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A Recommendation System For Insurance
Built With A Multivariate Hawkes Process

Based On Customers’ Life Events

Laurent Lesage†‡, Madalina Deaconu†, Antoine Lejay†,
Jorge Augusto Meira‡, Geoffrey Nichil∗, Radu State‡

Abstract

We construct a recommendation system for insurance with a Multivariate Hawkes Process, in order to take
into account the influence of life events (e.g. marriage, birth, change of job) on the insurance covering
selection from customers. This Multivariate Hawkes Process includes several specific features aiming to
compute relevant recommendations to customers from a Luxembourgish insurance company. Some of these
features are intent to propose a personalized background intensity for each customer thanks to a Machine
Learning model, to use triggering functions suited for insurance data or to overcome flaws in real-world data
by adding a specific penalization term in the objective function. Our recommendation system has been back-
tested over a full year. Observations from model parameters and results from this back-test show that taking
into account life events by a Multivariate Hawkes Process allows us to improve significantly the accuracy of
recommendations.
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1 Summary

1.1 Introduction and purpose

In [12], the authors developed a recommendation system for car insurance, aiming to detect the customers
who are the most likely to accept a new insurance cover, in order to help agents to provide the best advice
to their customers. The purpose of the present work is to propose an improvement of this recommendation
system, by analysing and handling the influence of life events. More precisely, by observing the behaviour and
the evolution of a customer in the insurance context, customers seem to modify their insurance cover when a
significant event happens in their life. For instance, on the first version of our recommendation system [12],
we observed that a vehicle change has an strong influence. It is thus natural to propose and study how other
life events could have an influence on customer choices on insurance cover.

Our aim is to estimate the probability of a customer to add an insurance guarantee/product in real time,
updated at any occurrence of a life event. Therefore, the recommendation system that we construct would
be able to suggest the additional guarantee or product at the opportune moment. In the first version of the
recommendation system that we introduced in [12], we propose an a priori estimation of the probability to
add a cover. In this paper, we add an a posteriori estimation which allows us to update the recommendation
each time a life event occurs. This reasoning is similar to the calculation of insurance premiums in [14], based
on an a posteriori vision which updates premiums as a function of the occurrence of claims. More precisely:

P
(
customer adds an insurance cover|characteristics, life events

)
= f1(characteristics)︸ ︷︷ ︸

a priori vision

+ f2(life events)︸ ︷︷ ︸
a posteriori vision

.

To do so, we propose to build a recommendation system thanks to a Multivariate Hawkes Process, where each
process represents one type of life event. A Multivariate Hawkes Process allows us to model the ”mutually
exciting effects” between all life events, that is to say the occurrence of a life event could trigger:

• Another life event, e.g. a change of job could trigger a move since the customer works in another place;
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• A subscription to another insurance cover, e.g. a vehicle change could lead to a subscription to a new
guarantee in the customer’s car insurance policy since the customer would protect more his new vehicle.

We developed an approach suited for the real data provided by Foyer Assurances, which performs better than
other alternatives Multivariate Hawkes Processes models from literature.

1.2 Related work

Recommendation systems with Hawkes Processes. Several models based on Hawkes Processes were
developed to build a recommendation system. The RecSys Challenge 2016 aimed to create a recommendation
system to suggest the most suited job to users: authors in [15] proposed an approach with a Hawkes Process.
Temporal user-item interactions are modelled with a Multivariate Hawkes Process in [16] and are applied
to Internet Protocol television (IPTV), Yelp and Reddit data. In [17], authors construct a recommendation
system on music songs and shopping items in order to estimate not only the right moment to make a rec-
ommendation, but also to predict the next returning time to the item. A Point Of Interest recommendation
system based on geographic spatial data is also proposed in [18]. All these approaches are powerful and very
interesting but not useful for our problem as most of these papers use data quite different from our purpose,
in terms of dimensions, frequency, etc.

Multivariate Hawkes Processes estimation. In the numerous papers about Hawkes Processes written
over the last ten years, a large variety of methods to estimate a Multivariate Hawkes Process are proposed,
in order to take into account data characteristics or to improve algorithms efficiency. In [1], triggering
matrix and background intensity are estimated by iteration on the complete penalized log-likelihood with an
Expectation-Maximization algorithm (used in [13]), named MMEL. Triggering functions are estimated non-
parametrically by solving Ordinary Differential Equations. ADM4 algorithm presented in [3] also proposes
this maximum penalized likelihood estimation, but assumes that triggering functions have an exponential
kernel. Authors in [2] adapt the notion of Granger causality to triggering functions to Multivariate Hawkes
Processes, which are supposed to be a linear combination of basis functions. In [4], authors estimate triggering
functions by solving Wiener-Hopf system, by first replacing expectations with empirical averages, then using
the Nystrom method for discretizing the integrals. Estimation of background intensity is calculated simply
by dividing the number of events observed by the time realization. In [5], authors estimate the integrals of
triggering functions thanks to the notion of cumulants.

1.3 Contributions

The main contributions of the present work are listed below:

1. To the best of our knowledge, there exists no paper about Hawkes Processes adapted to recommendation
systems for insurance, or a work integrating life events data for an insurance subject;

2. For most of approaches presented in the related works, estimated background intensities are identical for
every user. Here, we propose to integrate a personalized background intensity for each Foyer customer,
based on either Machine Learning or relevant statistical analysis;

3. We propose triggering functions which are adapted to the insurance data to our disposal and which are
different from classic kernels;

4. The objective function has been penalized in a new way, in order to improve the estimated Hawkes
Process robustness and compensate some defaults on real data.

1.4 Plan

The remainder of this paper is organized as follows. The second section introduces every relevant notation
and definition, including the definition of the Multivariate Hawkes Process. The third section details the
specificity of our approach: the parameters to estimate, the specific objective function and the estimation
algorithm. The fourth section presents the results of our approach on real data provided by Foyer Assurances.

2 Multivariate Hawkes Process definition

In this section, we introduce the notations and definitions needed for the construction of our Multivarate
Hawkes Process. First, we list every life event that will be considered in the adapted study.
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Definition 1. (List of life events).
We consider m = 6 types of events. Each number of event will be used for their corresponding intensity, or
any mathematical object referring to a specific event. For instance, λ∗1(·) represents the intensity of the event
number 1.

• Event number 1: Subscription to a new insurance cover, for which the intensity would represent the
probability for the customer to accept a recommendation;

• Event number 2: Change of vehicle;

• Event number 3: Modification of household composition (including weddings);

• Event number 4: Births;

• Event number 5: Change of job;

• Event number 6: Move.

Then, we introduce some notations which are necessary to define the Multivariate Hawkes Process.

Notation 1. We denote:

1. U the number of customers in the under study data, on which we develop the procedure to estimate
the probability to add a guarantee;

2. U = {1, ..., U} the set of customers;

3. xu a vector of characteristics describing the profile of the customer u ∈ U , which contains information
about:

• His profile: gender, age, location, profession...

• His current insurance cover: how many products/guarantees he subscribed to, premiums, data
about his agent...

4. Tu the time length we observe life events for customer u;

5. Hu(t) the list of life events which occurred to customer u until time t;

6. Nu(t) the counting process which corresponds to the total number of events observed for customer u
from time 0 to time t;

7. Nu
i (t) the counting process which corresponds to the total number of events of type i observed for

customer u from time 0 to time t. We have Nu(t) =
∑m
i=1N

u
i (t);

8. su = {(euk , tuk)N
u

k=1} the sequence of events observed for customer u: euk is the number of the kth event
and tuk the corresponding time.

Before defining the Multivariate Hawkes Process, we introduce the univariate version of Hawkes Processes
(see also [13] for a background about point processes). A Hawkes Process is a counting process denoted N(·)
who has a so-called ”self-exciting” property, which means that each occurrence increases the probability to
observe another event a short time after the first occurrence. It is characterized by its conditional intensity
function. Each occurrence increases the conditional intensity according to the triggering function.

Definition 2. (Hawkes process). Let us consider λ > 0, the so-called background intensity, and µ :
[0,+∞[→ [0,+∞[, the so-called triggering function. We denote {t1, .., tN(t)} the sequence of past occurrences
until time t. A point process is a Hawkes process if its conditional intensity function is of the form:

λ∗(t) = λ+

∫ t

0

µ(t− v)dN(v) = λ+

N(t)∑
k=1

µ(t− tk). (2.1)
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For our purpose, we use a multivariate Hawkes Process, which is an extension of the univariate case. The
initial objective is to model the influence of life events on the propensity of the customer to modify his
insurance cover. To do so, we build a Multivariate Hawkes Process which will be defined by m conditional
intensity functions, one per type of event, instead of one as in the univariate case. For each event, there
exists not only a ”self-exciting effect” (i.e. an occurrence of event i could influence the intensity of event i),
but also a ”mutual exciting effect” (i.e. an occurrence of event i could influence the intensity of any event
j, j ∈ {1, ...,m}). For each customer u, u ∈ U , we consider the counting processes {Nu

i (·), i ∈ {1, ...,m}},
where Nu

i (·) refers to the type of event number i and where each type of event i could influence any other
event j, j ∈ {1, ...,m}, including j = i.

Definition 3. (Multivariate Hawkes processes). We consider a customer u ∈ U . For each type of event
i ∈ {1, ...,m}, we consider:

• λi(xu) > 0 the background intensity (we denote λ(xu) =
[
λi(xu)

]
i∈{1,...,m});

• µi,j : [0,+∞[→ [0,+∞[, j ∈ {1, ...,m}, the triggering function that models the effect of event j on
event i.

The set of counting processes {Nu
1 (·), ..., Nu

m(·)} is a multivariate Hawkes process if the conditional intensity
function of each process Nu

i (·) is of the form:

λu,∗i (t) = λi(xu) +

m∑
j=1

∫ t

0

µi,j(t− v)dNu
j (v) = λi(xu) +

m∑
j=1

Nu
j (t)∑
k=1

µi,j(t− tkj ). (2.2)

Therefore, λu,∗1 (t) represents the propensity for customer u to add an insurance cover at time t; this quantity
will be integrated to the recommendation system. The probability that the customer would add a guaran-
tee/product is influenced by λ1(xu), which models the impact of the characteristics of the customer (apriori
vision), and by the sum of µ1,j(t− tkj ), which models the impact of the kth event of type j, occurred at time

tkj (a posteriori vision).

3 The proposed approach

3.1 Model

3.1.1 Background intensity

For each event i, we would like to estimate the background intensity of customer u, λu,i(xu), where xu is a
set of features describing the customer u. In our approach, we model for the event i the background intensity
of customer u, described by xu, as follows:

λi(xu) = µifi(xu), (3.1)

where:

• µi is a proportional factor, common for each customer u. We denote µ =
(
µi
)
i∈{1,...,m};

• fi is a function which, to each data xu, associates fi(xu) ∈ R which reflects the propensity for an event
i to occur for a customer u, excluding the triggering of other events. fi are estimated as follows:

– Event number 1: f1(xu) has been estimated in [12], where a probability is built to add an
additional insurance cover for a customer in function of characteristics that are included in xu;

– Event number 2: f2(xu) is estimated by an Extreme Gradient Boosting algorithm, which learned
the vehicle change frequency over customers who subscribed to a car insurance for five years at
least;

– Event number 3: f3(xu) = 1 for all customer u ∈ U . A modification of household composition
includes many types of events (e.g. flatsharing, civil union, weddings, step-families), implies com-
plex interactions and could occur at any moment of life. That’s why we assume that background
intensity is equal for each customer;

– Event number 4: f4(xu) equals the birthrate of the age group the customer u belongs to.
Birthrates were extracted from the national statistics portal of Luxembourg [8];
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– Event number 5: f5(xu) is built from a survey of the French Institute of Statistics (see [11]).
f5(xu) equals the rate of people who changed of job over five years by age group;

– Event number 6: f6(xu) = 1 for all customer u ∈ U . Several studies indeed show that moving
out is almost always linked to a life event: 70% are due to family events (births, weddings...)
and 30% to professional reasons according to the French Institute of Statistics (see [19]). Thus,
we assume that the background intensity is the same for every customer and the event is only
influenced by the occurrence of life events.

3.1.2 Triggering functions

We assume that the triggering functions are a linear combination of basis functions.

Notation 2. We denote:

• D the number of basis functions;

• gd the dth basis function, d ∈ {1, ..., D};

• Ad =
(
adi,j
)
i,j=1,...,m

the dth infectivity matrix, where adi,j captures the impact of event j on event i

relatively to the dth basis function;

• A = {Ad}d∈{1,...,D} the set of the D infectivity matrix.

Therefore, the triggering function µi,j that models the effect of event j on event i follows the equation below:

µi,j(t) =

D∑
d=1

adi,jgd(t). (3.2)

We propose the following basis functions for our data:

gd(t) =

{
1√
2πω

exp(− t2

2ω2 ) (Gaussian density) if d = 1;
tk−1

(dω)kΓ(k)
exp(− t

dω ) (Gamma density) otherwise,
(3.3)

where ω and k are respectively scale and shape parameters for the Gamma density. The first basis function is
inspired from [2] to take into account immediate triggering, while we sketched the main interests of Gamma
density as triggering function for insurance data in [13].

3.2 Objective function

We denote Θ the parameters of the model to estimate: Θ = (µ,A).

The objective function of the problem is the sum of the Negative Log-Likelihood and regularizers described
below:

• Negative Log-Likelihood: denoted NLL(Θ), it equals:

NLL(Θ) =

U∑
u=1

{ m∑
i=1

(
Tuλi(xu)+

Nu∑
k=1

D∑
d=1

adi,eukGd(Tu−t
u
k)
)
−
Nu∑
k=1

log
(
λeuk (xu)+

k−1∑
j=1

D∑
d=1

adeuk ,euj gd(t
u
k−tuj )

)}
,

(3.4)

where Gd(Tu − tuk) =
∫ Tu−tuk

0
gd(t);

• Sparsity: we expect that for couples of events which have no influence on each other, the infectivity
matrix has zeros for the corresponding coefficients. That is why we add a sparsity constraint, denoted
R1:

R1(Θ) = α1

( D∑
d=1

m∑
i=1

m∑
j=1

(adi,j)
2

2

)
, (3.5)

where α1 is a parameter to control the influence of this regularization;
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• Minimizing the influence of overlapping events: for some events, the date of occurrence that
is in the data-set may be delayed of several days, because of administrative issues. Therefore, we
could believe that an event 1 is triggered by an event 2, while event 2 actually occurred after event 1.
Therefore we propose to penalize the squared sum of coefficients adi,j and adj,i, in order to correct the
influence of overlapping events:

R2(Θ) = α2

( D∑
d=1

m∑
i=1

m∑
j=1

(adi,j + adj,i)
2

2

)
. (3.6)

Therefore, the objective function denoted F is:

F (Θ) = NLL(Θ) +R1(Θ) +R2(Θ)

=

U∑
u=1

{ m∑
i=1

(
Tuλi(xu) +

Nu∑
k=1

D∑
d=1

adi,eukGd(Tu − t
u
k)
)
−

Nu∑
k=1

log
(
λeuk (xu) +

k−1∑
j=1

D∑
d=1

adeuk ,euj gd(t
u
k − tuj )

)}

+ α1

( D∑
d=1

m∑
i=1

m∑
j=1

(adi,j)
2

2

)
+ α2

( D∑
d=1

m∑
i=1

m∑
j=1

(adi,j + adj,i)
2

2

)
,

and the learning problem is:

min
Θ

F (Θ). (3.7)

3.3 Parameters estimation

In order to estimate parameters, we use an Expectation-Maximization (EM) algorithm. It consists in in-
troducing the notion of complete likelihood, which assumes that we could observe, for each event, which
previous event has triggered this event (see [13]).

To do so, we construct a surrogate objective function (expectation step), whose iterative minimization allows
initial objective function to decrease monotonically (maximization step). We denote Θ̂(l) the estimation of
parameters at iteration l: Θ̂(l) = (µ̂(l), Â(l)). The surrogate objective function denoted Fs(Θ, Θ̂

(l)) equals:

Fs(Θ, Θ̂
(l)) = −Q(Θ, Θ̂(l)) +R1(Θ) + R̂

(l)
2 (Θ, Θ̂(l)), (3.8)

where:

1.

Q(Θ, Θ̂(l)) =

U∑
u=1

{
−

m∑
i=1

(
Tuλi(xu) +

Nu(Tu)∑
k=1

D∑
d=1

adi,eukGd(Tu − t
u
k)
)

(3.9)

+

Nu(Tu)∑
k=1

p
(l)
euk ,e

u
k

log
(λeuk (xu)

p
(l)
euk ,e

u
k

)
+

k−1∑
j=1

D∑
d=1

p
(l)
euk ,e

u
j

log
(adeuk ,euj gd(tuk − tuj )

p
(l)
euk ,e

u
j

)}
;

2.

p
(l)
euk ,e

u
k

=
µ̂

(l)
euk
feuk (xu)

µ̂
(l)
euk
feuk (xu) +

∑k−1
j=1

∑D
d=1 â

d,(l)
euk ,e

u
j
gd(tuk − tuj )

, (3.10)

which represents the probability that event (euk , t
u
k) was triggered by the background intensity of event

of type euk ;

3.

p
(l)
euk ,e

u
j

=

∑D
d=1 â

d,(l)
euk ,e

u
j
gd(t

u
k − tuj )

µ̂
(l)
euk
feuk (xu) +

∑k−1
j=1

∑D
d=1 â

d,(l)
euk ,e

u
j
gd(tuk − tuj )

, (3.11)

which represents the probability that event (euk , t
u
k) was triggered by event (euj , t

u
j );
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4.

R̂
(l)
2 (Θ, Θ̂(l)) = α2

( D∑
d=1

m∑
i=1

m∑
j=1

(adi,j + â
d,(l)
j,i )2

2

)
. (3.12)

We update iteratively the parameters estimation by calculating:

Θ(l+1) = argmax
Θ

Fs(Θ, Θ̂
(l)). (3.13)

We solve ∂F
∂Θ = 0 (see Appendix) and we obtain, for all d ∈ {1, ..., D}, k ∈ {1, ...,m}, (i, j) ∈ {1, ...,m}2:

µ̂
(l+1)
k =

∑U
u=1

∑
eui =k p

(l)
eui ,e

u
i∑U

u=1 Tu
; (3.14)

â
d,(l+1)
i,j =

−(Ai,j + α2â
d,(l)
j,i ) +

√
(Ai,j + α2â

d,(l)
j,i )2 − 4(α1 + α2)B

(l)
i,j

2(α1 + α2)
, (3.15)

where

Ai,j = −
U∑
u=1

∑
euk=j

Gd(Tu − tuk), (3.16)

B
(l)
i,j =

U∑
u=1

∑
euk=i

∑
eum=j

p
(l)
euk ,e

u
m
. (3.17)

Optimizing Fs this way allows us to decrease the Negative Log-Likelihood monotonically. Indeed, from the
two following inequalities (see a proof from Appendix in [1]):

• −Q(Θ, Θ̂(l)) ≥ NLL(Θ);

• −Q(Θ̂(l), Θ̂(l)) = NLL(Θ̂(l)),

we could deduce that NLL(Θ̂(l−1)) = −Q(Θ̂(l−1), Θ̂(l−1)) ≥ −Q(Θ̂(l), Θ̂(l−1)) ≥ NLL(Θ̂(l)). We update
iteratively Θ̂(l) = (µ̂(l), Â(l)) while the relative difference between NLL(Θ̂(l−1)) and NLL(Θ̂(l)), denoted:

Err(l) =

∣∣∣∣∣ NLL(Θ̂(l))

NLL(Θ̂(l−1))
− 1

∣∣∣∣∣ , (3.18)

is above ε and the number of iterations is below Niter. This methodology is summarized in Algorithm 1.

Algorithm 1: Parameters estimation

Result: Estimation of Θ = (µ,A)
Initialize l = 0 and (µ̂(l), Â(l));
l = l + 1;
Update (µ̂(l), Â(l)) according to Equations (3.14) and (3.15);
while Err(l) ≥ ε and l ≤ Niter do

l = l + 1;
Update (µ̂(l), Â(l)) according to Equations (3.14) and (3.15);

end

4 Results

In this section, we focus on the results of our approach on real data provided by Foyer Assurances. First, we
introduce data and hyperparameters used for estimation. Then, we present the parameters estimation. We
also study the impact of regularization on parameters estimation, to conclude by showing that the proposed
model overperforms existing approaches.
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4.1 Data and hyperparameters

This work uses data provided by Foyer Assurances. We extracted sequences of life events from Foyer customers
observed between T1 = 2015 and T2 = 2018 included. Each row from the final data-set represents one event.
The columns are:

• Customer’s ID number u ∈ U ;

• Time length we observe life events for customer u, Tu;

• Type of event (euk denotes the kth event that occurred to customer u);

• Time of occurrence (tuk denotes the time when the kth event occurred to customer u).

Some descriptive statistics about this data-set are listed below:

• There are around U = 63.000 customers;

• The number of rows is
∑U
u=1N

u(T2) = 149.000 approximately, therefore there are around 2.4 events
per customer on average;

• We also present the distributions of events in Table 3 below.

For hyperparameters introduced in the previous section we set the following values:

• Niter = 100;

• ε = 0.005;

• ω = 0.05, fixed from the rule of thumb detailed in [2];

• k = 2;

• D = 6;

• α1 = 104;

• α2 = 106.

To set α1 and α2, we performed a grid-search over a parameter grid based on NLL value, where (α1, α2) ∈
[100, 108]2.

In Figure 1 we plot the D basis functions gd, d ∈ {1, ..., D}.

Figure 1: Plot of basis functions gd, d ∈ {1, ..., D}
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4.2 Parameters estimation

The parameters estimation leads to the following results:

• µ̂ =
(
µ̂i
)
i∈{1,...,m} = [2.74× 10−2,6.76× 10−1,8.65× 10−2,2.11× 10−4,1.52× 10−3,8.24× 10−2];

• Âd =
(
âdi,j
)
i,j=1,...,m

, Â = {Âd}d∈{1,...,D}: in Table 1 we compute Âsum, estimation of Asum =∑D
d=1Ad =

(
asumi,j

)
i,j=1,...,m

, the sum of the D infectivity matrix.

Triggered
Triggering

Insurance
cover modif.

Change of
vehicle

Household
composition

Birth Change of
job

Move

Insurance cover modif. 1.46× 10−2 4.45× 10−2 8.29× 10−4 3.42× 10−6 2.28× 10−3 1.65× 10−3

Change of vehicle 1.74× 10−15 6.38× 10−15 1.50× 10−5 4.82× 10−4 1.14× 10−3 7.34× 10−8

Household composition 2.52× 10−3 8.64× 10−3 6.27× 10−23 5.49× 10−3 1.02× 10−2 3.07× 10−2

Birth 9.64× 10−5 6.87× 10−5 3.14× 10−5 3.92× 10−15 1.56× 10−3 3.61× 10−3

Change of job 1.02× 10−3 2.07× 10−4 5.66× 10−4 9.78× 10−4 1.29× 10−2 2.02× 10−3

Move 9.75× 10−4 6.58× 10−7 4.23× 10−3 4.96× 10−4 2.86× 10−3 1.80× 10−18

Table 1: Estimation of the sum of the D infectivity matrix Asum

We propose below an interpretation of this parameters estimation.

Highest interactions between events. The matrix Asum models the way events trigger each other. The
higher is asumi,j , the higher is the increasing of the intensity of event i when j occurred. We sort in Table 2
the interactions Event i → Event j by decreasing coefficients asumi,j .

Event triggering Event triggered Coefficient
Change of vehicle Insurance cover modification 4.45× 10−2

Move Household composition 3.07× 10−2

Insurance cover modification Insurance cover modification 1.46× 10−2

Change of job Change of job 1.29× 10−2

Change of job Household composition 1.02× 10−2

Change of vehicle Household composition 8.64× 10−3

Birth Household composition 5.49× 10−3

Household composition Move 4.23× 10−3

Move Birth 3.61× 10−3

Change of job Move 2.86× 10−3

Table 2: Highest interactions between events

We notice that insurance cover modifications are likely to be triggered by a change of vehicle and by a
previous modification. It means that according to our model, we should recommend a new guarantee when
the customer buys a new car (a different vehicle implies new needs of insurance) or has recently modified his
cover (the customer is more receptive after a first change). Other high interactions also make sense, such as
the link between move and household composition.

Expected value. For each customer u and type of event i, assuming Nu
i is a stationary process, the

expected total of events at the end of observation period is denoted nui . We also denote nu =
[
nui
]
i∈{1,...,m}.

nu is given by (see [4]):

nu = Tu

(
Im −Asum

)−1

λ(xu), (4.1)

where Im is the identity matrix of dimensions m ×m. This first order moment allows us to check whether
the order of magnitude of parameters is correct, by comparing the theoretical expected value of the total of
events and the distribution observed in the data-set. We could also quantify the average part of occurrences
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triggered by past events, for event i and customer u, by computing
nu
i −λi(xu)Tu

nu
i

. On the opposite, the

quotient λi(xu)Tu

nu
i

represents the part of events which occur due to the ”natural” tendency of the customer,

modelled by the background intensity. In Table 3, we present:

• The distribution of events observed in the data-set, on average per customer: 1
U

∑U
u=1N

u
i (Tu);

• The average of expected value of the number of events, over every customer: 1
U

∑U
u=1 n

u
i ;

• The average of background intensities multiplied by time exposure, over every customer: 1
U

∑U
u=1 λi(xu)Tu;

• The average part of occurrences triggered by past events, over every customer: 1
U

∑U
u=1

nu
i −λi(xu)Tu

nu
i

.

Type of event Observed Expected value Background int. % from past events
Insurance cover modif. 9.70× 10−2 9.16× 10−2 1.50× 10−2 83.6%
Change of vehicle 1.22 1.21 1.21 0.01%
Household composition 4.18× 10−1 4.35× 10−1 4.11× 10−1 5.66%
Birth 5.64× 10−2 5.36× 10−2 5.18× 10−2 3.29%
Change of job 1.63× 10−1 1.52× 10−1 1.49× 10−1 2.22%
Move 4.32× 10−1 3.93× 10−1 3.91× 10−1 0.60%

Table 3: Comparison between the distribution of events observed in the data-set and the expected total of
events

First, we observe that the order of magnitude of parameters is correct, by comparing actual average of events
with their expected value. Estimation on event number 1 seems more accurate than other events, which could
be explained by the fact that change of vehicle represents half of total events. We also notice that according to
our model, 83% of insurance cover modifications are triggered by other life events. This observation justifies
our model a posteriori, since the objective is to take into account the influence of life events on this type of
event. We could also observe that on the opposite the changes of vehicle are almost never triggered by other
events. This seems to be in compliance with Luxembourgish customers behavior: they buy a new vehicle
every 3-4 years without waiting for a specific event.

Prediction by simulation. The main interest of building our recommendation system with a Multivariate
Hawkes Process is that the recommendations are updated with respect to events occurrences, which allows us
to have the best timing to suggest insurance covers to customers. The recommendation system is not based
on expected values provided by the model, but on instantaneous intensities updated by events occurrences.
However, it is useful to know the distribution of the total of events for each customer for other purposes
than marketing (for instance, forecasting the workload of company’s staff, which is proportional to the total
of events to manage). We evaluate the distribution numerically by simulating n trajectories and calculating
empirical distribution.

In order to simulate the estimated Multivariate Hawkes Process for customer u from time 0 to Tu, we use
the Ogata’s thinning algorithm (see [20]), written in Algorithm 2 in Appendix.

We plot in Figure 2 the simulated distribution of events over 10 000 simulations for a 45-year-old Luxem-
bourgish customer with parameters: Tu = 5, f1(xu) = 0.12, f2(xu) = 0.32, f4(xu) = 47.97, f5(xu) = 16.
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Figure 2: Distribution of events over 10 000 simulations with parameters: Tu = 5, f1(xu) = 0.12, f2(xu) =
0.32, f4(xu) = 47.97, f5(xu) = 16.

For instance, we could observe that the simulated customer has a 5% probability for modifying his insurance
cover at least one time over the next 5 years. We also notice that other events distributions make sense given
customer’s age and situation.

4.3 Influence of regularization

As a reminder, regularization aims to correct the main default observed on the data-set, which is the in-
accuracy of times of occurrence. Some events might happen before some others according to the data-set,
while it is the opposite in real life. The consequence of this inaccuracy may be that these misreported dates
could reinforce the wrong coefficients from triggering matrix. The objective of this subsection is to show that
regularization allows us to fix this problem.

To do so, we compare the list of higher interactions without and with regularization. Especially, we check
whether couples of events (Event 1, Event 2) which appear on top of the list with both causations Event 1→
Event 2 and Event 2 → Event 1 without regularization appear with only one causation with regularization.
Table 4 compares higher interactions (as defined in Section 4.2) in both cases by highlighting the various
couples of events.
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Without regularization With regularization
Triggering Triggered Coefficient Triggering Triggered Coefficient
Move Household com-

position
5.90× 10−2 Change of vehi-

cle
Insurance cover
modification

4.45× 10−2

Change of vehi-
cle

Insurance cover
modification

5.38× 10−2 Move Household com-
position

3.07× 10−2

Insurance cover
modification

Change of vehi-
cle

4.89× 10−2 Insurance cover
modification

Insurance cover
modification

1.46× 10−2

Insurance cover
modification

Insurance cover
modification

4.70× 10−2 Change of job Change of job 1.29× 10−2

Change of vehi-
cle

Household com-
position

2.39× 10−2 Change of job Household com-
position

1.02× 10−2

Change of job Change of job 2.35× 10−2 Change of vehi-
cle

Household com-
position

8.64× 10−3

Household com-
position

Move 1.91× 10−2 Birth Household com-
position

5.49× 10−3

Move Birth 1.82× 10−2 Household com-
position

Move 4.23× 10−3

Change of job Household com-
position

1.35× 10−2 Move Birth 3.61× 10−3

Move Insurance cover
modification

8.40× 10−3 Change of job Move 2.86× 10−3

Table 4: Comparison of highest interactions between events without and with regularization

We notice that with regularization, only one causation from couples of events (Move, Household composition)
and (Change of vehicle, Insurance cover modification) is kept as expected. The other causation has a lower
coefficient, which allows us to define which event triggers the other for every couple.

4.4 Backtesting over year 2019

In order to check the accuracy of our recommendation system, we perform a backtesting over year 2019 as
follows:

1. We consider the Multivariate Hawkes Process learned as described previously from data observed from
2015 to 2018, whose parameters are given in Section 4.2. For each customer u, we focus on λu,∗1 (t), the
intensity related to the event 1 (i.e. subscription to a new insurance cover), where t takes its values on
year 2019;

2. Over 2019, we observe λu,∗1 (t), considering that every event of types 2 to 6 in historical data occurs on
every customer u. We calculate recommendations by two methods:

• We consider that any time the intensity is higher than a threshold λ∗threshold, we should recommend
to the customer the upgrade of his insurance cover. This threshold equals the quantile of the
maximal intensity observed on each customer in 2019 of order 1 - α, where α is the proportion of
customers who changed their cover over year 2019:

λ∗threshold = m({max
t

(
λu,∗1 (t)

)
}u∈U , bαUc), (4.2)

where m(S, n) is the subset of S which contains elements of S higher that the nth maximum of S;

• We consider that we should make recommendations only based on background intensities, i.e. on
customers u with λ1(xu) higher than a threshold λthreshold (in a similar way than in [12]) fixed so
that the two methods propose the same total of recommendations:

λthreshold = m({λ1(xu)}u∈U , bαUc); (4.3)

3. To quantify the performances of the recommendations, we compute the confusion matrix which allows
us to compare actual and predicted insurance cover subscriptions. We represent the confusion matrix
for both methods respectively in Tables 5 and 6.
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Actual/Predicted Subscription No subscription
Subscription 56 734 3401
No subscription 3401 5548

Table 5: Confusion matrix to compare actual and predicted insurance cover subscriptions over year 2019
based on full intensity

Actual/Predicted Subscription No subscription
Subscription 56 734 5907
No subscription 5907 3042

Table 6: Confusion matrix to compare actual and predicted insurance cover subscriptions over year 2019
based on background intensity

We could see that our Multivariate Hawkes Process allows us to compute accurate recommendations. The
confusion matrix shows a sensitivity of 62% with the first method (i.e. the proportion of recommendations
that are correctly identified). Moreover, the comparison with the second method shows that the influence of
life events allows us to improve significantly the recommendation system accuracy. The accuracy drops to
34% without considering the impact of life events.

5 Appendix

5.1 Proof of equations (3.14) and (3.15)

We update Θ̂(l) such that Θ̂(l+1) = argmax
Θ

Fs(Θ, Θ̂
(l)). We solve ∂Fs(Θ,Θ̂(l))

∂Θ = 0.

Fs(Θ, Θ̂
(l)) = −Q(Θ, Θ̂(l)) +R1(Θ) + R̂

(l)
2 (Θ, Θ̂(l))

=

U∑
u=1

{
−

m∑
i=1

(
Tuλi(xu) +

Nu(Tu)∑
k=1

D∑
d=1

adi,eukGd(Tu − t
u
k)
)

+

Nu(Tu)∑
k=1

p
(l)
euk ,e

u
k

log
(λeuk (xu)

p
(l)
euk ,e

u
k

)
+

k−1∑
j=1

D∑
d=1

p
(l)
euk ,e

u
j

log
(adeuk ,euj gd(tuk − tuj )

p
(l)
euk ,e

u
j

)

+ α1

( D∑
d=1

m∑
i=1

m∑
j=1

(adi,j)
2

2

)
+ α2

( D∑
d=1

m∑
i=1

m∑
j=1

(adi,j + â
d,(l)
j,i )2

2

)}
.

For all k ∈ {1, ...,m},

∂Fs(Θ, Θ̂
(l))

∂µk
= −

U∑
u=1

Tu +
( U∑
u=1

∑
eui =k

p
(l)
eui ,e

u
i

) 1

µk
,

therefore we set µ̂
(l+1)
k such that

(
∂Fs

∂µk

)
µk=µ̂

(l+1)
k

= 0, which leads to:

µ̂
(l+1)
k =

∑U
u=1

∑
eui =k p

(l)
eui ,e

u
i∑U

u=1 Tu
.

For all d ∈ {1, ..., D}, (i, j) ∈ {1, ...,m}2,

∂Fs(Θ, Θ̂
(l))

∂adi,j
= −

U∑
u=1

∑
euk=j

Gd(Tu − tuk) +
( U∑
u=1

∑
euk=i

∑
eum=j

p
(l)
euk ,e

u
k

) 1

adi,j
+ (α1 + α2)adi,j + α2â

d,(l)
j,i .
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We denote:

Ai,j = −
U∑
u=1

∑
euk=j

Gd(Tu − tuk),

B
(l)
i,j =

U∑
u=1

∑
euk=i

∑
eum=j

p
(l)
euk ,e

u
m
.

We set â
d,(l+1)
i,j such that

(
∂Fs

∂adi,j

)
adi,j=â

d,(l+1)
i,j

= 0, which leads to:

Ai,j +B
(l)
i,j

1

adi,j
+ (α1 + α2)adi,j + α2â

d,(l)
j,i = 0,

(α1 + α2)(adi,j)
2 + (Ai,j + α2â

d,(l)
j,i )adi,j +B

(l)
i,j = 0,

â
d,(l+1)
i,j =

−(Ai,j + α2â
d,(l)
j,i ) +

√
(Ai,j + α2â

d,(l)
j,i )2 − 4(α1 + α2)B

(l)
i,j

2(α1 + α2)
.

5.2 Ogata’s thinning algorithm

Algorithm 2: Ogata’s thinning algorithm

Result: Simulated sequence of events for customer u: {(eu,simk , tu,simk )N
u,sim

k=1 }
1. Generate the first event:
k = 1;
λmax =

∑m
i=1 λ

u,∗
i (0);

Simulate V ∼ U [0, 1];
s = − 1

λmax
ln(V );

if s > Tu then
Go to step 3.;

else
Simulate W ∼ U [0, 1];

eu,simk = j such that
∑j
i=1 λ

u,∗
i (s) ≤ λmax ×W ≤

∑j+1
i=1 λ

u,∗
i (s);

tu,simk = s
end
2. General:
k = k + 1;
λmax =

∑m
i=1 λ

u,∗
i (tu,simk−1 ) +

∑m
i=1 a

sum
eu,sim
k−1 ,i

;

Simulate V ∼ U [0, 1];
s = s− 1

λmax
ln(V );

if s > Tu then
Go to step 3.;

else
Simulate W ∼ U [0, 1];
if λmax ×W ≤

∑m
i=1 λ

u,∗
i (s) then

eu,simk = j such that
∑j
i=1 λ

u,∗
i (s) ≤ λmax ×W ≤

∑j+1
i=1 λ

u,∗
i (s);

tu,simk = s
else

λmax =
∑m
i=1 λ

u,∗
i (s) and simulate another time s;

end

end

3. Output: {(eu,simk , tu,simk )N
u,sim

k=1 }
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