meta-descriptors and which signals
(recorded variables from the original dataset) are the most
influential ones regarding a particular failure type. Each step
will be further described into more details in what follows.

II. LEARNING DATA DESCRIPTION

The end-user’s equipment to be analyzed is composed of
modules, which are parts of cards, which are put themselves
into a specific shelf. The dataset was sorted shelf by shelf
and in a chronological manner. These raw data are then
gathered module per module.

The total number of modules included in this learning step is
3400. For each of them, 27 were categorical data and 20
descriptors (features) have been recorded along the time (20
time-series). The recording was 5-month long with one

measurement every 30 minutes, which corresponds to time-
series with around 7000 timestamps for each of the 20
descriptors.
Strong changes in the regime of each variable along the time
have not been necessarily related to real failure occurrence
according to end-user from the field: In the following, the
term “failure” will therefore be used to distinguish modules
with abnormal behavior from those that show expected
behavior. The related criteria to be abnormal has been
delivered by the data provider along with the data samples.
Abnormal modules have still been found operational in the
field, only a few had really been sent for repair during
sampling time. The data provider wanted to learn the reason
for these abnormal (non-standard) indications in the sample
data.
Such changes can be related to environmental modifications
(temperature, intensity of the workflow…)

Figures 1-3: Examples of regime changes along time for 3 signals.

Therefore all recordings have been normalized so that the
signals have zero mean and unit variance for each recorded
variable on each module. Missing data are taken into
account by imputation techniques, or removed from the
dataset when imputation was not relevant.

22e Congrès de Maîtrise des Risques et Sûreté de Fonctionnement λµ22 Le Havre 12-15 octobre 2020

III. MORE DETAILED DESCRIPTION OF THE PIPELINE STEPS

Just after normalizing the (learning) data, the first step
consists in automatically detecting “homogeneous” regions
along the time across the different recorded features for a
given module. This is what we call the (simultaneous) joint
segmentation of multiple time-series. This step is all the
more relevant in the present context as the learning data
reflects such homogeneous regimes across the recorded
features, with sudden abrupt changes between successive
regimes. Such abrupt changes simultaneously arising in
(multiple) signal(s) are called changepoints in what follows.
The output of this joint segmentation step is therefore a
collection of (temporal) segments (simultaneously shared by
several features), which will serve as a basis for the
subsequent steps.

A. Segmentation

The R package used for the joint segmentation step of our
pipeline is called KernSeg and has been developed by
INRIA. It is not only computationally efficient (by saving
both time and memory consumptions), but it also provides a
great improvement upon ongoing segmentation strategies in
several respects.
On the one hand, it takes advantage of the use of the so-
called reproducing kernels for detecting changes that are not
limited to the mean or the variance of a time-series. On the
contrary, any appropriate choice of such a reproducing
kernel allows for detecting any change arising in the process
that has generated the observations, which is particularly
relevant in the present context. On the other hand, these
reproducing kernels are powerful enough for allowing the
simultaneous segmentation of multiple time-series along the
time, under the assumption that the changepoints occur
simultaneously in most of these time-series. From a more
general perspective, the segmentation procedure involves
sophisticated model selection strategies, which reaches a
trade-off fitting the data and avoiding too complex models.

Two-stage learning strategy:
a- First stage: The kernel-based segmentation procedure is
first applied to each recorded feature individually. The goal
at this stage is checked if the corresponding feature exhibits
(or not) any change in its behavior (characterized by a
changepoint in the close neighborhood of a failure). This
helps us identifying 6 relevant features among the 20
candidates that carry some information about the failure
occurrences.
b- Second stage: As long as the 6 relevant features have
been identified, the R package KernSeg is applied to the 6
corresponding time-series to perform their joint
segmentation for each module. This outputs homogeneous
segments that are shared across these 6 features, which
correspond to different regimes of the corresponding
module during the recording. Moreover, this joint
segmentation avoids being too sensitive to small events
related to only one particular feature (which should be
interpreted as part of the noise for the present purpose). In
particular, this provides us with a partition of signals that is
smoother than the one we would have got from the
individual segmentation of time-series.

Summary:
1. Input: Multiple normalized time-series
2. Use :

a- Selection of the 6 most relevant variables,

b- Automatic joint segmentation of these 6 time-
series, module by module.

 3. Results:

a- Detection of the 6 most relevant variables

c- Output one joint segmentation for each module

Figures 4: Preprocessed signal segmented.

Performances: automatic identification of 11000 segments
labeled as “failed”, and 120 000 segments labeled as
“healthy”, for a total of 131 000 segments over all the
modules.

B. Meta-descriptors extraction for each segment

The ability of KernSeg for detecting changes that are not
limited to the mean or the variance of a signal (time-series)
is especially useful in the present context since it turns out
that interesting features of the distribution regarding our root
cause analysis problem are precisely not carried out by the
mean. As a result, the segments cannot be only
characterized by their respective means. For instance,
considering the variance or the skewness within each
segment could be relevant. Therefore our goal is to design
descriptors of the segments that capture these different kinds
of information that is likely to be relevant in our context.
Therefore, a total of around 90 meta-descriptors of each
segment has been computed among which the mean, the
variance, some Fourier coefficient….

Summary:

1. Input: jointly segmented times-series
2. Output: Around 90 meta-descriptors for each

segment (either “healthy” or “failure”).

C. Clustering the segments towards homogeneous classes

Once the “failure” and “healthy” segments have been
labeled from the joint segmentation step, their respective 90
meta-descriptors are computed from the previous step.
However it turns out that the failure segments exhibit a
strong heterogeneity which reflects that several different
(abnormal) behaviors are likely to lead to a “failure“.
A clustering strategy has been applied to “failure” segments
for automatically defining homogeneous classes among
them. This has been made possible by means of the 90 meta-
descriptors of each segment and a clustering procedure

22e Congrès de Maîtrise des Risques et Sûreté de Fonctionnement λµ22 Le Havre 12-15 octobre 2020

relying on the MixtComp package that has been developed
by INRIA. The output of the MixtComp package is two-
fold:

i. the automatic choice of the (a priori unknown)
number of clusters,

ii. the gathering of the “failure” segments into

homogeneous classes (clusters).
The MixtComp package relies on the mixture models
technology for which efficient model selection techniques
already exist.
A striking byproduct of this clustering step is the data-driven
identification of the unknown number of different abnormal
behaviors, each of them being potentially responsible for a
particular type of failure.

First stage: Defining "failure" segments for learning

The “failure” segments are defined as the segments
immediately preceeding a failure occurrence, which seems
relevant since the goal is to detect early (weak) signs of
future failure. Actually, computing the descriptors for each
such segment (mean, variance, Fourier coefficients…)
requires a minimum number of points. By contrast, we also
define healthy segments (that will serve in the classification
task) as segments that do not come before any failure, and do
not share any points with a failure segment.

Second stage: Choose the number of clusters

After some experiments, and following a decision
criterion, we determined that the best trade-off was a mixture
model with around 10 clusters, which makes a reasonable
trade-off between interpretability and statistical performance.
This model was reliable in term of coherence according to
our criterion. By contrast, a higher number of clusters would
have made the visualization of our classes impossible for the
end-user.

Summary:

1. Input: Failure segments meta-descriptors;

2. Strategy: Clustering based on mixture models
(MixtComp);

3. Output: Number of and classes constituted of
homogeneous individuals. Each class is
described by probability laws for each meta-
descriptor (gaussian) with different parameters
(mean & standard deviation).

Performances: around 10 classes of failure
segments, which can be interpreted as 10 typical
abnormal behaviors that have been
automatically detected.

As a remark, the picture below illustrates that using the
variance of a given meta-descriptor (1 among the 90 meta-
descriptors of each segment) for distinguishing between the
different clusters would have been misleading. Actually
most of the clusters share a similar mean (with widely
overlapping 95 percents confidence intervals). By contrast,
this illustrates the power of the present clustering step
carried out by means of 90 meta-descriptors properly
chosen.

Figures 5: Variance of one particular meta-descriptor along the 10 clusters.

D. Classification

First stage: The classification task requires the
comparison between “healthy” and “failure” segments. The
“healthy” segments have been already defined in Section 3.B
and then left aside. Taking into account that the previous
clustering step has output 10 clusters of “failure” segments, it
is necessary to determine to which cluster each “healthy”
segment is the closest. This is done by computing the
distance between each “healthy” segment and the center of
each of the 10 clusters previously defined. This distance is
evaluated on the basis of the 90 meta-descriptors of each
segment.

Second stage: For each of these clusters (which
corresponds to a specific type of “failure”), the purpose of a
classification procedure is to learn the rule which leads to
predict the appropriate label (“healthy” or “failure”) for any
new segment. This learning task has to be made for each
cluster individually, by comparing between “healthy” and
“failure” segments within each cluster. Once such a rule has
been learned for each of the 10 clusters, then it gives rise to
an “identity card” for the 10 classes of potential “failures”.

Third stage: From the learned “identity card” of the 10
“failure” types, the classification procedure can be applied to
any new segment the label of which is unknown. The
purpose is then to properly predict its label while voiding any
mistake that is, avoiding false negatives (missing a “failure”)
and false positives (falsely predicting a “failure”). It is
noticeable that such a classification rule can be applied to
any new segment in an online framework (by contrast with
the offline framework) where the data come sequentially and
the label has to be predicted before any new observation has
been made.

Learning the prediction rule with Random Forests:

Random Forests are a predictive model often used in
machine learning due to their overall good prediction
performances (and sensible underlying mechanism). From a
wide comparison between several such predictive models,
Random forests were identified as the best procedure in the
present setting.

22e Congrès de Maîtrise des Risques et Sûreté de Fonctionnement λµ22 Le Havre 12-15 octobre 2020

Figure 6 : Illustration of the underlying mechanism within the Random
Forests.

Each random forest is made of several simple binary
classification trees (CART) the outputs of which are
combined in through a final majority-vote rule. At each node
of a tree corresponds a variable and a threshold that have
been learned from the training data.

In the present situation, 80% of the segments of each cluster
were used for the training, while the remaining 20% have
been used to assess the performance of each learned rule
(testing). The rule that is finally learned (“identity card”) is
the one which achieves the best statistical performance one
the testing data.

Summary:

1. Input: Labeled data from each cluster successively;

2. Goal: Learning the “id” of each cluster;

3. Output: Classification rule dedicated to each cluster;

4. Byproduct: Access to influential meta-descriptors in
the classification rule of each cluster (type of
“failure”).

Performances: 75% of accurate classifications on the
validation set.

Interpretation of the each classification rule:

Once the predictive model (Random Forests) has been
learned appropriately, the influence of each meta-descriptor
in the classification rule of each cluster can be inferred for
interpretation purposes. Accessing to which meta-descriptors
play the most important role, is a crucial information since it
clearly helps in the root cause analysis for further
technological hardware improvements for instance.

Figures 7: Importance of specific descriptors in the classification process of
a new segment.

IV. DESCRIPTION OF THE SYSBOOSTER PLATFORM

Based on the end-user’s dataset, INRIA has developed a
methodology (supported by a software tool organized as a
pipeline combining elementary bricks) and its corresponding
prototype.

At the end of the project, the prototype consists of
different software bricks (mainly R packages) that can be
used either independently of each other, or rather
sequentially applied carefully following the methodology
(pipeline) earlier described.

The following description intends to illustrate how these
bricks behave as well as the different possibilities they give
access to, namely as a Root Cause Analysis (RCA) solution
or an “Anomaly Detection” solution.

Note: The statistical and practical efficiency of the
different elementary bricks on the end-user’s dataset have
been evaluated at the end of the project.

A. Brick 1: Data processing, Visualizing a module
behavior

Characteristics of the dataset: the dataset consists of data
from multiple modules, each module being described by: (i)
multiple time-series (module temperature,…), and (ii)
categorical variables (for instance describing if the module is
working correctly or not). The time-series are normalized
once uploaded on the platform.

1. Joint segmentation brick

This brick enables to perform the automatic detection of
abrupt changes (changepoints) arising simultaneously across
multiple time-series (features measured along the time) for
each module. The resulting joint segmentation (shared by all
recorded time-series) is not characteristic of any operating
mode at this point, but only defined successive regimes. This
joint segmentation brick also enables to reduce the quantity
of information for the future analysis. It can be seen as a
preliminary smoothing step.

Output of the brick: segments along the time during which
most of the recorded variables exhibit a stationary
(homogeneous) behavior.

22e Congrès de Maîtrise des Risques et Sûreté de Fonctionnement λµ22 Le Havre 12-15 octobre 2020

2. Analysis of the successive regimes for a module
along the time and visualization

The purpose of this step is to analyze (and visualize) the
different regimes of a given module along the time to
analyze how the module is operated.

To this end, from the joint segmentation of a given
module at the previous step, the output segments of this
module are divided into the 10 clusters already defined from
the SYSBOOSTER pipeline. The corresponding module is
labeled along the time according to the successive labels of
the classes to which the segment belongs. From a
visualization perspective, this gives access to the successive
labels of a given module along the time. For instance, this
could help the end-user identifying complex patterns which
would be characteristic of abnormal behaviors.

In addition, for each label of a given module, the
visualization allows for enumerating the most influential
features defining the corresponding cluster (average
temperature, …), which helps characterizing the current
regime of the module along the time.

THIS BRICK 1 IS A STEP TOWARDS RCA GIVING
THE POSSIBILITY TO ANALYSE EASILY HOW A
MODULE IS OPERATED.

B. Brick 2: anomaly detection

 The dataset consists of data from multiple modules, each
module being described by multiple time-series without
knowing if there are failures occurrences. From a new batch
of data, the purpose is to predict/identify the periods of
healthy or abnormal behaviors. For each module, the output
is a list of time periods during which the operating mode is
different from a healthy mode.

Main steps:

1. performing the joint segmentation of recorded
features (time-series);

2. compute the meta-descriptors of each segment;

3. apply the classification rule already learned by
means of random forests for classifying any new
segments as “healthy” or “failure”.

On the existing dataset, this brick allows for identifying
all abnormal segments of a new module. Details about
what are the possible anomalies are provided as well, for
maximizing the interpretability by the end-user and for
RCA purposes.

THIS BRICK 2 CORRESPONDS TO ANOMALY
DETECTION IN A BATCH OF NEW UNLABELED
DATA AND IDENTIFICATION OF WEAK EVENTS
RELATED TO FUTURE FAILURES.

C. Brick 3: Visualizing the module behavior before failure

The module is described by multiple time-series. There
are two possibilities for applying this functionality: either
failures have been observed by the end-user, or there is no
recorded failure but the output of Brick 2 is available (among
which segments labeled as “failure” or “abnormal
behavior”).

The purpose of this functionality is mainly visualizing the
possible symptoms related to a failure for a given module. It

relies on the preliminary identification of such abnormal
segments output by Brick 2 for instance.

1. This functionality allows the end-user for
exploring the time series before any failure (in
the area of any segment labeled as “failure”).
The expert can not only visualize the time-series
corresponding to the recorded features (that he
can individually select or remove), but he can
also access to some information regarding the
most influential meta-descriptors in the
classification rule of this segment as “failure”.
This kind of visual exploration can be done on
ONE MODULE at a time. This is a key step
towards RCA.

THIS BRICK 3 CORRESPONDS TO RCA WORKS. Its
use requires having identified potential failures (output of
BRICK 2).

V. RESULTS

For monitoring the SYSBOOSTER performances,
different KPIs have been defined related to both technical
(statistical performance, computational efficiency) and
business aspects.

A. Number of categories of abnormal behaviors

This KPI targets to measure how many groups (clusters)
with an abnormal behavior can be identified from the end-
user’s use case.

Objective: By discovering similarities in the apparent
abnormal behavior of some segments compared to the others,
the objective is to perform an automatic clustering of the
“failure” modules. This is an important step in the
SYSBOOSTER pipeline since it automatically identifies
different categories of anomalies (which is not known a
priori), and also allows for further exploration of the
phenomenon that is responsible of this type of “failure”.

Targeted result: Since nothing was known on this aspect
at the beginning, we expected to find around 2 categories of
abnormal behaviors.

Obtained results : the SYSBOOSTER tools have
automatically detected around 10 types of abnormal
behaviors.

Detail & explanation:

We started by defining what is an abnormal behaviour for
the end-user‘s experts. In the application domain of the end-
user, the equipments are highly reliable (99,999%) and a true
failure for this kind of technology does not mean that the
module broke or that it is in an irremediable state (which
almost never happens).

In a first step, we worked with the end-user to identify the
abnormal behaviors for a module according to their field
expertise (suboptimal behavior for instance). In a second
step, we applied the SYSBOOSTER pipeline from these
expert-based abnormal behaviors.

22e Congrès de Maîtrise des Risques et Sûreté de Fonctionnement λµ22 Le Havre 12-15 octobre 2020

1. Abnormal behaviors based on experts

Works with the end-user enabled to identify a list of
behaviors which have to be considered as “abnormal
functioning” (or to simplify “failures”):

a- Fail message of a specific signal X : these

failures are considered failures even if they do
not correspond to an irremediable failure.

b- Exchange of a specific module Y in the dataset.
When a module is exchanged it is very likely
due to a failure even if not yet confirmed by the
repair department.

c- Modules sent to repair and repaired (only one
in the whole dataset).

2. Automatic abnormal behaviors analysis based on data

First achievement:

As modules are operated under multiple field conditions,
which lead to multiple behaviors along the time for a single
module, a first step was to identify “homogeneous” segments
along the time during which a module exhibits a stable
(stationary) behavior.
This step is done using an automatic joint segmentation
method.

Output 1: The automatic joint segmentation method allowed
to select 6 recorded variables (features with time-series)
which are informative for anomaly detection (during an
“abnormal functioning”, the behavior of the module through
the 6 selected variables seems different from the behavior
before and after an “abnormal functioning”).
>> This first output enables the end-user focusing on those
specific features for future data collection, reducing its
corresponding cost.

Second achievement:

The automatic segmentation, combined with classification,
enables to define the time frame before a “failure” which has
to be analyzed from the 6 parameters (for detecting a fail
message of type X for instance).

Output 2: On these particular experiments, the length of the
time frame was 85mn (median). This would strongly depend
on the “objects” under consideration as well as on the tuning
of environmental conditions.
>> This enables to focus the classification algorithm, in its
prediction mode, on a reduced period of time ensuring a
effective computation speed.

Third achievement:

After this first step, a clustering is applied on the segments
extracted from modules (excluding period of time during
abnormal behavior) to discover various types of “abnormal
behaviors” within the dataset.
Considering, the fact that the length of every segment is
different (and consequently non informative), the segments
are summarized by meta-descriptors (mean, variance, Fourier

coefficients,...) and the clustering is done from these features
(around 90 on this particular example).

Output 3: The total number of clusters (that can be
interpreted as the number of anomaly types) was estimated at
10 “abnormal behaviors”. Each cluster has an identity card
to ease the analysis.interpretability by end-user’s experts of
these modes of operation.

B. Number of detected unpredictable events

This KPI targets to measure how many events end-user’s
experts could not detect without data science for some
specific module’s use cases.

Objective: The goal was to find (a priori) unknown patterns
in weak signals before failure occurrences (for a specific
Function Y) which were unpredictable events for experts
until now. Automatically identifying those patterns as soon
as the signal starts to deviate gives rise to troubleshooting
procedures before any strong failure occurs and also enables
end-user’s experts to understand the reasons of such an
abnormal behavior.

Targeted result: We took 500 failures that were not used in
the learning process.

Obtained results: 375 abnormal events out of 500 have
been automatically detected.

Detail & explanation:
In order to detect unpredictable events we learn a
classification model based on random forests. It predicts the
label (normal or abnormal) of any new segment for any
given module.
The learning step has been made using 80% of end-user’s
dataset, while 20% has been kept aside for the performance
evaluation.

Output 1: 75% abnormal behaviors (Function Y) classified
accurately (375/500)

Output 2: Far more, the classification of “abnormal
behavior” is explained by meta-descriptors extracted from
each segment. These meta-descriptors can be considered as
symptomatic of “abnormal behavior”

Figures 8: Importance of specific descriptors explaining abnormal
behaviors

22e Congrès de Maîtrise des Risques et Sûreté de Fonctionnement λµ22 Le Havre 12-15 octobre 2020

Thanks to these performances, it is then possible to:

• identify at any time if one module has a normal
behavior

• identify any “abnormal behavior” for segments
from multiple modules during a fixed period of time

• analyze into more details the symptoms (as
described above) of any abnormal behavior.

Achievements:

• Helps the support services in their understanding of
the customer problems.

• Helps the design department for analyzing the
symptoms and possible causes of failures

C. Speed performance (% of Maximum Performance)

This KPI measures the speed performance of the method
(computing speed and …).
Goal: Determine the speed performance of the pipeline.

Targeted result: We expected 85% of real time analysis.
Obtained results: We were able to reach 100%

Detail & explanation:
2 metrics are used to quantify the speed performance of the
pipeline.

First achievement:

Speed necessary to identify if a given segment of one
particular module has a “normal” or “abnormal behavior”
(based on the preliminary learning-step): less than 1s.

Output: The method has consequently a run time lower
than the acquisition time of a new point which allows for
applying the classification rule on line.

Second achievement:

Speed necessary to identify, from a dataset of 24H-long &
100 modules, all the “abnormal behaviors” (based on the
learning-step previously done): 1mn30s.

The segmentation and classification steps from the
SYSBOOSTER pipeline have to be applied on the whole
dataset (48 measurements for each recorded feature on each
of the 100 modules). This explains the required time, which
is longer than for the previous achievement, but still smaller
than the acquisition time (every 30 minutes). Moreover in the
present context, this process does not need to be fully real-
time since its goal is only to help the offline detection and
analysis of abnormal behaviors made by the design
department.

D. Early detection of dysfunctions’ leading failures

This KPI targets to measure how long before the end-user’s
experts the SYSBOOSTER tool is able to detect a failure for
a specific module use-case.

Objective: Here, the objective is to detect a deviation (or
dysfunction) leading to a failure. Until now, the end-user’s
experts identify the failure during the maintenance process

or in the SAV department, that is to say, after the failure has
occurred.

Targeted result: We expected to detect 80% of the failure
before the end-user’s action during the maintenance process
or in the SAV department.

Obtained results: We were able to detect 75 % of these
failure occurrences.

Detail & explanation:
In order to detect dysfunctions leading to failures, we
learned a classification model based on random forests that
will be able to predict if the behavior of a module during a
period of time (segment) is normal or abnormal.

Output : 75% of abnormal behaviors (FunctionY)
detection before the Function Y failure itself.

VI. CONCLUSIONS

SYSBOOSTER has really been a very busy project where no
contributor has spared his efforts to come to a high-value
product in terms of methodology and final tools.
The end-user never stopped providing datasets almost until
the very end of the project. Eventhough at the beginning
there were difficulties to find datasets with failures, the end-
user finally succeeded in collecting data corresponding to
abnormal behaviors and failure cases.
INRIA and DIAGRAMS technologies carried out several
improvements on the methodology as well as the
development of possible supporting tools in the framework
of the SYSBOOSTER platform.

The added values of the SYSBOOSTER product were
numerous:

• Perform automatic anomaly detection. These
anomalies were discovered by means of
technologies involving AI.

• Disclose events otherwise usually not detected
(detectable)

• Characterize abnormal behavior classes derived
from telecommunication system operation data

• Compute and evaluate automatically most
significant parameters

• Understand complex correlations and indications
• Ease the analysis of events as a relief for technical

experts (engineers)
• Optimize data capture and reduce number of false

positives
Moreover we can identify additional benefits:

• Data analysis with SYSBOOSTER on one module
type also produces findings for other
items/components

• The versatile SYSBOOSTER platform has the
potential to handle a huge amount of data quickly.
This offers the potential to apply the analysis to
other very complex scenarios usually left unsolved.

• The SYSBOOSTER data analysis can lead to hints
(trainings) for customer and system field operation

22e Congrès de Maîtrise des Risques et Sûreté de Fonctionnement λµ22 Le Havre 12-15 octobre 2020

Therefore numerous may be the benefits in different
perspectives: consultancy has really to accompany the
SYSBOOSTER platform adaptation and methodological use
to really fit best operational need and context of the client.

ACKNOWLEDGMENT

SYSBOOSTER is part of an activity that has received
funding from the European Institute of Innovation and
Technology (EIT). This body of the European Union
receives support from the European Union's Horizon 2020
research and innovation program.

We would like to express all our acknowledgment to EIT
Digital which has financed and supported us during the
whole project, and which has helped us to specify our
technical and commercial approach.

REFERENCES
[1] “Model selection via cross-validation in density estimation,

regression, and change-points detection”, thèse Paris 11, Alain
Célisse, 2008.

[2] « Sélection de groupes de variables corrélées en grande dimension »
par Quentin Grimonprez, thèse Lille 1, 2016

[3] «Gaussian models and kernel methods », Jérémie Kellner, Lille 1,
2016.

This activity has received funding from the European Institute of
Innovation and Technology (EIT). This body of the European Union
receives support from the European Union's Horizon 2020 research

and innovation programme

