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Morphisms and minimisation of weighted automata

Sylvain Lombardy *

Jacques Sakarovitch †

Abstract. This paper studies the algorithms for the minimisation of weighted automata. It starts

with the definition of morphisms — which generalises and unifies the notion of bisimulation to the

whole class of weighted automata — and the unicity of a minimal quotient for every automaton,

obtained by partition refinement.

From a general scheme for the refinement of partitions, two strategies are considered for the

computation of the minimal quotient: the Domain Split and the Predecesor Class Split algorithms.

They correspond respectivly to the classical Moore and Hopcroft algorithms for the computation

of the minimal quotient of deterministic Boolean automata.

We show that these two strategies yield algorithms with the same quadratic complexity and we

study the cases when the second one can be improved in order to achieve a complexity similar to

the one of Hopcroft algorithm.

1. Introduction

The main goal of this paper is to report on the design and analysis of algorithms for the computation

of the minimal quotient of a weighted automaton.

The existence of a minimal deterministic finite automaton, canonically associated with every reg-

ular language is one of the basic and fundamental results in the theory of classical finite automata [1].

The problem of the computation of this minimal (deterministic) automaton has given rise to an ex-

tensive literature, due to the importance of the problem, both from a theoretical and practical point of

view. The chapter Minimisation of automata of the recently published Handbook of Automata The-

ory [2] is devoted to this question by Jean Berstel and his colleagues [3]. It provides a rich and detailed

account on the subject, together with an extensive list of references.

*LaBRI - UMR 5800 - Bordeaux INP - Bordeaux University - CNRS
†IRIF - CNRS/Paris University and Telecom Paris, IPP
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In contrast, the problem of minimisation of nondeterministic Boolean, or of weighted, automata is

much less documented. The chapter Algorithms for weighted automata in the Handbook of Weighted

Automata [4] deals only with the case of so-called deterministic weighted automata on which the

algorithms for deterministic Boolean automata can be generalised. The main reason is probably that

the problem of finding a (Boolean) automaton equivalent to a given automaton and with a minimal

number of states is untractable and known to be NP-hard and even PSPACE-complete [5]. Of course,

the case of weighted automata, with arbitrary weight semiring, is at least as difficult.

There is another way to look at the minimisation of deterministic Boolean automata. The result,

the minimal automaton, is obtained by merging states and in this way can be seen as the image of the

original automaton by a map that preserves the structure of the computations, a map it is natural to call

morphism. The other purpose of this paper, which indeed comes first, is then to set up the definition

of morphisms for arbitrary (finite) weighted automata, and in particular for nondeterministic Boolean

automata. The image of a morphism is a quotient and, as in the original case, an automaton has a

unique minimal quotient (Theorem 3.12). The difference with the original case is that the minimal

quotient is not canonically attached to the series or the language realised by the automaton but to the

automaton itself.

To tell the truth, this point of view is not completely new. For transition systems for instance, which

are automata without initial nor final states, it is common knowledge that the notion of bisimulation

allows to merge states in order to get a system in which the computations are preserved and the

coarsest bisimulation yields a minimal system. The notion of bisimulation has also been extended to

some classes of weighted automata, for instance probabilistic automata [6], or automata with weights

in a field or division ring [7]. It is also known that in all these cases the coarsest bisimulation is

computed by iterative refinements of set partitions.

We show here that the classical algorithms of partition refinement that are used for deterministic

Boolean automata (widely known as Moore and Hopcroft algorithms) may be analysed and abstracted

in such a way they readily extend to weighted automata in full generality, without any assumption on

the weight semiring nor on the automaton structure. This can be sketched as follows. In a partition re-

finement algorithm, and at a given step of the procedure, a partition P of the state set of an automaton,

and a class C of P are considered. There are then two possible strategies for determining a refinement

of P. In the first one, the class C itself is split, by considering the labels of the outgoing transitions

from the different states in C . This is an extension of the Moore algorithm and we call it the Domain

Split Algorithm. In the second strategy, the class C determines the splitting of classes that contain the

origins of the transitions incoming to the states in C . We call it the Predecessor Class Split Algorithm

and it can be seen as inspired by the Hopcroft algorithm.

Although the two strategies yield distinct orderings of the splitting of classes, the two algorithms

have many similarities that we describe in this paper. Not only do they have the same time complexity,

in O(nm), where n is the number of states of the automaton and m the number of its transitions, but

the criterium for distinguishing states — the splitting process — is based on the same state function

that we call signature. And in both cases, achieving the above mentioned complexity implies that

signatures are managed through the same efficient data structure that implements a weak sort.

Finally, our analysis allows to describe a condition — which we call simplifiable signatures —

under which the Predecessor Class Split Algorithm can be tuned in such a way it achieves a better

time in O(m log n), the Graal set up by Hopcroft algorithm for deterministic Boolean automata (in
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which m = αn, where α is the size of the alphabet).

In conclusion, our study of the minimisation algorithms, with the identification of the concept

of signature, allows to reverse the perspective. We have not transformed the known algorithms on

deterministic Boolean automata by equipping them with supplementary features that allow to treat

weighted automata, we have just expressed them in a way they can deal with all weighted automata

and they apply then to deterministic Boolean automata just as they do with any other, not even in a

simpler way.

The paper is organised as follows. In Section 2, we begin with the definitions and notation used

for weighted automata. We add the definition of a special class of automata, a kind of normalised

ones, which we call augmented automata and which will be useful for the writing of algorithms.

At Section 3, we give two equivalent definitions for morphisms of weighted automata and show the

existence of a unique minimal quotient.

In Section 4, we describe a general procedure for the partition refinement, the notion of signature,

and both the Domain Split and Predecessor Class Split Algorithms. In the next Section 5, we describe

the way to implement the weak sort, how it is used in the two algorithms, and we analyse their com-

plexity, whereas we explain in Section 6 under which conditions and how it is possible to improve the

complexity of the latter.

The algorithms and their efficient implementation described in this paper are accessible in the

AWALI plateform recently made available to the public [8]. Some experiments presented at Section 7

show that the algorithms behave with their theoretical complexity. These experiments were presented

at the CIAA conference in 2018 [9].

2. Weighted automata

In this paper, we deal with (finite) automata over a free monoid A∗ with weight in a semiring K, also

called K-automata. ‘Classical’ automata are the B-automata where B is the Boolean semiring.

Indeed, all what follows apply as well to automata over a monoid M which is not necessarily free,

for instance to transducers that are automata over the non free monoid A∗×B∗. This generalisation

holds as such automata are considered — as far as the constructions and results developped here are

concerned — as automata over a free monoid C∗, where C is the set of labels on the transitions

of the automaton. Let us note that there exists no theory of quotient that takes into account non

trivial relations between labels. The only construction on automata that does (without destroying

their structure) is the circulation of labels involved for instance in the synchronisation of transducers

(cf. [10, 11]) or as a preliminary for the minimisation of sequential transducers (cf. [10, 12]).

2.1. Definition and notation

We essentially follow the definitions and notation of [10]. The model of weighted automaton used in

this paper is more restricted though, for both theoretical and computational efficiency.

A K-automaton A over A∗ is a directed graph whose vertices are called states and whose edges,

called transitions, are labelled by a pair made of a letter in A and a weight in K, together with an
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initial function and a final function, both from the set of states to K. The states in the support of the

initial function are usually called initial states, those in the support of the final function, final states.

Figure 1 shows a Z-automaton A1 over {a, b}∗ with the usual graphical conventions.

p

q

r2

−b

−b

b

2b

a
2b

a

a

a

−a

Figure 1. The Z-automaton A1

Let A be a K-automaton with set of states Q; we say thatQ is the dimension of A and we denote A
by a triple A = 〈 I,E, T 〉 where I and T are vectors of dimension Q with entries in K that denote

the initial function and the final functions and E is the adjacency matrix of A, that is, a Q×Q-matrix

whose (p, q) entry is the sum of the weighted labels of the transitions from p to q. We also denote

by E the map E : Q×A×Q → K and E(p, a, q) is the weight of the (unique) transition that goes

from p to q and that is labelled by a, if it exists (otherwise its value is 0K).

Example 2.1.

A1 =

〈(
2 1 0

)
,



−a −b 2b

a −b a+ 2b

a a b


 ,



0

1

1




〉
and E1(q, b, r) = 2 .

The behaviour of a K-automaton A = 〈 I,E, T 〉 is the series realised by A and is denoted by A :

A = I ·E∗ ·T ,

where E∗ =
∑

n∈NE
n (the infinite sum does not bring any problem as our definition insures that the

entries of En are homogenous polynomials of degree n). Two automata are said to be equivalent if

their behaviours are equal. If K = B, A is the language accepted by A.

The future of a state p of A, denoted by FutA(p), is the series realised by A when p is taken as the

unique initial state, with initial value equal to 1K. It holds

FutA(p) = Ip ·E
∗ ·T , (1)

where Ip denotes the characteristic (row-) vector of p, that is, the entry of index p is the only non-zero

entry and is equal to 1K.
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2.2. The augmented automaton

The algorithms we describe and study in the following sections classify states of an automaton accord-

ing to (the labels of) the in- and out-going transitions and (the values of) the initial and final functions.

In order to express in the same way the conditions stated on the transitions on one hand and on the

initial and final functions on the other, and to compute uniformly with the former and the latter, it is

convenient to transform the automaton and to put them in a special form which we call augmented.

A K-automaton A = 〈 I,E, T 〉 of dimension Q overA∗ is transformed into its augmented version,

denoted by Ã, in two steps. First, the alphabet A is supplemented with a new letter $, which will be

used as a left and right marker. We write A$ for A$ = A ∪ {$} , the augmented alphabet. Second,

A is somehow normalised by the adjunction of two new states i and t to Q and of transitions that

go from i to every initial state p with label $ and with weight Ip and transitions that go from every

final state q to t with label $ and with weight Tq. As it will be useful to make its state set explicit, we

denote Ã by Ã =
(
Q, i, Ẽ, t

)
where Ẽ contains the complete description of Ã, as seen in (2).

A = 〈 I,E, T 〉 and Ã =
(
Q, i, Ẽ, t

)
with Ẽ =




0 I$ 0

0 E T $

0 0 0


 . (2)

Finally, the only initial state of Ã is i, with weight 1K, and its only final state is t, also with weight 1K.

If w is in A∗, there is a 1-1 correspondence between the successful computations with label w in A
and the computations with label $w $ in Ã, hence they are given the same weight by the two automata.

Hence, Ã = $ A $ .

Example 2.2. (continued)

The adjacency matrix Ẽ1 of the Z-automaton Ã1 is shown on Figure 2. There is no column i nor row t
in the table for there is no transitions incoming to i nor transitions outgoing from t.

p q r t

i 2$ $ 0 0

p −a −b 2b 0

q a −b a+ 2b $

r a a b $

Figure 2. Ẽ1, the adjacency matrix of Ã1

3. Morphisms of weighted automata and minimal quotients

The notion of morphism for deterministic Boolean automata does not raise difficulties and makes

consensus. In contrast, the one of morphism for arbitrary Boolean automata and even more for (ar-
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bitrary) weighted automata is far more problematic. In most cases, the concept is given other names,

most often simulation or bisimulation, when not more complicated such as weak bisimulation or pure

epimorphism, and definitions that may depend on the case considered and hide their generality.

3.1. Amalgamation matrices and morphisms

We start with the definition of morphisms — of Out-morphisms indeed as we shall see — by means

of the notion of conjugacy of automata, as we already did in [10] or [13] and which is the most

concise one. We then translate it into a more explicit definition via equivalence that is more suited for

computations.

Definition 3.1. Let A = 〈 I,E, T 〉 and B = 〈 J, F, U 〉 be two K-automata, of dimension Q and R
respectively. We say that A is conjugate to B by X if there exists a Q×R-matrix X with entries in K

such that

I ·X = J , E ·X = X ·F , and T = X ·U . (3)

The matrix X is the transfer matrix of the conjugacy and we write A
X
=⇒ B .

If A is conjugate to B, then, for every n, the sequence of equalities holds:

I ·En ·T = I ·En ·X ·U = I ·En−1 ·X ·F ·U = . . . = I ·X ·Fn ·U = J ·Fn ·U ,

from which I ·E∗ ·T = J ·F ∗ ·U directly follows. And this is stated as the following.

Proposition 3.2. If A is conjugate to B , then A and B are equivalent. ⊓⊔

The conjugacy relation is not an equivalence relation as it is reflexive and transitive but not sym-

metric.

A surjective map ϕ : Q → R is completely described by the Q×R-matrix Xϕ whose (q, r)-th
entry is 1 if ϕ(q) = r, and 0 otherwise. Since ϕ is a map, every row of Xϕ contains exactly one 1
and since ϕ is surjective, every column of Xϕ contains at least one 1. Such a matrix is called an

amalgamation matrix in the setting of symbolic dynamics ([14]). By convention, if we deal with K-

automata, an amalgamation matrix is silently assumed to be a K-matrix, that is, the null entries are

equal to 0K and the non-zero entries to 1K.

Definition 3.3. Let A = 〈 I,E, T 〉 and B = 〈 J, F, U 〉 be two K-automata of dimension Q and R
respectively. A surjective map ϕ : Q → R is a morphism (from A onto B) if A is conjugate to B

by Xϕ: A
Xϕ

=⇒ B , that is,

I ·Xϕ = J , E ·Xϕ = Xϕ ·F , and T = Xϕ ·U , (4)

and we write ϕ : A → B .

We also say that B is a quotient of A, if there exists a morphism ϕ : A → B .
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It is straightforward that the composition of two morphisms is a morphism. And by Proposi-

tion 3.2, any quotient of A is equivalent to A.

Definition 3.3 may be given a form which will probably be more eloquent to many than a mere

matrix equation, and which makes clear that the automaton B, and its state set R, are immaterial and

that the conditions are upon A and the map equivalence of ϕ only. Above all, it will be the one used

in the design of the algorithms to come. We describe it in the next subsection.

3.2. Morphisms and congruences

We start with some definitions and notation to deal with equivalences. An equivalence on a set Q is a

partition of Q, that is, a set of non-empty disjoint subsets of Q, called classes, whose union is equal

to Q. If P is an equivalence on Q, we denote by P both the set of classes in the partition as well as

the relation on Q determined by the partition, that is, for every pair (p, q) of elements of Q, p P q if

and only p and q belong to a same class C of P.

Equivalences and surjective maps are indeed the same objects, seen from a slightly different per-

spective. An equivalence P onQ determines the surjective map that sends every q inQ onto its class C
modulo P and conversely every surjective map ϕ determines the map equivalence. In both cases, they

are represented by amalgation matrices.

Let us introduce a last definition. Let P be an equivalence on Q and XP its amalgamation matrix.

From XP we construct a selection matrix YP by transposing XP and by zeroing some of its non-

zero entries in such a way that YP is row-monomial, with exactly one 1 per row. A matrix YP is not

uniquely determined by P but also depends on the choice of the entry which is kept equal to 1, that is,

of a ‘representative’ in each class of P.

Definition 3.4. Let A be an automaton of dimension Q. We call congruence on Q the map equiva-

lence of a morphism ϕ from A onto an automaton B.

Proposition 3.5. Let A = 〈 I,E, T 〉 be a K-automaton over A∗ of dimension Q. An equivalence P
on Q is a congruence if and only if the following holds:

∀p, q ∈ Q p P q =⇒ ∀a ∈ A , ∀C ∈ P
∑

r∈C
E(p, a, r) =

∑

r∈C
E(q, a, r) , (5)

∀p, q ∈ Q p P q =⇒ Tp = Tq . (6)

Proof:

The condition is necessary. Let B = 〈 J, F, U 〉 be a quotient of A, ϕ : A → B a morphism, and P
its map equivalence. The multiplication of E on the right by Xϕ amounts to add together the columns

of E whose indices are sent to a same element by ϕ, that is, indices which are in a same class of P.

The entries of the Q×P-matrix G = E ·Xϕ are:

∀p ∈ Q , ∀C ∈ P Gp,C =
∑

r∈C
Ep,r . (7)
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Every Gp,C is a linear combination of letters of A: Gp,C =
∑

a∈AG(p, a, C)a and (7) may be

rewritten as

∀p ∈ Q , ∀C ∈ P , ∀a ∈ A G(p, a, C) =
∑

r∈C
E(p, a, r) . (8)

On the other hand, the multiplication of F , on the left, by Xϕ yields a matrix whose rows with

indices in the same class modulo P are equal. Hence the equality E ·Xϕ = Xϕ ·F implies (5). For

the same reason, T = Xϕ ·U implies (6).

The condition is sufficient. Let P be an equivalence on Q such that (5) and (6) hold, XP its amalga-

mation matrix, and YP a selection matrix.

The entries of T are indexed by Q, and YP ·T is a (column-) vector of dimension P obtained by

picking one entry of T in each class C modulo P. The vector XP·(YP·T ), of dimension Q, is obtained

by replicating, for every C in P, the entry of YP ·T indexed by C for each p of Q in C . Since (6)

expresses that all entries of T indexed by states in a same class are equal, T = XP ·(YP ·T ) holds.

In the same way, the rows (of dimension P) of E·XP are indexed by Q, and YP ·E·XP is a P×P-

matrix obtained by picking one row of E·XP in each class C modulo P. The matrix XP ·(YP ·E·XP),
of dimension Q×P, is obtained by replicating, for every C in P, the row of YP ·E ·XP indexed by C
for each p of Q in C . Since (5) expresses that all rows of E ·XP indexed by states in a same class are

equal, E ·XP = XP ·(YP ·E ·XP) holds.

Equations (5) and (6) express then that A is conjugate by XP to the automaton

〈 I ·XP , YP ·E ·XP , YP ·T 〉 ,

hence the map ϕ : Q→ P is a morphism and P, its map equivalence, is a congruence. ⊓⊔

Remark 3.6. As mentioned in the introduction, morphisms have a close relationship with bisimula-

tions. One can even say it is the same notion expressed differently, for those weighted automata for

which bisimulations have been defined: bisimulations for transition systems which are Boolean au-

tomata without initial and final states [15, 16], for probabilistic systems [17, 6], linear bisimulations

when the weight semiring is a field [7], etc. and when it is freed from so-called internal actions.

Indeed an equivalence relationon the state set of an automaton A is a bisimulation relation if and

only if it is a congruence. And a state of A is in bisimulation with its image in any quotient of A.

Example 3.7. (continued)

Let A1 = 〈 I1, E1, T1 〉 of dimension Q1 = {p, q, r}:

A1 =

〈(
2 1 0

)
,



−a −b 2b

a −b a+ 2b

a a b


 ,



0

1

1




〉
.

It is easily seen that if we add the columns q and r of E1 we get a matrix whose rows q and r are

equal; moreover T1q = T1r. Hence {{p}, {q, r}} is a congruence of Q1.
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Since it is characteristic, we could have taken just as well the statement of Proposition 3.5 as the

definition of a congruence or a morphism. And all the more in this paper where it is the property which

is uniformly called. But in view of further references to this paper, we prefer to put Definition 3.3 in

front, for its mathematical efficiency (e.g. [18]).

3.3. Further properties of morphisms and congruences

Proposition 3.8. Let A = 〈 I,E, T 〉 be a K-automaton overA∗ of dimension Q and P a congruence

on Q. If two states p and q are equivalent modulo P, then FutA(p) = FutA(q) .

Proof:

With the notation of Section 2, FutA(p) = Ip ·E
∗ ·T and with the same computation as above,

FutA(p) = Ip ·XP ·F ∗ ·U . Accordingly, FutA(q) = Iq ·XP ·F ∗ ·U . And if p and q are equivalent

modulo P, then Ip ·XP = Iq ·XP . ⊓⊔

Remark 3.9. Definition 3.3 gives a notion of morphism that is directed as the one of conjugacy is: E
is multiplied on the right byX in (3). This is even more obvious with the statements of Proposition 3.5

or of Proposition 3.8.

Thus morphisms could, or should, be called Out-morphisms as it refers to out-going transitions.

The same map ϕ would be an In-morphism if B is conjugate to A by Xt

ϕ (the transpose of Xϕ).

In this work, we deal with Out-morphisms only, which we simply call morphisms. All statements

can be dualised and transformed accordingly for In-morphisms.

Remark 3.10. The case of Boolean automata. Let A = 〈 I,E, T 〉 and B = 〈 J, F, U 〉 be two

Boolean automata over A∗ of dimension Q and R respectively and ϕ : Q → R a morphism from A
to B. In this special case, no weight is really involved: a transition exists or not, a state is initial or not,

final or not. Moreover, I and J can also be seen as subsets of Q, J and U as subsets of R, E can also

be seen as a subset of Q×A×Q, F as a subset of R×A×R. Definition 3.3 can then be rewritten in

the following way: I ·Xϕ = J and T = Xϕ ·U translate into

(i) ϕ(I) = J and (ii) T = ϕ−1(U) ,

whereas E ·Xϕ = Xϕ ·F yields

(iii) ∀a ∈ A , ∀p, q ∈ Q (p, a, q) ∈ E =⇒ (ϕ(p), a, ϕ(q)) ∈ F and

(iv) ∀a ∈ A , ∀p ∈ Q , ∀s ∈ R (ϕ(p), a, s) ∈ F =⇒ ∃q ∈ ϕ−1(s) (p, a, q) ∈ E .

Compared with previous terminology, morphisms of Boolean automata as we have just defined

them are what we have called locally surjective Out-morphisms in [10] and subsequent works. In the

case of deterministic Boolean automata, our definition coincide with the classical notion of morphisms

of automata, when it is used.



10 S. Lombardy, J. Sakarovitch / Morphisms and minimisation of weighted automata

Remark 3.11. The case of augmented automata. If ϕ : A → B is a morphism, then ϕ̃ : Ã → B̃

is also a morphism, where Ã =
(
Q, i, Ẽ, t

)
, B̃ =

(
R, j, F̃ , u

)
, and ϕ̃(i) = j, ϕ̃(t) = u, and

ϕ̃(q) = ϕ(q) for all q in Q. This amounts to say that Xϕ̃ has the form

Xϕ̃ =




1 0 0

0 Xϕ 0

0 0 1


 , (9)

a matrix which we rather denote by X̃ϕ.

Conversely, if Ã =
(
Q, i, Ẽ, t

)
is the augmented automaton of A = 〈 I,E, T 〉, the amalgama-

tion matrix of any morphism of Ã is of the form (9) and corresponds to a morphism of A. In particular,

if A = (Q, i,E, t ) is an augmented K-automaton, an equivalence P on Q is a congruence on A if

and only if

{i} ∈ P , {t} ∈ P , and (10)

∀p, q p P q =⇒ ∀a ∈ A$ , ∀C ∈ P
∑

r∈C
E(p, a, r) =

∑

r∈C
E(q, a, r) . (11)

The virtue of adding the marker $ and considering augmented rather than arbitrary automata is

that the sole equation (11) expresses conditions described by both equations (5) and (6). And it is the

way that the property of being a congruence will be tested by the algorithms described in the sequel.

3.4. Minimal quotients

With Definition 3.3, we have defined the quotients of a K-automaton A. The following proposition

states that every K-automaton has a minimal quotient.

Theorem 3.12. Among all quotients of a K-automaton A, there exists one, unique up to isomorphism,

which has a minimal number of states and which is a quotient of every quotient of A.

Once again, it is convenient to express this property in terms of congruences, which focuses on

the automaton itself rather than on its images. It starts with the definition of an order on equivalences,

or partitions, on a set Q.

An equivalence R is coarser than an equivalence P if, for every C in P, there exists D in R such

that C is a subset of D. It follows that every class of R is the union of classes of P. The equivalences

on a set Q, ordered by this inclusion relation, form a lattice, with the identity — where every class is

a singleton — at the top and the universal relation — with only one class that contains all elements

of Q — at the bottom. The following is then a statement equivalent to Theorem 3.12.

Theorem 3.13. Every K-automaton has a unique coarsest congruence.



S. Lombardy, J. Sakarovitch / Morphisms and minimisation of weighted automata 11

Indeed, the equivalence map of the morphism onto the minimal quotient is the coarsest congruence

and the coarsest congruence is the equivalence map of the morphism onto the minimal quotient.

Remark 3.14. It is important to stress once again that the minimal quotient of A is associated with A,

and not with the series realised by A. It is not necessarily the smallest (in terms of number of states)

K-automaton that realises the series, it is not a canonical automaton associated with it.

For instance, the minimal quotient of a Boolean automaton is not necessary the smallest automa-

ton for the accepted language. On the other hand, the minimal quotient of a deterministic Boolean

automaton is the minimal (deterministic) automaton of the accepted language (which may well be

larger than another Boolean automaton accepting the same language) that is, the notion we have de-

fined for all (possibly weighted) automata coincides with the classical one in the case of deterministic

Boolean automata.

Proof:

[Proof of Theorem 3.12]

Let A = 〈 I,E, T 〉 be a K-automaton of dimension Q. The proof of the existence of a coarsest

congruence on A goes downward, so to speak, that is, we start from the identity on Q which is a

congruence. Let ϕ : Q → R and ψ : Q → P be two morphisms. In order to prove the existence of

a minimal quotient (or of a coarsest congruence) it suffices to verify that the lower bound of the map

equivalences of ϕ and ψ is a congruence. Let ϕ′ : R → S and ψ′ : P → S such that ω = ϕ ∨ ψ =
ϕ′

◦ ϕ = ψ′
◦ ψ . Hence

E ·Xω = E ·Xϕ ·Xϕ′ = E ·Xψ ·Xψ′ . (12)

By definition, two states p and r of Q are equivalent modulo ω, which we write pω r , if and

only if there exists a sequence p = q0, q1, . . . , q2n = r of states of Q such that q2i ϕq2i+1 and

q2i+ ψ q2i+2 for 0 6 i 6 n − 1 . Rows of indices q2i and q2i+1 of E ·Xϕ, and then of E ·Xϕ ·Xϕ′ ,

are equal, rows of indices q2i+1 and q2i+2 of E ·Xψ , and then of E ·Xψ ·Xψ′ , are equal, hence rows of

indices p and r of E ·Xω are equal. For the same reason, Tp = Tr and ω is a congruence. ⊓⊔

Remark 3.15. In the case of Boolean automata also, the characterisation of bisimulation follows from

Remark 3.6.

Proposition 3.16. TwoK-automata are bisimilar if and only if their minimal quotients are isomorphic.

⊓⊔

The minimal quotient not only exists but is also effectively, and efficiently computable, as we see

in the next sections.

4. The computation of the minimal quotient

To describe the algorithms computing the minimal quotient of a weighted automaton, it is convenient

to consider the augmented automaton. From now on, every automaton is therefore augmented, the

alphabet is A$, and the states which are different from the initial or final states are called true states.
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4.1. Refinement algorithms and signatures

The principle of algorithms which are studied in this paper is partition refinement. The algorithms start

with the coarsest equivalence (where all true states are gathered in one class), and split classes which

are inconsistent with the constraints of a congruence. In order to split classes, we use a criterion

on states of A, which we call signature, and which, given a partition, tells if two states in a same

class should be separated in a congruence of A. This notion of signatures has been used in [19] for the

minimisation of incomplete deterministic Boolean automata, the ‘first’ example for which the classical

minimisation algorithms for complete deterministic Boolean automata have to be adapted.

The signature is first defined with respect to a class.

Definition 4.1. The signature of a state p of a K-automaton A = 〈Q, i,E, t 〉 with respect to a sub-

set D of Q is the map sig [p,D] from A$ to K, defined by:

sig [p,D](a) =
∑

q∈D
E(p, a, q) .

For every state p and every subset D, the domain of sig [p,D] is the set of labels of transitions

from p to some state of D. In particular, if a letter a does not belong to the domain of sig [p,D],
then sig [p,D](a) = 0. When we want to explicitly describe sig [p,D], we write it as a set of elements

of the form a 7→ k, where a is in the domain of sig [p,D] and sig [p,D](a) = k.

Two states p and q cannot be equivalent with respect to some congruence P ofQ if their signatures

differ for some class D of Q. In order to compare states, it can be useful to consider the global

signature which is the aggregation of signatures with respect to all classes of the partition. That is, for

a given partition P and for every state p,

GSig[p] = {(D, a) 7→ k | D class of P, a 7→ k ∈ sig [p,D]} .

4.2. The Protoalgorithm

The computation of the coarsest congruence of an automaton A = 〈Q, i,E, t 〉 goes upward. It

starts with P0 =
{
{i}, Q, {t}

}
, the coarsest possible equivalence. Every step of the algorithm splits

some classes of the current partition, yielding an equivalence which is thiner, higher in the lattice of

equivalences of Q ∪ {i, t}.

It follows from Proposition 3.5 that a partition P is a congruence if and only if

∀C ∈ P , ∀p, q ∈ C , GSig[p] = GSig[q] .

Thus P is a congruence if and only if, for every pair (C,D) of classes of P, all states p in C have

the same signature with respect to D. A pair (C,D) for which this property is not satisfied is called a

splitting pair. The equivalence on C induced by the signature with respect to D, called the split of C
by D and denoted by split[C,D], can be computed:

∀p, q ∈ C split[C,D](p) = split[C,D](q) ⇐⇒ sig [p,D] = sig [q,D] .

The split of class C by class D of P leads to a new equivalence on Q: P ∧ split[C,D], and the

protoalgorithm runs as follows:
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P := P0

while there exists a splitting pair (C,D) in P
P := P ∧ split[C,D]

When there are no more splitting pairs, the current equivalence is a congruence.

Proposition 4.2. At every iteration of the protoalgorithm, the equivalence P is coarser than or equal

to the coarsest congruence.

Proof:

In the initial partition P0, all true states are in the same class, thus P0 is coarser than or equal to any

congruence.

Let P be a partition computed at one iteration; we assume that P is coarser than or equal to

the coarsest congruence C, and we consider P ′ computed at the next iteration. There exists a splitting

pair (C,D), such that P ′ = P∧split[C,D]. If P ′ is not coarser than or equal to C, then there exists C1

and C2 in split[C,D], p1 in C1 and p2 in C2 which belongs to the same class in C. Since P is coarser

than or equal to C, D is the union of some classes (Di) in C; p1 and p2 are C-equivalent, hence, for

every i,

sig [p1,Di] = sig [p2,Di] . (13)

Therefore, sig [p1,D] = sig [p2,D], which is in contradiction with the fact that p1 and p2 are in

different classes after the split of C with respect to D. Thus P ′ is coarser than or equal to C and, by

induction, the proposition holds. ⊓⊔

Corollary 4.3. At the end of the protoalgorithm, the equivalence P is equal to the coarsest congru-

ence. ⊓⊔

The procedure described by the protoalgorithm is not a true algorithm, in the sense that, in par-

ticular, it does not tell how to find a splitting pair, nor how to implement the function split to make it

efficient. The main difference between the two algorithms described in the sequel is the selection of

the splitting pairs.

• the first algorithm iterates over classes C and considers in the same iteration all the pairs (C,D)
where D is any class which contains some successors of states of C . This leads to split C in

classes which are consistent with every class D. We call it the Domain Split Algorithm (DSA

for short).

• the second algorithm iterates over classesD and considers in the same iteration all the pairs (C,D)
where C is any class which contains some predecessors of states of D. This leads to split sev-

eral classes in such a way that all classes become consistent with the class D. We call it the

Predecessor Class Split Algorithm (PCSA for short)
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4.3. The Domain Split Algorithm

The Domain Split Algorithm is an extension of the classical Moore algorithm [20] for the minimisa-

tion of deterministic Boolean automata. At each iteration of this algorithm, a class C is processed.

The global signature of every state of C with respect to the current partition is computed, and C is

split accordingly. Compared to the protoalgorithm, the Domain Split Algorithm amounts therefore to

consider at the same time all the pairs (C,D), where C is the current class, and D is any class of the

current partition (actually, only classes which contain some successors of states of C are considered).

Notice that it is mandatory to recompute signatures at each iteration, since they depend on the partition

which is changing.

At the beginning of each iteration, the current class C is extracted from a queue. At the beginning

of the algorithm, the partition P0 is {{i}, Q, {t}}, and Q is inserted in the queue. At the end of each

iteration, the classes obtained from the split of C — or C itself if it has not been split — are inserted

into the queue, except the singletons that cannot be split.

To insure termination, iterations are gathered to form rounds. A round ends when all classes

that were inside the queue at the beginning of the round have been extracted. Hence the number of

iterations in a round is equal to the number of classes which are in the queue at the beginning of the

round. Notice that, for every state p, there is at most one class containing p that is processed during a

round. If there is no split during a round, the algorithm has checked that the partition is a congruence

and halts.

Otherwise, the partition is strictly refined and the number of classes strictly increases. At the

beginning of the algorithm, there are three classes, and the maximal number of classes is n+2, where

n is the number of true states of the automaton. Hence, including the last round, there are at most n
rounds, and, for every state, at most n global signatures are computed.

Example 4.4. (continued)

On the automaton A1, the partition P0 is initialised with D1 = {i}, D2 = {p, q, r}, D3 = {t}.

Class D2 is put into the queue (the other classes are singletons and cannot be split). For every state

of D2 and for every class D, one can compute the signature of this state with respect to D. For

instance, the signature of p with respect to D2 is

sig [p,D2](a) = E(p, a, p) + E(p, a, q) + E(p, a, r) = −1 + 0 + 0 = −1 ,

sig [p,D2](b) = E(p, b, p) + E(p, b, q) + E(p, b, r) = 0 +−1 + 2 = 1 .

From the signature with respect to each class, the global signature of the state can be computed.

The global signature (with respect to P0) of states in D2 is:

GSig[p] = {(D2, a) 7→ −1, (D2, b) 7→ 1} ,

GSig[q] = {(D2, a) 7→ 2, (D2, b) 7→ 1, (D3, $) 7→ 1} ,

GSig[r] = {(D2, a) 7→ 2, (D2, b) 7→ 1, (D3, $) 7→ 1} .

States q and r share the same global signature which is different from the global signature of p.

The class D2 is then split into two classes D21 = {p} and D22 = {q, r} and the new partition is
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P1 = {{i}, {t}, {p}, {q, r}}. The new round starts and the class D22 is put in the queue. The global

signature of states (with respect to P1) in D22 is:

GSig[q] = {(D21, a) 7→ 1, (D22, a) 7→ 1, (D22, b) 7→ 1, (D3, $) 7→ 1}

GSig[r] = {(D21, a) 7→ 1, (D22, a) 7→ 1, (D22, b) 7→ 1, (D3, $) 7→ 1}

Both states have the same global signature, thus the class is not split. The round ends without any

splitting, hence the current partition P1 is a congruence.

4.4. Predecessor Class Split Algorithm

The Predecessor Class Split Algorithm is inspired by the Hopcroft algorithm for the minimisation of

deterministic Boolean automata. At each iteration of this algorithm, a class D is processed. For every

state p which is a predecessor of some states of D, the signature of p with respect to D is computed,

and C is split accordingly. Compared to the protoalgorithm, PCSA amounts therefore to consider at

the same time all the pairs (C,D), where D is the current class, and C is any class of the current

partition (actually, only classes which contain some predecessors of states of D are considered).

Like the DSA, the PCSA uses a queue to schedule the process of classes. At the beginning of

the algorithm, every class of P0 is put into the queue, except {i} since there is no predecessor of i.
If a class C is split, every new class is put in the queue; if C was in the queue, it is replaced by its

subclasses. The algorithm halts when the queue is empty. Actually, when the partition is a congruence,

every class extracted from the queue does not induce any splitting, hence there is no more insertion of

classes.

Apart from the initialisation of the queue, every class which is inserted in the queue comes from

a split. Hence, for every state p, the number of times that a class containing p is extracted from the

queue is at most equal to n, where n is the number of true states of the automaton. Notice that there is

no notion of rounds in the PCSA.

Example 4.5. (continued)

On the automaton A1, the equivalence is initialised with D1 = {i}, D2 = {p, q, r}, D3 = {t}.

Classes D2 and D3 are put in the queue (i has no predecessor, thus D1 can not split any class).

Assume that D2 is considered first. The signatures of predecessors of states in D2 are:

sig [i,D2] ={$ 7→ 3} , sig [p,D2] ={a 7→ −1, b 7→ 1} ,

sig [q,D2] ={a 7→ 2, b 7→ 1} , sig [r,D2] ={a 7→ 2, b 7→ 1} .

All states in the class D1 = {i} have the same signature (D1 is a singleton!). In the class D2, every

state is met, but p has a signature which is different from the signature common to q and r. Hence D2

is split into two classes D21 = {p} and D22 = {q, r} which are inserted in the queue.

The next class which is extracted from the queue isD3, and the signatures of predecessors of states

in D3 are:

sig [q,D3] ={$ 7→ 1} , sig [r,D3] ={$ 7→ 1} .
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Both states have the same signature and there is no other state in D22, thus there is no split.

The class processed in the next iteration is D21, and the signatures of predecessors of states in D21

are:

sig [i,D21] ={$ 7→ 2} , sig [p,D21] ={a 7→ −1} ,

sig [q,D21] ={a 7→ 1} , sig [r,D21] ={a 7→ 1} .

States i and p are already in classes which are singletons; states q and r have the same signature and

there is no other state in D22, thus there is no split.

The next processed class is D22, and the signatures of predecessors of states in D22 are:

sig [i,D22] ={$ 7→ 1} , sig [p,D22] ={b 7→ 1} ,

sig [q,D22] ={a 7→ 1, b 7→ 1} , sig [r,D22] ={a 7→ 1, b 7→ 1} .

States i and p are already in classes which are singletons; states q and r have the same signature and

there is no other state in D22, thus there is no split.

The queue is empty; the algorithm halts and the current partition is a congruence.

5. Complexity of the refinement algorithms

The high-level description of the DSA and PCSA have shown that every state is processed at most n
times, where n is the number of true states. Processing a state consists in running over its outgoing

transitions (for DSA) or its incoming transitions (for PCSA) to compute signatures. Globally, every

transition of the automaton is thus considered at most n times.

To be efficient, the time to compute the signatures must be linear in the number of transitions

involved in the computation. The key point in the algorithms is the ability to compute signatures in

such a way that the signatures of two states can be compared in linear time. Usually, to compare two

lists efficiently, a preliminary step consists in sorting them. To reach the linear complexity, a true sort

is not affordable. Hence, we present here a weak sort [21] which allows to compare signatures in

linear time.

5.1. The weak sort

Let f be an evaluation function from a set X to a set Y . In our framework, the evaluation function

is the signature. If Y is totally ordered, sorting a list of elements of X with respect to f consists in

computing a permutation of the list such that the elements of the list are ordered with respect to the

evaluation f . If such a list is sorted, the elements with the same evaluation are contiguous and it is

then easy to gather them. Following the ideas given in [21], it is not necessary to fully sort the list, and

we say that a list of elements of X is weakly sorted (with respect to f ) if the elements with the same

evaluation by f are contiguous. It is then easy to compute the map equivalence of f .

Both DSA and PCSA are based on a weak sort with respect to signatures. Since signatures are

themselves lists, nested weak sorts are necessary to gather states with the same signatures such that

equal signatures are represented by the same lists.
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In a first step, and for every state p, transitions outgoing from p with the same label and with

destinations in the same class must be gathered.

Moreover, for two states with the same signature, the list of pairs (label 7→ weight) that form the

signature must appear in the same ordering, in such a way the equality test is insured to be efficient.

In a second step, the weak sort is used to gather states with the same signature and to form the new

classes.

A bucket sort algorithm [22] realises a weak sort with linear complexity in the size of X. Assume

first that arrays indexed by Y can be managed. Let T be such an array where elements are lists of

values in X. The algorithm iterates over X and stores every x in X in the list T [f(x)]. Finally, by

iterating over T , all the lists are concatenated in order to compute a weakly sorted list.

This naive description hides two issues. First, Y may be large, and the initialisation of every

element of T to the empty list is linear in Y , which can be much larger than X. The second issue

is related to the first one, there may be a few y in Y which are images of some x by f , and it is too

expensive to iterate over all elements of Y to concatenate the lists.

The hash maps are a solution to the first issue (see [23, 22] for instance). They allow to avoid the

blowing up of memory in the case where Y is huge. As the amortised access time is constant, it allows

to implement the weak sort in linear time. To solve the second issue, the keys of the hash map can be

linked in order to efficiently iterate over the elements of f(X) (the data structure is then equivalent to

the linked hash maps implemented for instance in Java [24]).

5.2. Application to the Domain Split Algorithm

The computation of the global signature GSig[p] of the states of the current class C requires two steps.

First, an array indexed by A$ × P stores lists of pairs in Q × K. For every state p in C , and for

every transition p
a|k
−→ q, the pair (p, k) is inserted in a list meet[a,D], where D is the class of q. This

insertion is special in the case where meet[a,D] is not empty and its last element is a pair (p′, k′) with

p′ = p: k′ is then updated to k′+k; if k′+k is zero, the pair is removed from the list. The second step

builds the global signature itself. For every useful index (a,D), for every (p, k) in meet[a,D], inserts

(a,D) 7→ k into GSig[p].

We see that the elements in GSig[p] follow an ordering which is consistent with the ordering of

iteration on meet. Two states with the same global signatures have therefore the same list.

5.3. Application to the Predecessor Class Split Algorithm

For PCSA, the computation of the signature is slightly easier. The first array is only indexed by A$.

For each q in D, for every transition p
a|k
−→ q, (p, k) is inserted in a list meet[a]. Then, for every key a

of meet, for every (p, k) in meet[a], a 7→ k is inserted in sig [p,D] with the same special insertion

used in DSA. Notice that this special insertion occurs here in the second step whereas it is used in the

first step in DSA.
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5.4. Splitting of classes

In DSA the current class is split, the signature of every state of the class is considered, and it is not

difficult to split the class in linear time with respect to its size.

In PCSA the current class D is the splitter; it may induce the splitting of several classes, and all

the operations must be performed in a time which is linear with respect to the number of transitions

incoming to states of D. In particular, the splitting of a class must be performed in a time which

is linear with the number of the states which are predecessors of a state of D — that may be much

smaller than the size of the class.

To this end, it is required that the deletion of any element of a class can be performed in constant

time. Thus classes are implemented by double linked lists, and an array indexed by states gives, for

each state, a pointer to the location of the state in its class.

5.5. Analysis of both algorithms

In DSA, as seen in Section 4.3, every state may be considered n times, where n is the number of

states. The computation of the global signature of a state requires a number of operations which is

linear with the number of transitions outgoing from this state. Every iteration requires a time which

is linear with the number of transitions outgoing from the current class. Finally, the time complexity

of DSA is in O(n(m+ n)), where n is the number of states and m is the number of transitions of the

automaton, provided that each operation and the computation of a hash for the weights is in constant

time.

In PCSA, every state may be considered n times. The computation of the signatures during an

iteration is linear with the number of transitions incoming to the current class. Finally, the time

complexity of PCSA is in O(n(m+ n)), under the same conditions as above.

Theorem 5.1. The Domain Split Algorithm and the Predecessor Class Split Algorithm compute the

minimal quotient of a K-automaton with n states and m transitions in time O(n(m+ n)).

In the case of a deterministic Boolean automaton, where m = αn , with α = |A|, we get back

to the classical O
(
αn2

)
complexity of the Moore minimisation algorithm (cf. [1, 3] for instance). It

may seem strange that PCSA which has been said to be inspired by Hopcroft’s algorithm has the same

complexity. This is explained in the next section.

6. Conditions for an O(m logn) algorithm

Hopcroft’s algorithm can be seen as an improvement of PCSA for complete Boolean deterministic

automata. Its time complexity is O(αn log n) (cf. for instance [25, 26]), where α is the size of the

alphabet; this algorithm has been extended to incomplete DFA [19, 27] with complexity O(m log n).

The strategy: “All but the largest”, introduced in [28], can be applied to improve PCSA in some

cases that we now study.
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At every step of PCSA, some classes C are evaluated (through signatures) with respect to the cur-

rent splitter D. If the class D is split into several classes, D1, . . . ,Dk , all these classes are processed

as splitters in further iterations.

The idea of the “All but the largest” strategy is that it is useless to process the last of the subclasses

of D because after the splits induced by D itself and the splits induced by all the other subclasses, this

subclass does not induce any new split. If this is true, one can choose which subclass is not processed;

in order to get a better complexity, the strategy commands to choose the larger one.

6.1. Simplifiable signatures

A sufficient condition to apply this strategy is that the signatures with respect to the last subclass can be

deduced from the signatures with respect to D and the signatures with respect to the other subclasses.

The signatures are equipped with the pointwise addition: for every a in A$,

∀a ∈ A$

(
sig [p,D] + sig [p,D′]

)
(a) = sig [p,D](a) + sig [p,D′](a) ,

and if D is a subset of Q and ψ a partition of D, then it holds:

sig [p,D] =
∑

D′ class of ψ

sig [p,D′] .

Definition 6.1. An automaton has simplifiable signatures if, for every subset D of Q and every sub-

set C of D, and for every pair of states p, q, it holds

sig [p,D] = sig [q,D] and sig [p,C] = sig [q, C] =⇒ sig [p,D \ C] = sig [q,D \ C].

A commutative monoid (M,⊕) is cancellative if for every a, b, and c in M , a ⊕ b = a ⊕ c
implies b = c. In particular, every group is cancellative, and if K is a ring, the additive monoid (K,+)
is cancellative.

Lemma 6.2. Let K be a semiring such that the additive monoid (K,+) is cancellative. Then every

K-automaton has simplifiable signatures.

For other weight semirings, the simplifiability of signatures depends on the automaton. If A is a

deterministic1
K-automaton, that is, if for every state p and every letter a, there is at most one transition

outgoing from p with label a, then the signatures are simplifiable, independently of K, since it holds:

∀p ∈ Q , ∀a ∈ A$ sig [p,D \ C](a) =

{
sig [p,D](a) if sig [p,C](a) = 0K ,

0K otherwise .

Typically, incomplete deterministic Boolean automata, as considered in [19], have simplifiable

signatures whereas general Boolean automata have not.

1called sequential in [10].
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Example 6.3. Let A2 be the nondeterministic Boolean automaton of Figure 3. It holds:

sig [p, {r, s}](a) = 1 sig [q, {r, s}](a) = 1

sig [p, {s}](a) = 1 sig [q, {s}](a) = 1

sig [p, {r}](a) = 1 sig [q, {r}](a) = 0.

The signature with respect to {r} cannot be deduced from the signature with respect to {r, s} and {s}.

Hence, A2 has not simplifiable signatures.

p

q

r

s

a

a

a

a

b
Figure 3. The nondeterministic automaton A2

6.2. The “All but the largest” strategy

If A is an automaton with simplifiable signatures, PCSA can be improved. We call this improved

algorithm Fast Predecessor Class Split algorithm (FPCSA).

For every class C which is split with respect to a class D, if C is not already in the queue, all the

classes in split[C,D] except one of the largest are put in the queue. Notice that finding the largest class

can be done in linear time with respect to the size of split[C,D]: the size of every subclass containing

some predecessor of a state of D is computed at the same time as the signatures, the size of the class

containing the other states is the difference of the size of C with the sum of the sizes of the other

subclasses.

Actually, since C is not in the queue, the splitting of classes with respect to C has already been

considered: for every D in the current partition, sig [p,C] is the same for all p in D. Let C1 be some

subclass of C; if (D,C1) is a splitting pair for some class D, then, since signatures are simplifiable,

there exists some other class C2 in ψ such that (D,C2) is also a splitting pair.

Let c(k) be the maximal number of times that a state p which belongs to a class D of size k that is

removed from the queue will appear again in classes removed from the queue. A class D′ containing p
will be inserted only if D′ results from a split of D and there exists another class D′′ that results from

the same split and whose size is at least as large as the size of D. Hence, the size of D′ is at most k/2.

Finally c(k) 6 1 + c(k/2), and, since a singleton class will not be split, c(1) = 0; therefore c(k) is in

O(log k). Thus, the complexity of the algorithm is in O((m+ n) log n). This complexity meets the

complexity of the Hopcroft algorithm [28] for the minimisation of complete deterministic automata

which is in O(αn log n), where α is the size of the alphabet; in this case, m = αn.

Theorem 6.4. If A is a K-automaton with simplifiable signatures, FPCSA computes the minimal

quotient of A in time O((m+ n) log n).
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In the case of nondeterministic Boolean automata, as we have seen, the signatures are not sim-

plifiable and the improvement from PCSA to FPCSA is therefore not warranted. Nevertheless, the

Relation Coarsest Refinement algorithm described in [29] can be extended in order to compute the

minimal quotient in time O(m log n), as explained in [30]. For weighted nondeterministic automata

over other semirings with no cancellative addition, like the (min,+)-semiring, it is an open to know

whether there exists an algorithm in time O(m log n) for the computation of the minimal quotient.

7. Examples and benchmarks

DSA, PCSA and FPCSA are implemented in the AWALI library [8]. We present here a few benchmarks

to compare their respective performances and to check that their execution time is consistent with their

asserted complexity. Benchmarks have been run on an iMac Intel Core i5 3,4GHz, compiled with

Clang 9.0.0.

First, we study a family of automata which is an adaptation of a family used in [31] to show that

the Hopcroft algorithm requires Θ(n log n) operations.

Let ϕ be the morphism defined on {a, b}∗ by ϕ(a) = ab and ϕ(b) = a; for instance ϕ(abaab) =
abaababa. The k-th Fibonacci word is wk = ϕk(a); its length is equal to the k-th Fibonacci

number Fk, hence it is in Θ
((

1+
√
5

2

)k)
. Notice that for every k > 2, wk = wk−1.wk−2. Let Fk be the

automaton with one initial state and a simple circuit around this initial state with label wk (all states

are final).

We observe on the benchmarks of Table 1 that the running time of the DSA is quadratic, while the

running time of both PCSA and FPCSA algorithms are in Θ(kFk) (i.e. Θ(Fk log Fk), where Fk is the

number of states).

k 14 17 20 23 26 30

Fk 987 4181 17711 75025 317811 2178309

DSA t (s) 0.42 7.37 139

10−7t/F 2
k 4.3 4.2 4.4

PCSA t (s) 0.010 0.045 0.257 1.36 73 257

10−7t/kFk 7.2 6.3 7.3 7.6 6.7 7.5

FPCSA t (s) 0.006 0.025 0.140 0.70 41 139

10−7t/kFk 4.2 3.5 3.9 3.8 3.5 3.7

Table 1. Minimisation of Fk

The second family is an example where PCSA and FPCSA have not the same complexity. Notice

that these automata are acyclic and there may exist faster algorithms (cf. [3] for specific algorithms for

acyclic Boolean deterministic automata), but this is out of the scope of this paper.

The n-th “Railroad” automaton has 2n states numbered from 1 to 2n, and for every p in [1;n− 1],
there are transitions from states 2p − 1 and 2p to states 2p + 1 and 2p, as described by Figure 4. The
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state 1 is initial and both 2n − 1 and 2n are final.

2p− 1

2p

2p+ 1

2p+ 2

a+ 2b

a
b

2a+ b

Figure 4. The transitions of the Railroad Z-automaton

The benchmarks of the minimisation of “Railroad” automata are shown on Table 2. On these

automata, if a temporary class contains all states between 1 and 2k, it is split into one class [1; 2k− 2]
and one class {2k− 1, 2k}: the size of the classes lowers slowly. On these examples, DSA and PCSA

are therefore quadratic.

In FPCSA, when this splitting occur, the largest class ([1; 2k−2]) is not put in the queue for further

splittings; therefore, except at the first round, all splitters are pairs of states and the algorithm is linear.

n 210 212 213 214 215 222

DSA t (s) 3.29 53.2 214

10−6t/n2 3.1 3.2 3.2

PCSA t (s) 0.31 4.92 20.5 86.1 346

10−7t/n2 3.0 2.9 3.1 3.2 3.2

FPCSA t (s) 0.008 0.030 0.061 0.12 0.24 30.8

10−6t/n 7.8 7.3 7.4 7.3 7.3 7.3

Table 2. Minimisation of Railroad(n)
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Automata Theory, Vol. I, pp. 337–373. European Mathematical Society, 2021.

[4] Droste M, Kuich W, Vogler H (eds.). Handbook of Weighted Automata. Springer, 2009.

[5] Garey MR, Johnson DS. Computers and Intractability: A Guide to the Theory of NP-Completeness (Series

of Books in the Mathematical Sciences). W. H. Freeman, 1979.

[6] Baier C, Hermanns H. Weak Bisimulation for Fully Probabilistic Processes. In: Grumberg O (ed.), CAV

1997, volume 1254 of Lect. Notes in Comput. Sci. Springer, 1997 pp. 119–130.



S. Lombardy, J. Sakarovitch / Morphisms and minimisation of weighted automata 23

[7] Boreale M. Weighted Bisimulation in Linear Algebraic Form. In: Bravetti M, Zavattaro G (eds.), CON-

CUR 2009, volume 5710 of Lect. Notes in Comput. Sci. Springer, 2009 pp. 163–177.

[8] AWALI: Another Weighted Automata LIbrary. vaucanson-project.org/Awali.

[9] Lombardy S, Sakarovitch J. Two Routes to Automata Minimization and the Ways to Reach It Efficiently.
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