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Analytic regularity for Navier-Stokes-Korteweg model on pseudo-measure spaces

The purpose of this work is to study the existence and analytic regularisation effect for the compressible Navier-Stokes system with quantum pressure in pseudo-measure spaces. This system has been considered by B. Haspot and an analytic regularisation effect for a Korteweg type system was considered by F. Charve, R. Danchin and J. Xu, both of them in Besov spaces. Here we give a better lower bound of the radius of analyticity near zero. This work is an opportunity to deepen the study of partial differential equations in pseudo-measure spaces by introducing a new functional setting to deal with non-linear terms. The pseudo-measure spaces are well-adapted to obtain a point-wise control of solutions, with to study of turbulence as perspective.

Introduction

We are interested by the analytic smoothing properties of the Navier-Stokes-Korteweg system which describe a two-phase compressible and viscous fluids, of density ρ and velocity field u. It is generally assumed that the phases are separated by a hypersurface and that the jump in the pressure across the interface is proportional to the curvature. Here we deal with a diffuse interface (DI) model that describes fluids when the change of phase corresponds to a fast but regular transition zone for the density and velocity. This type of models differs from the so-called sharp interface (SI) model when, the interface between phases corresponds to a discontinuity in the state space. The basic ideas of the DI model considering here, is to add to the classical compressible fluids equation a capillary term, that penalizes high variations of the density. The full derivation of the corresponding equation, that we shall name the compressible Navier-Stokes-Korteweg system is due to J. E. Dunn and J. Serrin (see [START_REF] Dunn | On the thermodynamics of interstitial working[END_REF]).

    

∂ t ρ + div(ρu) = 0, ∂ t (ρu) + div(ρu ⊗ u) -Au + ∇Π = div(K), (ρ, u)| t=0 = (ρ 0 , u 0 ), [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der mathematischen Wissenschaften[END_REF] where Π := P (ρ) is the pressure function, Au := div (2µ(ρ)D S (u)) + ∇(ν(ρ) div u)) is the diffusion operator, D S (u) := 1 2 (∇u + t ∇u) is the symmetric gradient and the capillarity tensor is given by

K := ρ div(κ(ρ)∇ρ)I R d + 1 2 κ(ρ) -ρκ (ρ) |∇ρ| 2 I R d -κ(ρ)∇ρ ⊗ ∇ρ.
This system is due to J. E. Dunn and J. Serrin in [START_REF] Dunn | On the thermodynamics of interstitial working[END_REF]. The density-dependent capillarity function κ is assumed to be positive. Note that for smooth enough density ρ and capillarity function κ, we have

div K = ρ∇ κ(ρ)∆ρ + 1 2 κ (ρ)|∇ρ| 2 .
The coefficients ν = ν(ρ) and µ = µ(ρ) designate the bulk and shear viscosity, respectively, and are assumed to satisfy in the neighborhood of some reference constant density ρ > 0 the conditions µ > 0 and ν + µ > 0.

We shall assume that the functions λ, µ, κ and P are real analytic in a neighborhood of ρ. To simplify, we set ρ = 1. Introducing a = ρ -1 and denoting by μ = µ(1), ν = ν(1), κ = κ(1), ᾱ = P (1), the system (1) reads

∂ t a + div(u) = f , ∂ t u -Āu + ᾱ∇a -κ∇∆a = g, (2) 
where Āu = 2μ div(D S (u)) + ν∇ div u, f = -div(au), g = 4 i=1 gi with

             g1 := -u • ∇u, g2 := (1 + a) -1 Au -Āu, g3 := -(1 + a) -1 ∇P (1 + a) + ᾱ∇a, g4 := ∇ κ(1 + a) -κ ∆a + 1 2 κ (1 + a)|∇a| 2 .
The system (2) is a hyperbolic/parabolic coupled system, which is common for compressible Navier-Stokes type systems. In contrast with the linearized equation of the classical compressible Navier-Stokes system, it was remarked by F. Charve, R. Danchin, and J. Xu that for the linear part of (2), with external forces, both of the density and velocity are smoothed out instantaneously (see lemma 2.1.1). In 2018, authors showed in [START_REF] Charve | Gevrey analyticity and decay for the compressible Navier-Stokes system with capillarity[END_REF] a Gevrey analyticity smoothed effect for all the unknowns of the compressible Navier-Stokes-Korteweg system, in Besov spaces, this is the first related result for a model of compressible fluids. In this paper, we aim to establish this smoothing effect and to estimate the radius of analyticity of the solution, in the pseudo-measure spaces for a particular case presented in the following subsection. Using the method used by J. Y. Chemin, I. Gallagher, and P. Zhang in [START_REF] Chemin | On the radius of analyticity of solution to semi-linear parabolic systems[END_REF] for semi-linear parabolic systems, we give a better estimate on the radius of analyticity near 0, the advantage to work in the pseudo-measure spaces is that we obtained point-wise time-frequency estimate of the decay of the solution, with studying the turbulence as perspective. In the following subsection, we describe a special case of the compressible Navier-Stokes-Korteweg system, so-called the incompressible Navier-Stokes system with quantum pressure, that will be discussed in this paper.

1.1 Compressible Navier-Stokes system with quantum pressure

In this note, we consider a special case, which is the so-called compressible Navier-Stokes system with quantum pressure considered by B. Haspot [START_REF] Haspot | Global strong solution for the korteweg system with quantum pressure in dimension n ≥ 2[END_REF], where

(µ(ρ), ν(ρ), κ(ρ)) = (µρ, νρ, κ/ρ), P (ρ) := αρ,
and µ > 0, µ + ν > 0, κ > 0, α > 0 are constants. Introducing ρ = ρe a , the system (1) reads

∂ t a + div(u) = f (u, a), ∂ t u -µ u -(µ + ν)∇ div(u) + α∇a -κ∇ a = g(u, a), (3) 
where g := 3 j=1 g i and

       f (u, a) := -u • ∇a, g 1 (u, u) := -u • ∇u, g 2 (u, a) := µ∇a • ∇u + (µ + ν)∇a • Du, g 3 (a, a) := κ 2 ∇(∇a • ∇a). (4) 
We consider the initial value condition

(a, u) | t=0 = (a 0 , u 0 ). (5) 

Pseudo-measure spaces

Let us begin by specifying some notations.

Notation 1.2.1. Throughout the paper, f a 1 ,...,a k g means that there exists a positive constant C, which depends on the parameters a 1 , . . . , a k such that f ≤ Cg. We denote by f the Fourier transform with respect to the space variable of the function

f ∈ C [0, T [; S (R d ) .
We begin by define pseudo-measure spaces on the whole space R d . For all r ≥ 0, we define the pseudo-measure space of order r by setting

P M r (R d ) := g ∈ S (R d ) g ∈ L 1 loc (R d ) and g P M r := sup ξ∈R d {|ξ| r | g(ξ)|} < +∞ .
The pseudo-measure spaces were firstly used for fluids mechanic systems by Y. Le Jan and A.A.S. Sznitman in [START_REF] Jan | Cascades aléatoires et équations de navier-stokes[END_REF] for the incompressible Navier-Stokes system, for existence results. After, the analytic regularity was studying by P. G. Lemarié-Rieusset in [START_REF] Lemarié-Rieusset | Une remarque sur l'analyticité des solutions milds des équations de navier-stokes dans r 3[END_REF] and W. Deng, M. Paicu and P. Zhang in [START_REF] Deng | Remarks on the decay of fourier coefficients to solution of navier-stokes system[END_REF] for the global mild solution of incompressible Navier-Stokes system. The introduction of pseudo-measure spaces is motivated by [START_REF] Chamorro | Frequency decay for navier-stokes stationary solutions[END_REF], related to the theory of turbulences (see also [START_REF] Chamorro | On the kolmogorov dissipation law in a damped navier-stokes equation[END_REF] and [START_REF] Biryuk | Bounds on kolmogorov spectra for the navier-stokes equations[END_REF]). These spaces are particular case of homogeneous Besov spaces construct over the shift-invariant Banach space of distributions. Here, the so-called shift-invariant Banach space of distributions is the pseudo-measure space P M 0 (see [START_REF]Chapman & Hall/CRC Research Notes in Mathematics Series[END_REF] for more details).

Critical space

We supposed that d ≥ 2. Here, we want to investigate the existence and regularity for the Cauchy problem associated to (3) in critical spaces, related to the invariance by scaling. The invariance by scaling is the main thread for finding some appropriate functional framework. Let us first recall the notion of scaling for the system (3) (see [START_REF] Danchin | Existence of solutions for compressible fluid models of korteweg type[END_REF] or [START_REF] Haspot | Global strong solution for the korteweg system with quantum pressure in dimension n ≥ 2[END_REF] ). If (a, u) solves (3), then so does (a λ , u λ ), where

a λ := a(λ 2 •, λ•) and u λ := λu(λ 2 •, λ•),
and λ ∈ R * . This observation leads to the notion of critical spaces. We say that a functional space is a critical space for (3) if for all positive real numbers λ, the associated norm is invariant under the transformation (a, u) -→ (a λ , u λ ), up to a constant independent of λ. This suggests to choose initial data (a 0 , u 0 ) in the space whose norm is invariant for all positive real number λ by (a 0 , u 0 ) → (a 0 (λ•), λu 0 (λ•)). If we deal with a pseudo-measure space, a natural candidate is the space P M d ×P M d-1 . According to the discussion of the critical spaces, the space-time functional space that we investigate in this paper is the following Kato space. We observe that the space K p,d ∞ ×K p,d-1 ∞ verifies the invariance by scaling. The Kato spaces is useful to establish Kato types theorems (see [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der mathematischen Wissenschaften[END_REF] and [START_REF] Chemin | On the radius of analyticity of solution to semi-linear parabolic systems[END_REF]), such as theorem 5.1.1. We use this Kato spaces to establish global existence and regularity results. This proposition means that we can express u ∈ P M r (R d ), whose Fourier transform have an exponential decay, as the trace on R d of a function which is holomorphic on some strip S σ .

Radius of analyticity

Main results

We recall that d ≥ 2. Let's assume that p > 2 is such that d -3 + 4 p > 0. This condition ensures that nonlinear terms are well defined. We introduce the space X T of (a, u)

∈ (K p,d-1 T ∩ K p,d T ) × K p,d-1 T
, that we equip with the norm defined by (a, u)

X T := max{ a K p,d-1 T , a K p,d T } + u K p,d-1 T .
Using the language of mild solutions of the Navier-Stokes-Korteweg system, as in [START_REF] Ferrari | Gevrey regularity for nonlinear analytic parabolic equations[END_REF], we prove the global existence and regularity of the solution to (3) which we state as follows (summing up theorem 3.2.1 and theorem 4.0.1).

Theorem 1.5.1. Given an initial data (a 0 , u 0 ) in P M d-1 × P M d × P M d-1 . If (a 0 , |D|a 0 , u 0 ) P M d-1 is small enough, then the Cauchy problem (3)-( 5) has a global solution (a, u) in the space X ∞ which space analytic at any positive time. Moreover, for any time t > 0, we have rad(a(t),

u(t)) ≥ c 0 √ t,
for some positive constant c 0 which depends only on ν, µ, κ and α.

The first observation is that the lower bound of the radius of analyticity is similar to [START_REF] Ferrari | Gevrey regularity for nonlinear analytic parabolic equations[END_REF] in the case of Besov spaces. Moreover this regularity result holds for critical initial data. In section 5, we investigate the instantaneous analytic smoothing effect of the system (3). The following theorem sums up two main results of section 5.

Theorem 1.5.2. Let δ be in ]0, 2 p ]. Let (a 0 , u 0 ) be in P M d-1+δ ∩ P M d+δ × P M d-1+δ an initial data. There exist a positive time T and an unique solution (a, u) in X T to the Cauchy problem (3)(5). Moreover, if δ = 2 p , we have

lim inf t→0 + rad(a(t), u(t)) t| ln (C 1 t)| ≥ C 2 ,
for some positive constants C 1 and C 2 .

The main interest of this theorem is the amelioration of the improvement radius of analyticity near 0, proposed by F. Charve, R. Danchin and J. Xu in [START_REF] Ferrari | Gevrey regularity for nonlinear analytic parabolic equations[END_REF]. This result adapts to our framework the new method of J.-Y. Chemin, I. Gallagher and P. Zhang in [START_REF] Chemin | On the radius of analyticity of solution to semi-linear parabolic systems[END_REF] to estimate the radius of analyticity near 0 of the solution to semi-linear parabolic system. Note compared with theorem 1.5.1, that this theorem contains a local in time existence and uniqueness result for supercritical initial data and holds for arbitrary large initial data. Additionally, we remark that the constant C 1 and the existence time interval, depend on the norm of the initial data (see theorem 5.2.3 and theorem 5.1.1).

The linearized system

Parabolic estimate for the linearized system

In this section we investigate the linearized system around (u, a) = (0, 0). This system reads

∂ t a + div(u) = F, ∂ t u -µ u -(µ + ν)∇ div(u) + α∇a -κ∇ a = G, (6) 
where F and G are externals forces assumed to be, smooth enough. For all ξ ∈ R d , we define (d + 1) × (d + 1)-matrix

A(ξ) :=            0 iξ 1 . . . . . . . . . iξ d i(αξ 1 + κξ 1 |ξ| 2 ) µ|ξ| 2 + (µ + ν)ξ 2 1 (µ + ν)ξ 1 ξ d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i(αξ d + κξ d |ξ| 2 ) (µ + ν)ξ d ξ 1 . . . . . . . . . µ|ξ| 2 + (µ + ν)ξ 2 d           
The matrix-valued symbol A is the symbol of the space derivative operator of the linearized system. For all t ≥ 0, we define

W (t) := e tA(D) .
The family of Fourier multipliers (W (t)) t≥0 is the semi-group of the linearized system.

The key point of our study of the Navier-Stokes-Korteweg system with a quantum pressure, is a point-wise estimate of the semi-group (W (t)) t≥0 (that can be found in [START_REF] Charve | Gevrey analyticity and decay for the compressible Navier-Stokes system with capillarity[END_REF] and [START_REF] Danchin | Existence of solutions for compressible fluid models of korteweg type[END_REF]). More precisely, we observe that the linear part of system (3) has a parabolic behavior.

Lemma 2.1.1. There exists a positive constant c 0 , depending only on (κ, µ), such that the following inequality holds for all ξ ∈ R d and t ≥ 0:

|( a, |ξ| a, u)|(t, ξ) κ e -c 0 t|ξ| 2 |( a, |ξ| a, u)|(0, ξ) + t 0 e -c 0 |ξ| 2 (t-τ ) |( f , |ξ| F , G)|(τ, ξ)|dτ. (7) 
This lemma gives a "parabolic decay" of Fourier modes, in order to obtain the analytic regularisation. This "transfer of parabolicity" is a remarkable property of Korteweg typs model for compressible fluids.

Global existence

Nonlinear estimates

In this section we will establish some bilinear estimate, which will be used to control the nonlinear terms of system (3). We begin by an elementary lemma where we investigate a convolution inequality. This estimate will be useful when we consider the product of two functions in pseudomeasure spaces.

Proof. If ξ = 0, it is classical that the left-hand side of ( 8) is infinite as the right-hand side this inequality. Supposed that ξ = 0. We set

R d 1 |ξ -η| α 1 |η| β dη = B(ξ,|ξ|/2) 1 |ξ -η| α 1 |η| β dη =:I 1 + B(0,|ξ|/2) 1 |ξ -η| α 1 |η| β dη =:I 2 + R d \X ξ 1 |ξ -η| α 1 |η| β dη =:I 3 .
where

X ξ := B(0, |ξ|/2) ∪ B(ξ, |ξ| 2 )
We only need to estimate I 1 , I 2 and I 3 . For the first one, let use begin by remarking that, if |ξ -η| ≤ |ξ| 2 , then, using the inverse triangular inequality, we have |η| ≥ |ξ| 2 . Therefore, we get

I 1 ≤ B(ξ,|ξ|/2) 1 |ξ -η| α dη 2 |ξ| β . (9) 
We aim to estimate the first factor to the right hand side of [START_REF] Deng | Remarks on the decay of fourier coefficients to solution of navier-stokes system[END_REF]. Using the change of variables ζ → ζ + ξ, we get

B(ξ,|ξ|/2) 1 |ξ -η| α dη = B(0,|ξ|/2) 1 |ζ| α dζ.
Considering the hypothesis α < d, we get, using polar coordinates

B(0,|ξ|/2) 1 |ζ| α dζ α,β,d 1 |ξ| α-d . (10) 
Using [START_REF] Dunn | On the thermodynamics of interstitial working[END_REF] to estimate the first factor of the right of (9), we obtain

I 1 α,β,d 1 |ξ| α+β-d .
Observing that |η| ≤ |ξ| 2 implies |ξ -η| ≥ |ξ| 2 and taking into account that β < d, from the inverse triangular inequality and using polar coordinates, we get as the same way

I 2 α,β,d B(0,|ξ|/2) 1 |η| β dη 2 |ξ| α 1 |ξ| α+β-d .
We decompose the last term, namely I 3 , in two part

I 3 = B(0,3|ξ|/2)\X ξ 1 |ξ -η| α |η| β dη + R d \B(0, 3|ξ| 2 ) 1 |ξ -η| α |η| β dη.
For the first one, we have

B(0,3|ξ|/2)\X ξ 1 |ξ -η| α |η| β dη α,β,d 1 |ξ| α+β B(0, 3|ξ| 2 ) dη α,β,d 1 |ξ| α+β-d . Observing that, if η ∈ R d \X ξ , then |ξ -η| ≥ |η|
2 and using polar coordinates and the hypothesis α + β > d, we obtain

R d \B(0,3|ξ|/2) 1 |ξ -η| α |η| β dη α,β,d R d \B(0,3|ξ|/2) 1 |η| α+β dη α,β,d 1 |ξ| α+β-d ,
that concludes the proof.

The lemma above give a point-wise estimate for the decay rate of the convolution, which is the base for considering products in the pseudo-measure spaces. As a consequence of lemma 3.1.1, we get following bilinear estimates. Lemma 3.1.2. Let a and b two homogeneous Fourier multipliers of degree 1. Let δ > 0 and let p > 2. Then, there exists a positive constant C b , that depends on δ, p, d and b such that, for every u and v in K p,d-1 T , we have

t 0 e δ(t-s) β(u, v)(s)ds K p,d-1 T ≤ C b u K p,d-1 T v K p,d-1 T , (11) 
where β(u, v) := b(D)(u • v). If p additionally satisfies d -3 + 4 p > 0, then there exists a positive constant C a , that depends of δ, p, d and a such that, for every u and v in

K p,d-1 T , we have t 0 e δ(t-s) α(u, v)(s)ds K p,d-1 T ≤ C a u K p,d-1 T v K p,d-1 T , ( 12 
)
where α(u, v)

:= u • a(D)v.
Proof. By applying the lemma 3.1.

1 with α = d -1 + 2 p and β = d -2 + 2 p | t 0 e -δ(t-s)|ξ| 2 α(u, v)(s, ξ)ds| t 0 e -δ(t-s)|ξ| 2 (| u| | a(D)v|)(s, ξ)ds, R d t 0 e -δ(t-s)|ξ| 2 | u(s, ξ -η)||η|| v(s, η)|dsdη, R d dη |ξ -η| d-1+ 2 p |η| d-2+ 2 p t 0 e -δ(t-s)|ξ| 2 s 2 p ds × u K p,d-1 t v K p,d-1 t , 1 |ξ| d-3+ 4 p t 0 e -δ(t-s)|ξ| 2 s 2 p ds u K p,d-1 T v K p,d-1 T .
Using the lemma 3.1.1 with α = β = d -1 + 2 p , we obtain by the same approach

| t 0 e -δ(t-s)|ξ| 2 β(u, v)(s, ξ)ds| t 0 e -δ(t-s)|ξ| 2 |b(ξ)|(| u| | v|)(s, ξ)ds, |ξ| R d t 0 e -δ(t-s)|ξ| 2 | u(s, ξ -η)|| v(s, η)|dsdη, |ξ| R d dη |ξ -η| d-1+ 2 p |η| d-1+ 2 p t 0 e -δ(t-s)|ξ| 2 s 2 p ds × u K p,d-1 T v K p,d-1 T , 1 |ξ| d-3+ 4 p t 0 e -δ(t-s)|ξ| 2 s 2 p ds u K p,d-1 T v K p,d-1 T .
Finally, using that the function y ∈ R + → e -δy y 1-1 p is bounded and the change of variable σ → tσ to make appear (taking into account the hypothesis p > 2) the beta function, we have

1 |ξ| d-3+ 4 p t 0 e -δ(t-s)|ξ| 2 s 2 p ds , = 1 |ξ| d-1+ 2 p t 0 e -c 0 (t-s)|ξ| 2 (δ(t -s)|ξ| 2 ) 1-1 p δ 1-1 p (t -s) 1-1 p s 2 p ds , 1 δ 1-1 p |ξ| d-1+ 2 p t 0 1 (t -s) 1-1 p s 2 p ds , t -1 p δ 1-1 p |ξ| d-1+ 2 p 1 0 1 (1 -σ) 1-1 p σ 2 p ds , t -1 p δ 1-1 p |ξ| d-1+ 2 p .
This concludes the proof of the lemma.

For the remainder of this paper, we supposed that d ≥ 2 and p > 2 is such that d -3 + 4 p > 0.

Global existence theorem

In this section we study the global existence of the solution to system (3) for critical initial data. The main result of this section is the following theorem.

Theorem 3.2.1. There exists ρ > 0 and R > 0 such that, for every (a 0 , u 0 ) in

(P M d-1 ∩ P M d ) × P M d-1 satisfying (a 0 , |D|a 0 , u 0 ) P M d-1 ≤ ρ,
there exist an unique solution (a, u) ∈ X ∞ of the Cauchy problem (3)(5), such that

(a, u) X∞ ≤ R.
The proof is based on the Banach fixed-point theorem.

Proof. First observe that for all v ∈ P M d-1 , since the function y ∈ R + → e -c 0 y y 1 p is bounded by 1 (because 1 p < 1), we have

e -c 0 t|ξ| 2 t 1 p | v(ξ)||ξ| d-1+ 2 p = e -c 0 t|ξ| 2 (c 0 t|ξ| 2 ) 1 p | v(ξ)||ξ| d-1 c 1 p 0 ≤ 1 c 1 p 0 v P M d-1 , hence e c 0 t v K p,d-1 ∞ ≤ 1 c 1 p 0 v P M d-1 . (13) 
It follows from lemma 2.1.1 and (13) that, for all (a 0 , u 0 )

∈ (P M d-1 ∩ P M d ) × P M d-1 , we have W (•)(a 0 , u 0 ) ∈ K p,d-1 ∞ and W (t)(a 0 , u 0 ) X∞ ≤ C (a 0 , |D|a 0 , u 0 ) P M d-1 . ( 14 
)
where C is a positive constant, that depends only on c 0 , p and d. Combining lemma 2.1.1 and the lemma 3.1.2, we get the following estimates : for every a and b in K p,d-1

T ∩ K p,d
T and for all u and v in K p,d-1

T , t 0 W (t -s)f (u, a)(s)ds K p,d-1 ∞ ≤ C f u K p,d-1 ∞ a K p,d-1 ∞ , (15) 
t 0 W (t -s)|D|f (u, a)(s)ds K p,d-1 ∞ ≤ Cf u K p,d-1 ∞ a K p,d ∞ , ( 16 
) t 0 W (t -s)g 1 (u, v)(s)ds K p,d-1 ∞ ≤ C g 1 u K p,d-1 ∞ v K p,d-1 ∞ , ( 17 
) t 0 W (t -s)g 2 (u, a)(s)ds K p,d-1 ∞ ≤ C g 2 u K p,d-1 ∞ a K p,d ∞ , ( 18 
) t 0 W (t -s)g 3 (a, b)(s)ds K p,d-1 ∞ ≤ C g 3 a K p,d T b K p,d ∞ , (19) 
where positive constants C f , Cf , C g 1 , C g 2 and C g 3 only depends of d, p and c 0 . For any positive real numbers R, we denote by B(0, R) the ball of center 0 and radius R in X T .

Φ :

X ∞ → X ∞ (a, u) → W (•)(a 0 , u 0 ) + • 0 W (• -s)(f (u, a)(s), g(u, a)(s))ds,
where (a 0 , u 0 )

∈ (P M d-1 ∩ P M d ) × K d-1
are the initial data. The goal is to prove the existence of a fixed point for Φ. We assume that

(a 0 , |D|a 0 , u 0 ) P M d-1 < ρ, (20) 
for ρ > 0, small enough, which we will be fixed later. We begin by proving that for some radius R > 0, small enough, the ball B(0, R) is stable by Φ. If (a, u) is in B(0, R), then, we deduce from ( 14), ( 15), ( 16), ( 17), ( 18), ( 19) and (20) that

Φ(a, u) X∞ ≤ 5K Φ R 2 . ( 21 
)
where

K Φ := max{C f , Cf , C g 1 , C g 2 , C g 3 }. Now, we assume that R satisfies 5K Φ R < 1 2 , (22) 
and we set

ρ := R 2 C . (23) 
For R > 0 satisfying (22) and for this choice of ρ, using ( 21) and ( 14), we get for all (a, u) in B(0, R) Φ(a, u) X∞ < R, which means that B(0, R) is stable by Φ. Let (a, u) and (b, v) be in X ∞ . We have

f (u, a) -f (v, b) = f (u, a -b) + f (u -v, b), g 1 (u, u) -g 1 (v, v) = g 1 (u -v, u) + g 1 (v, u -v), g 2 (u, a) -g 2 (v, b) = g 2 (u, a -b) + g 2 (u -v, b), g 3 (a, a) -g 3 (b, b) = g 3 (a -b, a) + g 3 (b, a -b).
Thus , applying ( 15), ( 16), ( 17), ( 18) and (19), we deduce, from the triangular inequality, that

Φ(a, u) -Φ(b, v) X∞ ≤ K Φ ( u -v X∞ ( b X∞ + u X∞ + v X∞ + 2 |D|b X∞ ) + a -b X∞ u X∞ + |D|(a -b) X∞ (2 u X∞ + |D|a X∞ + |D|b X∞ )) ≤ 8K Φ (a, u) -(b, v) X∞ ( (a, u) X∞ + (b, v) X∞ ).
Now, if we take (a, u) and (b, v) in the ball B(0, R), from previous inequalities, it follows that

Φ(a, u) -Φ(b, v) X∞ ≤ 16K Φ R (a, u) -(b, v) X∞ .
However, from (22), we get

16RK Φ < 1. (24) 
Now, assume that R satisfies (24). Since, (24) implies ( 22) , then, for ρ given by ( 23), Φ is a strict contractive map of B(0, R) into itself. We conclude with Banach fixed-point theorem (see [START_REF] Brezis | Functional Analysis, Sobolev Spaces and Partial Differential Equations[END_REF], theorem 5.7).

As a by-product of the proof of this theorem, we obtain the following result.

Corollary 3.2.2. Let T > 0. Let (a 0 , u 0 ) be in (P M d-1 ∩ P M d ) × P M d-1 .There exists two positive constants C 1 and C 2 that depends only of µ,ν, p and d such that, for all solutions (a, u) of (3) in X T , we have

(a, u) X T ≤ C 1 (a 0 , |D|a 0 , u 0 ) P M d-1 + C 2 (a, u) 2 X T .

Analyticity for global solution

The purpose of this section is to prove the analyticity of some global solution constructed in the previous section. Furthermore, we give an lower bound of the radius of analyticity. This result holds for small enough critical initial data. We investigate later the case of supercritical data.

Theorem 4.0.1. Let ρ and R as in theorem 3.2.1. For every (a 0 , u 0 ) in the space

(P M d-1 ∩ P M d ) × P M d-1 such that (a 0 , |D|a 0 , u 0 ) P M d-1 ≤ ρ 2e 2c 0 ,
the solution of the Cauchy problem (3)-( 5) given by the theorem 3.2.1 is analytic in space for every time t > 0 with a radius of analyticity bounded below by c 0 √ t.

The proof of the global existence for analytic solutions follows the main scheme than the proof of global existence. The difference is the choice of the functional space where we look for the fixed point. The idea is to consider a weighted norm of the form e δ √ t|D| , where δ √ t gives a radius of analyticity for the solution at any positive time t. This method is well-known (see [START_REF] Charve | Gevrey analyticity and decay for the compressible Navier-Stokes system with capillarity[END_REF] for this system). We begin by a version of lemma 3.1.2, with analytic norm. We recall that d ≥ 2 and p > 2 is such that d -3 + 4 p > 0. Lemma 4.0.2. Let T be in ]0, +∞]. Let a and b two homogeneous Fourier multipliers of degree 1. Then for every u and v in the Kato space K p,d-1 T , we have

t 0 e c 0 (t-s) A t (u, v)(s)ds K p,d-1 T ≤ 2 1-1 p e 2c 0 C a e c 0 √ t|D| u K p,d-1 T e c 0 √ t|D| v K p,d-1 T , ( 25 
) t 0 e c 0 (t-s) B t (u, v)(s)ds K p,d-1 T ≤ 2 1-1 p e 2c 0 C b e c 0 √ t|D| u K p,d-1 T e c 0 √ t|D| v K p,d-1 T , (26) where, for all t > 0, A t (u, v) := e c 0 √ t|D| (u • a(D)v) and B t (u, v) := e c 0 √ t|D| (b(D)(u • v)).
Proof. We adapt the proof of the lemma 3.1.2. The additional key point that we need here is the inequality

e -c 0 2 (t-s)|ξ| 2 e -c 0 √ s|ξ-η| e -c 0 √ s|η| ≤ e 2c 0 e -c 0 √ t|ξ| . ( 27 
)
From the inverse triangular inequality, it follows that -√ s|ξ -η| -√ s|η| ≤ -√ s|ξ|. Hence, for establish (27), it is enough to prove that

I := ( √ t - √ s)|ξ|(1 -( √ t + √ s) |ξ| 2 ) ≤ 2. If √ t|ξ| ≥ 2, we deduce that I ≤ 0 ≤ 2 and if √ t|ξ| < 2, then I ≤ √ t|ξ| ≤ 2.
Then we obtain the expected upper bound for I, that concludes the proof of the lemma.

In lemma 4.0.2, constants C a and C b are the same as in lemma 3.1.2. We can also notice the presence of a factor 2 1-1 p unlike the non analytic version. To deal with the analytic setting, we introduce the analytic space Y T of (a, u)

∈ (K p,d-1 T ∩K p,d T )×K p,d-1
T , that we equip with the norm defined by

(a, u) Y T := max{ e c 0 √ t|D| a K p,d-1 T , e c 0 √ t|D| a K p,d T } + e c 0 √ t|D| u K p,d-1 T .
Proof of theorem 4.0.1. First, we remark that for every ξ ∈ R d and positive time t, we have e -c 0 t|ξ| 2 (t|ξ| 2 )

1 p e c 0 √ t|ξ| = 2 c 0 1 p × e -c 0 2 t|ξ| 2 c 0 2 t|ξ| 2 1 p × e c 0 √ t|ξ| e -c 0 2 t|ξ| 2 . ( 28 
)
Since 1 p < 1, the second factor of the right-hand side of the previous identity is lower than 1. Using the inequality (27), the third factor to the right-hand of (28) is increased by e 2c 0 . Hence, for all v ∈ P M d-1 , we have

e -c 0 t|ξ| 2 t 1 p e c 0 √ t|ξ| | v(ξ)||ξ| d-1+ 2 p ≤ 2 1 p e 2c 0 c 1 p 0 v P M d-1 .
We suppose that the initial data (a 0 , u 0

) ∈ P M d-1 ∩ P M d ) × P M d-1 satisfy (a 0 , |D|a 0 , u 0 ) P M d-1 < ρ, (29) 
for some positive real number ρ, small enough. Using the lemma 4.0.2, we deduce by the same way of the proof of global existence, that for a radius R := 

Ψ : Y ∞ → Y ∞ (a, u) → W (•)(a 0 , u 0 ) + • 0 W (• -s)(f (u, a)(s), g(u, a)(s))ds,
have a unique fixed-point (a, u) in the ball of center 0 and radius R in Y ∞ .

Furthermore, if the initial data (a 0 , u 0 ) satisfy (29), using ρ < ρ, we deduce the existence of a global solution, constructed as the unique 1 fixed point of Φ in the ball B(0, R) of X ∞ . Moreover the fixed-point of Ψ found previously, namely (a, u), is in the ball B(0, R) of the space X ∞ and is the unique fixed-point of Φ in this ball. Indeed, it is enough to observe that

Φ(a, u) X∞ ≤ Ψ(a, u) Y∞ ≤ R < R,
keeping in mind that ρ < ρ. In particular, we conclude that, if the initial data (a 0 , u 0 ) satisfy (29), the solution of theorem 3.2.1 is analytic and, at any positive time t, its radius of analyticity is bounded below by c 0 √ t.

5 Estimate near 0

Now, we turn our attention to the case of supercritical initial data. First we give a local in time existence and uniqueness theorem (in the subsection 5.1), so-called Kato type theorem. This result holds for supercritical initial data, wich we will pick arbitrarily large. In the subsection 5.2, we establish the analyticity of the solution with supercritical initial data and give the same lower bound as in the case of critical initial data. To end this section, we investigate in the subsection 5.3 the instantaneous smoothing effect, giving a better estimate of the radius of analyticity near 0. This last result constitutes the main novelty of this paper, related to the study of the radius of analyticity for Navier-Stokes-Korteweg type system.

Kato type theorem for local existence with supercritical data

In order to give a better estimate of the radius of analyticity in the neighbourhood of 0, we need to obtain a local existence results for supercritical initial data, namely in the space P M d-1+δ ∩ P M d+δ ×P M d-1+δ . Our goal here is to prove a Kato type theorem to obtain the local existence which will be proved by a Banach fixed point argument.

Theorem 5.1.1. Let δ in ]0, 2 p ]. For any initial data (a 0 , u 0 ) ∈ P M d-1+δ ∩ P M d+δ × P M d-1+δ , there exists a positive real number T such that the Cauchy problem (3)(5) has a unique solution (a, u) in the space X T . Moreover, there exists a positive constant c δ , that does not depend on the initial data (a 0 , u 0 ), such that T ≥ c δ (a 0 , |D|a 0 , u 0 )

-2 δ P M d-1+δ .
Compared with the global existence (theorem 3.2.1) this theorem give the uniqueness of the solution during the existence time. Furthermore, we don't need any smallness assumptions on the initial data, but the existence interval gets smaller as the norm of the initial data gets bigger.

Proof. Let (a 0 , u 0 ) be in P M d-1+δ ∩ P M d+δ × P M d-1+δ and T a positive time will be chosen later. Let v ∈ P M d-1+δ . We deduce from the lemma 2.1.1 that

W (t)v K p,d-1 T e c 0 t v K p,d-1 . (30) 
Furthermore, since the function 1 We recall that the fixed-point of the Banach fixed-point, like in [START_REF] Brezis | Functional Analysis, Sobolev Spaces and Partial Differential Equations[END_REF] 

y ∈ R + → e -c 0 y y 1 p -δ 2 is bounded, for every t ∈ [0, T ] and ξ ∈ R d we have e -c 0 t|ξ| t 1 p | v(ξ)||ξ| d-1+ 2 p c 0 ,p,δ T δ 2 v P M d-1+δ ,
theorem 5.7, is unique hence e c 0 t v P M d-1+ 2 p c 0 ,p,ρ T δ 2 v P M d-1+δ .
From (30) and the estimate above, we conclude that there exist a positive constant Cδ , such that

W (t)(a 0 , u 0 ) X T ≤ Cδ T δ 2 (a 0 , |D|a 0 , u 0 ) P M d-1+δ . (31) 
Now, we consider the map

Φ : X T → X T (a, u) → W (•)(a 0 , u 0 ) + • 0 W (• -s)(f (u, a)(s), g(u, a)(s))ds.
As in the proof of the global existence theorem, for some positive radius R, if (a, u) and (b, v) in B(0, R) we have

Φ(a, u) -W (•)(a 0 , u 0 ) X T ≤ 5K Φ R 2 , (32) 
Φ(a, u) -Φ(b, v) X T ≤ 16K Φ R (a, u) -(b, v) X T . (33) 
Assume that the radius R and the time T satisfy

16RK Φ < 1 and T = c δ (a 0 , |D|a 0 , u 0 ) -2 δ P M d-1+δ
where c δ := R 2 Cδ δ 2 . Then, using (31), ( 32) and (33), we observe that Φ is an contraction of the ball B(0, R) of X T into itself. We conclude the proof by applying the Banach fixed-point theorem.

As the previous section, we can get the analyticity of solutions with an estimate of the radius of analyticity. Theorem 5.1.2. Let δ in ]0, 2 p ]. For any initial data (a 0 , u 0 ) ∈ P M d-1+δ ∩ P M d+δ × P M d-1+δ , there exists a positive real number T such that the Cauchy problem (3)(5) has unique solution (a, u) in the space X T , such that for all t ∈]0, T ], (a(t), u(t)) is real analytic with rad((a(t), u(t))) ≥ c 0 √ t.

Moreover, there exists a positive constant d δ , that does not depend on the initial data (a 0 , u 0 ), such that T ≥ d δ (a 0 , |D|a 0 , u 0 )

-2 δ P M d-1+δ .
Proof. Let (a 0 , u 0 ) be in P M d-1+δ ∩ P M d+δ ∩ P M d-1+δ and T a positive time that will be chosen later. Now, we pick v in P M d-1+δ . The lemma 2.1.1 provides

e c 0 √ t|D| W (t)v K p,d-1 T e c 0 t e c 0 √ t|D| v K p,d-1 T . (34) 
Moreover, for all t ∈ [0, T ], we have

e -c 0 t|ξ| 2 t 1 p e c 0 √ t|ξ| | v(ξ)||ξ| d-1+ 2 p = t δ 2 e -c 0 2 t|ξ| 2 (t|ξ| 1 p -1 δ ) × | v(ξ)||ξ| d-1+δ × e -c 0 2 t|ξ| 2 e c 0 √ t|ξ| ≤ T δ 2 c 0 2 1 p -δ 2 e 2c 0 c P M d-1+δ .
Combining the last estimate and (34), we get

e c 0 √ t|D| W (t)v K p,d-1 T T δ 2 v P M d-1+δ .
Hence, there exists a positive constant D δ such that

W (t)(a 0 , u 0 ) Y T ≤ D δ T δ e c 0 √ t|D| (a 0 , |D|a 0 , u 0 ) P M d-1+δ . (35) 
Now we consider the map

Φ : Y T → Y T (a, u) → W (•)(a 0 , u 0 ) + • 0 W (• -s)(f (u, a)(s), g(u, a)(s))ds.
Let R be a positive radius that will be chosen later. From the lemma 4.0.2, we deduce that there exists a positive constant K Φ such that, for all (a, u) and (b, v) in the ball B(0, R) of Y T , we have

Φ(a, u) -W (•)(a 0 , u 0 ) Y T ≤ 5K Φ R 2 and Φ(a, u) -Φ(b, v) Y T ≤ 16K Φ R (a, u) -(b, v) Y T .
For R > 0 and T such that

16RK Φ < 1 and T = d δ (a 0 , |D|a 0 , u 0 ) -2 δ P M d-1+δ
,

where δ := R 2D δ δ 2
, as in the proof of theorem 5.1.1, from the Banach fixed-point theorem we conclude that there exists an unique fixed-point (a, u) ∈ Y T of Φ which solve (3) [START_REF] Chamorro | On the kolmogorov dissipation law in a damped navier-stokes equation[END_REF]. Since (a, u) ∈ Y T , for all t in ]0, T ], we get rad((a(t), u(t))) ≤ c 0 √ t, which completes the proof.

Estimate of the radius of analyticity

In this section we show an improvement of the estimate of the radius of analyticity near 0. We will adapt the method used by J.-Y. Chemin, I. Gallagher and P. Zhang in [START_REF] Chemin | On the radius of analyticity of solution to semi-linear parabolic systems[END_REF] to our context, in order to obtain an estimate of the radius of analyticity when the initial data is in the space

(P M p,d-1+ 2 p ∩ P M p,d+ 2 p ) × P M p,d-1+ 2 p . For f ∈ L 1 loc [0, T ]; S (R d ) , we set f (t) := e -λ 2 4(1-ε)c 0 t T + λt √ T |D| f (t) (t ∈ [0, T ]) (36) 
For all T > 0 and for each t ∈ [0, T ] and ε > 0, we define the Fourier multiplier

θ(t, D, ε) := - λ 2 4(1 -ε)c 0 t T + λ t √ T |D|.
In order to study the radius of analyticity, we begin to establish some nonlinear estimate in the new analytic norm provided by e θ(•,D,ε) .

Lemma 5.2.1. Let ε > 0 and T > 0. For α, β, u and v as in lemma 3.1.2, we have the following inequalities

t 0 e c 0 (t-s) α t (u, v)(s)ds K p,d-1 T ε,c 0 e λ 2 4(1-ε)c 0 u K p,d-1 T v K p,d-1 T , ( 37 
) t 0 e c 0 (t-s) β t (u, v)(s)ds K p,d-1 T ε,c 0 e λ 2 4(1-ε)c 0 u K p,d-1 T v K p,d-1 T , (38) 
where α t := e θ(t,D,ε) α and β t := e θ(t,D,ε) β.

Proof. First, we recall some properties of symbols of θ(t, D, ε). For every t and s in [0, T ] and for all ξ and η in R d , we have

θ(t, ξ, ε) = θ(t -s, ξ, ε) + θ(s, ξ, ε), (39) 
θ(t, ξ, ε) -c 0 t|ξ| 2 = - λ 2 4(1 -ε)c 0 t T + λ t √ T |ξ| -c 0 t|ξ| 2 ≤ εc 0 t|ξ| 2 , (40) 
θ(t, ξ, ε) ≤ θ(t, ξ -η, ε) + θ(t, η, ε) + λ 2 4(1 -ε)c 0 t T . (41) 
Let ξ ∈ R d . Using (39) and ( 40), for all t ∈ [0, T ], we get

| t 0 e -c 0 (t-s)|ξ| 2 α t (u, v)(s, ξ)ds| ≤ | t 0 e -c 0 (t-s)|ξ| 2 +θ(t-s,ξ,ε) e θ(s,ξ,ε) α(u, v)(s, ξ) ds|, ≤ t 0 e -εc 0 (t-s)|ξ| 2 e θ(s,ξ,ε) | α(u, v)(s, ξ)| ds.
Therefore, we deduce from (41) that, for all s ∈ [0, T ], we have

e θ(s,ξ,ε) | α(u, v)(s, ξ)| e θ(s,ξ,ε) | u(s, ξ -η)||η|| v(s, η)|dη, e λ 2 4(1-ε)c 0 s T | u(s, ξ -η)||η|| v(s, η)|dη, e λ 2 4(1-ε)c 0 | u(s, ξ -η)||η|| v(s, η)|dη, e λ 2 4(1-ε)c 0 s 2 p dη |ξ -η| d-1+ 2 p |η| d-1+ 2 p u K p,d-1 T v K p,d-1 T .
Using the lemma 3.1.1, we obtain

e θ(s,ξ,ε) | α(u, v)(s, ξ)| e λ 2 4(1-ε)c 0 |ξ| d-3+ 4 p s 2 p u K p,d-1 T v K p,d-1 T . (42) 
Similarly to the end of the proof of the lemma 3.1.2, we deduce from (42), that

| t 0 e -c 0 (t-s)|ξ| 2 α t (u, v)(s, ξ)ds| e λ 2 4(1-ε)c 0 t 0 e -εc 0 (t-s)|ξ| 2 s 2 p |ξ| d-3+ 4 p ds u K p,d-1 T v K p,d-1 T e λ 2 4(1-ε)c 0 t 1 p |ξ| d-1++ 2 p u K p,d-1 T v K p,d-1 T .
The first inequality follows. The proof of the second inequality is similar, with some modifications in the same manner as the proof of [START_REF] Ferrari | Gevrey regularity for nonlinear analytic parabolic equations[END_REF].

As in the proof of theorem 3.2.1, using lemma 5.2.1, we can prove the following estimate.

Lemma 5.2.2. Let ε > 0 and let δ be in [0, 2 p ]. Let (a 0 , u 0 ) ∈ (P M d-1+δ ∩ P M d+δ ) × P M d-1+δ an initial data and (a, u) ∈ X T a solution of the Cauchy problem (3)(5). There exist two positive constants C, which depend only of ν, µ, α and κ, and C ε , which depend only of ν, µ, α, κ and ε, such that (a, u) X T ≤ C e εc 0 t (a 0 , u 0 )

X T + C ε e λ 2 4(1-ε)c 0 (a, u) 2 X T . (43) 
The lemma above combined with a bootstrap argument is the key point to prove the following theorem, that is the main result of this section. T ln T (a 0 , |D|a 0 , u 0 )

1 p P M d-1+ 2 p ≥ 4 p . (44) 
Proof. We use a bootstrap argument. Let ε > 0. For every T ∈ [0, T ], we denote by H(T ) the following induction hypothesis,

(a, u) X T ≤ D ε e - λ 2 T 4(1-ε)c 0 , (45) 
where the positive real number λ T will be chosen later and

D ε := 1 C ε 4µC , with µ := 1 2 1 2C + 4 . ( 46 
)
If H(T ) is satisfying, we deduce from the lemma 5.2.2 that (a, u) X T ≤ C e εc 0 t (a 0 , u 0 ) X T + 1 4µ (a, u) X T , that is (a, u) X T ≤ 4µC 1 -4µ e εc 0 t (a 0 , u 0 ) X T .

For all T ∈ [0, T ], we have e εc 0 t (a 0 , u 0 ) X T ≤ D p,ε T T (a 0 , |D|a 0 , u 0 )

1 p P M d-1+ 2 p     . (48) 
According to (46), we have 4µC 1-4µ < 2. For T ∈ [0, T ε ], assuming H(T ), we deduce from (47), that T (a 0 , |D|a 0 , u 0 )

1 p P M d-1+ 2 p     ,
where R(T ) := rad(a(t), u(t)). This shows that lim inf

T →0 + R(T )
T ln T (a 0 , |D|a 0 , u 0 )

1 p P M d-1+ 2 p ≥ 4(1 -ε) p . (49) 
Since (49) holds for ε > 0 chosen arbitrarily, the theorem is proved.

For the case of critical initial data, the proof of theorem 1.3 (b) of [START_REF] Chemin | On the radius of analyticity of solution to semi-linear parabolic systems[END_REF] for the semilinear parabolic equation cannot be adjusted to our functional framework, due to the point-wise feature of pseudo-measure spaces.

A Characterization of analyticity with Fourier transform

In this appendix we prove proposition A.0.1.

Proposition A.0.1. Let r < d and σ > 0. Let u be in P M r (R d ). If e σ|D| u ∈ P M r (R d ), then u extends to a unique holomorphic function U in H(S σ ).

Proof. Since u ∈ L 1 loc (R d ), we deduce that u and | u| 2 are integrable on the a neighborhood of 0 and using that e σ|D| u ∈ P M r (R d ), it is easy to conclude that u ∈ L 1 (R d ) ∩ L 2 (R d ). Then, for almost every x ∈ R d , we have 

u(x) = 1 (2π) d
that holds for each z ∈ S σ and ξ ∈ R d , and observing that the right-hand side of (51) defines a L 1 (R d ) function that does not depend on z ∈ S σ, we deduce that U ∈ H(S σ).

Since σ is arbitrarily chosen in ]0, σ[, we deduce that U is holomorphic over S σ .

Definition 1 . 3 . 1 . 2 p 2 p

 13122 Let p, r and T be positive real numbers. We define the Kato space K p,r T as the space of u ∈ C b (]0, T ]; P M r+ ) such that the quantity u K is finite. We also define the space K p,r ∞ of u ∈ C b (]0, +∞[; P M r+ ) such that u K p,r ∞ := sup t∈]0,+∞[

IfProposition 1 . 4 . 1 .

 141 Ω is an open subset of C d , we denote by H(Ω) the set of holomorphic functions over Ω. Let r < d. If u ∈ P M r (R d ), we define the radius of analyticity of u by setting rad(u) := sup σ > 0 e σ|D| u ∈ P M r (R d ) . If u = (u 1 , u 2 , . . . , u d ) ∈ P M r (R d ) d is a vector field, we define this radius by setting rad(u) := min k∈[[1,d]] {rad(u k )}. For every σ > 0, we denote by S σ the open connected set of all z in C d such that | Im(z)| < σ. The following proposition justifies the denomination "radius of analyticity". Let r < d and σ > 0. Let u be in P M r (R d ). If e σ|D| u ∈ P M r (R d ), then u extends to an unique holomorphic function U in H(S σ ).

Lemma 3 . 1 . 1 .

 311 Let d ≥ 2. Let α and β be two real numbers such that α < d, β < d and α + β > d. Then, for all ξ ∈ R d ,

Theorem 5 . 2 . 3 . 2 p ∩ P M d+ 2 p

 52322 Let (a 0 , u 0 ) ∈ (P M d-1+ ) × P M d-1+ 2 p .If there exists a solution (a, u) ∈ X T of (3)(5)for some positive times T , then lim inf T -→0 + rad(a(t), u(t))

1 p 1 p 2 p

 112 (a 0 , |D|a 0 , u 0 )Let us defineT ε := η ε (a 0 , |D|a 0 , u 0 ) every T ∈ [0, T ε ], we have 2D p,ε T (a 0 , |D|a 0 , u 0 ) ≤ D ε . Now, for all T ∈ [0, T ],we define the positive real number λ T by setting
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 1112 (a 0 , |D|a 0 , u 0 ) (a 0 , |D|a 0 , u 0 ) This in turn shows that H(T ) holds for T ∈ [0, T ε ]. Moreover, for all T ∈ [0, T ε ], from (48), it follows T e λ T √ T |D| (a(T ), |D|a(T ), u(T )) ≤ D ε . Hence, for every T ∈ [0, T ε ], we have R(T ) ≥ 4

e

  ix•ξ u(ξ)dξ. (50)We denote by v(x) the right-hand side of this inequality. It is sufficient to prove that the function x ∈ R d → v(x) extends to a holomorphic function on S σ . If σ ∈]0, σ[, then for all z ∈ S σ, we have|e iz•ξ u(ξ)| ≤ e | Im(z)||ξ| | u(ξ)| ≤ e σ|ξ| | u(ξ)| ≤ e -(σ-σ)|ξ| |ξ| r e σ|D| u P M r .Using the hypothesis r < d, we deduce by a classical argument that the function ξ → e ix•ξ u(ξ) is in L 1 (R d ). This legitimate, for every z ∈ S σ , the definition of the quantitiesU (z) := 1 (2π) d e iz•ξ u(ξ)dξ.From |e iz•ξ u(ξ)| ≤ e -(σ-σ)|ξ| |ξ| e σ|D| u P M r ,

|ξ -η| α 1 |η| β dη α,β,d 1 |ξ| α+β-d .(8)