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Challenges and Outlook in Robotic Manipulation
of Deformable Objects

Jihong Zhu, Andrea Cherubini, Claire Dune, David Navarro-Alarcon, Farshid Alambeigi, Dmitry Beren-
son, Fanny Ficuciello, Kensuke Harada, Jens Kober, Xiang Li, Jia Pan, Wenzhen Yuan and Michael Gienger

Abstract—Deformable object manipulation (DOM) is an
emerging research problem in robotics. The ability to manipulate
deformable objects endows robots with higher autonomy and
promises new applications in the industrial, services, and health-
care sectors. However, compared to rigid object manipulation,
the manipulation of deformable objects is considerably more
complex, and is still an open research problem. Addressing
DOM challenges demand breakthroughs in almost all aspects
of robotics, namely hardware design, sensing, (deformation)
modeling, planning, and control. In this article, we review recent
advances and highlight the main challenges when considering
deformation in each sub-field. A particular focus of our paper
lies in the discussions of these challenges and proposing future
directions of research.

I. INTRODUCTION

UNTIL now, object rigidity is one of the common as-
sumptions in robotic grasping and manipulation. Strictly

speaking, all objects deform upon force interaction. Rigidity is
a valid assumption when object deformation can be neglected
in the task. Nevertheless, many objects that need to be ma-
nipulated by robots present non-negligible deformation: from
micro surgical operation to challenging industrial assemblies.

Robots need to be capable of manipulating deformable
objects to operate in human environments. This capability
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Fig. 1. Applications involving manipulation of deformable objects. Clockwise
from top left: dressing assistance [1], cable harnessing [2], fruit harvesting [3],
suturing [4]

would benefit many application fields, while posing funda-
mental research challenges. In this article, we consider a
generalized concept of manipulation where grasping is also
part of the task. We will refer to the problem as deformable
object manipulation (DOM).

The tasks involved in DOM cover a broad spectrum (see Fig.
1). These include: dressing assistance in elderly care, cable
harnessing in industrial automation, harvesting and processing
fruit and vegetables in agriculture, surgical operations in
medical services, to name a few.

On the technical side, addressing deformation introduces the
following technical challenges:

• the complication of sensing deformation,
• the high number of degrees of freedom of soft bodies,
• the complexity of non-linearity in modeling deformation.

We believe that overcoming these challenges is not only
beneficial to DOM, but can further push towards developing
autonomous robots which can operate in unstructured envi-
ronments. In recent years, there have been a few surveys
on robotic manipulation of deformable objects. Some surveys
focus on specific areas of DOM. The survey from Jimenez
[6] focuses on model-based manipulation planning. More
recently, Herguedas et al. [7] review works using multi-robot
systems for DOM while the work of [8] considers multi-
modal sensing. The authors of [9] present the state-of-the-
art on deformable object modeling for manipulation. There
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Fig. 2. A typical robotic framework for handling deformable objects. In this particular example, the framework addresses wire harness [5].

are also two comprehensive surveys in the area. The survey
in [10] reviews and classifies the state-of-the-art according
to the object’s physical properties. Lately, [11] reports most
recent advances in modeling, learning, perception, and control
in DOM.

In contrast with the mentioned surveys, which either focus
on reporting the progress of the field or a specific area, this
article aims at identifying scientific challenges introduced by
object deformations and at projecting crucial future research
directions. As DOM is an emerging field of research where
there is still much to be done, in this paper, previous works
and open problems are given equal weights. In addition,
we dedicate one section to discussing practical challenges in
various applications of DOM. We believe the paper is a first
of its kind, in the field of DOM.

A robotic framework designed to handle deformable objects
usually consists of five key components: gripper and robot
design, sensing, modeling, planning and control (See Fig. 2).
To position the current research and identify future trends, we
conducted a survey on the future perspective of deformable
object manipulation1. We shared the survey with people work-
ing in related field, at various career stages. They were asked
to rate the importance and research maturity of each of the
five identified key components, from 1 to 4, with 1 being
not important/low maturity and 4 being very important/high
maturity. We received 31 answers that are summarized on Fig.
3.

We consider the promising direction of research as the ones
that have the highest significance and the lowest research
maturity. Based on the survey, sensing is the most promising
one among all subareas. This is probably due to current boom-
ing trend in Deep Learning has offered many new methods
for processing the sensory data. In addition, sensing is the
prerequisite for subsequent steps such as modeling, planning
and control.

Accordingly, the following sections of this paper each
present one of these five research directions. In each section,
we review recent works in the field and then comment the
outlook and challenges ahead. Then, Sect. VII tries to provide

1Link to the survey: https://forms.gle/XCv2CV79yvRP5Gsd7

(a) Highest qualifications of the respondents.

(b) Means and variances of Importance and research maturity ratings of each
key component.

Fig. 3. Summary of the outcomes of the survey on DOM. We received
in total 31 answers. The respondents cover different level of qualifications
ranging from master students to full professors.

a link from research to practical applications in the context of
DOM. Finally, we summarize key messages in Sect. VIII.

II. GRIPPER AND ROBOT DESIGN

A. Current capability
Does manipulation of deformable objects demand specific

grippers as compared to manipulation of rigid objects? Gen-
erally, yes (see Fig. 4). Unlike rigid objects (which are mostly
handled by standard grippers), deformable objects are handled
with custom (and often designed ad-hoc) grippers, e.g. a 3D
printed gripper that enables cable sliding [5], a flat clip for
holding towels [12], a cylindrical tool for pushing and tapping
plastic materials [13], a soft hand for manipulating organs
[14]. Such diversity in grippers is a result of the large variety

https://forms.gle/XCv2CV79yvRP5Gsd7
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of deformable objects, which require different actions during
manipulation. To avoid designing task-specific grippers for
DOM, human-like dexterity and compliance is desired. Recent
works in this directions consider compliant design [15], [16]
and show good potential for DOM tasks.

As for the robot itself, it is rigid in most works. In some
cases, as in the surgical application showcased in [17] (Fig. 4,
bottom right), both robot and object are deformable to ensure
safety of manipulation.

Fig. 4. Various robot grippers for DOM. Clockwise from top left: a tool for
pushing and tapping on plastic materials [13], flat clips for holding a towel
[12], a gripper allowing a cable to slide [5], a soft continuum manipulator
interacting with a deformable material [17] and a soft hand for manipulating
organs [14].

B. Challenges and outlook

Improving dexterity is core to robot manipulation. The
improvement can come from different research domains, such
as accurate in-hand sensing or robust control, two aspects
which we will detail in Sections III and VI, respectively. In
this section, our focus is on gripper/robot hardware aspects.

One way of achieving such dexterity is to reproduce by
design the most dexterous gripper – the human hand. An open
question is whether anthropomorphic design is in itself the
optimal solution in all cases, especially in the context of DOM.

While having one dexterous gripper which can handle a
variety of DOM tasks is appealing, it should be noted that
additional constraints need to be considered in the design
process, for hygiene/safety in tasks such as food handling or
surgery. For instance, for surgical applications we are limited
by biocompatibility of the materials and actuators and by the
reduced available space in minimally invasive surgery. In the-
ses cases, designing task-specific grippers is more appropriate.
Non-anthropomorphic soft grippers are another emerging area
of research [18]. These grippers are promising, to overcome
the challenges associated with traditional fingered grippers in
grasping rigid objects; yet, to date, their application to DOM
receives little attention.

Otherwise, one may use a standard gripper, and provide the
robot with suitable tools to be grasped and used according
to the type of task at stake. This demands breakthroughs on
the algorithmic side, to make the robot capable of reasoning
on the proper tools for different tasks. Training the robot to
have task-specific reasoning will enhance autonomy and make
robots realize more complex tasks.

Another area worth investigating is that of soft
robots/grippers, since these have great potential for
manipulating fragile materials, such as organs or food, or for
collecting biological samples or fruits (see Fig. 5). While
traditional rigid robots need to exhibit compliant behavior
when interacting with these objects, the inherent compliance
of soft robots makes the task safe. This unconventional
paradigm of using soft robots to manipulate soft objects
will bring new challenges in modeling and control as both
the robot and the object are under-actuated and difficult to
model. One pioneering work in this direction is [21], which
adapts the finite element modeling (FEM) based inverse soft
robot model with contact handling (proposed in [22]) for
deformable objects manipulation using soft robots.

An interesting research question to consider is whether
methods can be transferred from one field to the other. To
be more specific, can methods for controlling/modeling soft
robots be applied to manipulating deformable objects and vice
versa? If so, as a community, it may be valuable to obtain
a unified approach for working with both soft robots and
deformable objects.

III. SENSING

A. Current capability

In this section, we consider visual, tactile and force sensing
for DOM. Existing research relies on these three modes to
estimate the state of deformable objects. In most cases, vision
provides global information about shapes on a large scale,
while force and tactile provide local information on both shape
and contact. At the end of this section, we also discuss the
research in contrast with this common practice, where global
deformation properties are recovered using tactile sensing. It
should also be noted that force information is particularly
important in industrial settings, e.g., for assembly [23], [24].
Vision is used in tasks such as rope manipulation [25],
[26] or cloth unfolding [27], [28], where the object exhibits
large global deformation. In these works, configurations of
deformable objects were obtained from raw image readings.
Although vision offers a global perspective of the object
configuration, visual data can be noisy in unstructured envi-
ronments, it is then important to manage occlusions [12], [29].
Most of above-mentioned works are based on 2D vision, 3D
perception of deformable objects is more challenging. Existing
works employ FEM [30] or a combination of Growing Neural

(a) Picking raspberries [19]. (b) A custom 3D printed soft
robotic gripper, grasping mush-
room coral [20]

Fig. 5. Two examples of interaction with fragile objects, which could benefit
from the use of soft robots.



ZHU et al.: ARXIV PREPRINT, CONDITIONALLY ACCEPTED FOR IEEE RA-M 4

Gas and Particle Graph Networks [31] for better tracking the
deformation. In a more recent study [32], it has been shown
that a deep convolutional neural network for processing vision
data can be used with small variations to process tactile data
for deformable objects recognition.

Objects made of soft materials, such as human tissues
and fruits, have a special force-displacement correlation upon
contact. As a result, tactile sensing can be used to estimate
the stiffness. In [33], the GelSight [34], a vision-based high-
resolution tactile sensor, measures the 3D geometry of the
contact surface, and the normal/shear forces.

Note that the division of vision for global deformation and
tactile sensing for local deformation is not absolute. The
authors of [35] present to use vision to estimate the local
deformation of objects during grasping, and classify objects
accordingly. In [36], high-resolution tactile sensing is used to
estimate the physical properties of clothing materials through
squeezing, assuming the robot can learn from the data about
indicating global properties of clothing according to a local
sampling point. In [37] an example of servoing along a cable
based on high-resolution tactile sensing is presented. Although
vision is not used, the precise measurement of the local cable
shape provides enough information to guide the robot motion
on a small scale.

B. Challenges and outlook

Here, the main challenges are: selecting appropriate sensors
for the DOM task and using the measurements to obtain
meaningful object representations.

Considering the high number of degrees of freedom (DoF)
of the deformable bodies, fusion of different sensing modal-
ities (vision, force and tactile) may be a promising direction
to pursue in future research.

Another research question to be answered is: what yields a
good representation of the object configuration? We (acknowl-
edgedly) do not have a complete answer to this; rather, we will
elaborate on considerations when designing the representation.

The representation need to be robust to noise and useful
for reconstructing the objects’ configuration – even when
data are partially unavailable. In vision, the most common
noise is occlusion. How to generate a meaningful represen-
tation of these objects under self occlusion is still an open
problem in research. For rigid objects, one can carefully
design the environment to avoid it. For deformable objects
that exhibit large global deformation such as clothes, bed
sheets etc, self occlusion is inevitable during manipulation. A
promising direction to deal with occlusion and noise is using
active/interactive perception. With vision data from different
perspectives, we might be able to reconstruct the object’s
configuration accurately even under occlusion and noise.

Apart from the above mentioned challenges, choosing a
good representation also involves leveraging two aspects:

1) the dimensionality of the representation,
2) the accuracy of the representation.

Usually the trade-off depends on the task, relies on human
intuition and involves a trial and error process. In end-to-end
reinforcement learning settings, sensory data can be mapped

directly to robot actions without explicit feature representa-
tions [38]. Human demonstrations can be used for making end-
to-end learning more efficient. One example is reported in [39].
The authors use an improved version of Deep Deterministic
Policy Gradients, trained with 20 demonstrations, to make
robots manipulate cloth. However, since such settings often
require a manually designed cost/reward function for learning,
human demonstrations in this context can also be used for
recovering the reward, with inverse reinforcement learning.

IV. MODELING

A. Current capability

For robots to perform deformation tasks using sensory data,
we need a model that captures the relationship between sensor
information and robot motion. A linear model characterized
by Young’s modulus can be employed for describing elastic
deformation. The two other classes of deformation are: plastic,
and elasto-plastic deformations. This classification serves well.
Yet, since the model should be used for control, in this section,
we prefer to distinguish between local and global models –
a taxonomy which has clearer implications for control. We
introduce the corresponding research and – at the end of
the section – we discuss the limitations of these models and
present works that address them.

Most local models approximate the perception/action rela-
tionship via a Jacobian Matrix (called Interaction Matrix in
visual servoing). Such a model is linear and can be computed
in real-time with a small amount of data. Yet, since it is a
local model, it should be continuously updated during task
execution. Model updating methods include: Broyden rule
[17], receding horizon adaption [40], local gradient descent
[41], QP-based optimization [42], and Multi-armed Bandit-
based methods [43]. Another advantage of the Jacobian model
is that one can design a simple controller by inverting it.
However, since this controller is local, it should operate via a
series of intermediate target shapes [40], [42].

On the other hand, global models can be approximated
with Finite Element Methods [44] and also (deep) neural
networks. In contrast to simple linear models, (D)NN-based
approaches benefit from stronger representation power, in
terms of accuracy and robustness [45]. Moreover, they can
incorporate physics models and reason about object interaction
[46]. These models can approximate highly nonlinear systems
and have a larger validity range, solving (to some extent)
the locality issue of the linear models. Nevertheless, these
complex nonlinear representations demand large amounts of
data (which might not be available in some cases).

Yet, whether we use analytical or learned models, their
predictive power will be limited. They are either specialized
to some class of tasks or learned from a set of training
data. Especially for the learned models, we can never hope
to collect enough data to produce an accurate model in the
entire state space (which is high dimensional). Thus [47] and
[48] have developed methods to reason about the validity of
a (learned) model for a given state and action, and have used
these methods to reason about model uncertainty in planning
and control. However, when the model is not precise, a re-
planning/recovery might be desirable. The authors of [49]
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introduces two neural networks for learning and re-planning
the motion when the model is unreliable.

B. Challenges and outlook

The complexity of modeling is manifested in the lack of
simulators. While most existing robotic simulators are capable
of producing rigid body kinematics and dynamic behaviours,
only a fraction of them can handle deformation. One recent
work, Softgym [50] was proposed for bench-marking DOM
based on Nvidia Flex. In the soft robotics community, SOFA
[51] and Chainqueen [52] are example simulators. In Sect.
II-B, we considered the interaction between soft robots and
deformable objects. Thus, a unified simulator that is able to
handle soft robots and objects, and model their interaction
might be desirable.

When choosing a model for control, one challenge of data-
driven deformation modeling is to balance region of validity
with number of data required for training. One possible direc-
tion is to combine a simple model with a complex nonlinear
model to form a hierarchical model. An example of such
structures is exploited in [53] for robust in-hand manipulation.
For DOM tasks, we can have a linear model at lower level,
and a (D)NNs learning the full model at higher level. The
lower level model can be learned in few iterations to enable
instant interaction between robot and object. The higher level
(D)NN can collect data and improve the model to enhance
global convergence.

V. PLANNING

A. Current capability

Planning aims at finding a sequence of valid (robot/object)
configurations and contributes to solving the problem of lim-
ited validity of local models, as discussed in Sect. IV.

Planners can operate in the objects’ configuration space, and
sometimes rely heavily on physic-based simulation. While the
obtained plan can be visually plausible, it may be unrealizable
for a specific object. Recently, McConachie et. al. presented
a framework which combines global planning without physics
simulation, with local control [54]. For an elastic object,
considering its energy is another way to do planning; in this
direction, Ramirez-Alpizar et al. [55] proposed a dual-arm
manipulation planner optimizing the elastic energy, for elastic
ring-shaped objects manipulation. For DOM tasks involv-
ing multiple robots, planning is important for coordination.
Alonso-Mora et al. employed a distributed receding horizon
planner for transporting tasks that require multiple robots [56].
More recently, [57] learns a latent representation for semantic
soft object manipulation that enables (quasi) shape planning
with deformable objects.

With Learning from Demonstration (LfD), the robot can
be trained to manipulate deformable objects by an expert
(usually a human). LfD encodes the robot trajectory and inter-
action force from human demonstrations [58], thus avoiding
explicitly planning the motion. More recently, Wu et al. have
proposed a reinforcement learning scheme for DOM, which
does not require initial demonstrations [59].

B. Challenges and outlook

A rigid object configuration can be described in space with
6 DoF, whereas a deformable object configuration has a much
higher number of DoF. To address this from the sensing algo-
rithm side, one can find a compact representation from sensory
data, as discussed in Sect. III-B. An alternative, which receives
much less attention, is the use of environmental contacts to
constrain some DoF of deformable objects. Examples include
the use of contact points in cable harness or that of flat surfaces
when folding clothes. We argue that instead of planning to
avoid contacts as most planners do, for deformable objects,
we need to plan to make contact, since this constrains the
configuration, and therefore simplifies the task.

Planning to grasp the correct point is often crucial in DOM
tasks. For instance, grasping at convex vertices of the clothes
guarantees stability and facilitates the task [60]. Re-grasp
planning is highly relevant when considering tasks which
require multiple robotic arms. Additional challenges come
from perception, since as soon as the robot releases one or
more grasp(s), the object is likely to change its configuration.
We rely on sensing to track configuration changes and then
plan accordingly.

Another important future work in planning is reasoning
about a deformable object at a semantic level. What does it
mean for a cloth to be folded? What does it mean for an object
to be wrapped in paper? We cannot manually specify all the
configurations of the deformable object to use as goals in these
kinds of tasks. Instead, we need a way to learn the meaning
of semantic concepts, such as folded or wrapped, so that we
can determine if a given configuration of the object is a valid
goal.

VI. CONTROL

A. Current capability

Control aims at designing inputs for the robot to realize the
planned motion. The type of controllers is decided usually
by the task. For instance, the authors employed a data-
driven model predictive control [61] for cutting considering
its predictive nature and the lower demand for manual tun-
ing. For safe interaction in minimally invasive surgery, the
authors of [62] used a fuzzy compensator with impedance
control. For controlling large deformation, Aranda et al.,
proposed a Shape-from-Template algorithm concerning its low
dimensional representation (using the template) and robustness
against occlusion [63].

A number of works focus on shape control. While global
models directly map sensor data to robot motion, local models
must be inverted to design the robot motion controller (see
Sec. IV). Several applications of the control scheme for
robotic manipulation of deformable objects can be found in
3C manufacturing [64], [65], where vision-based controllers
were proposed to drive the robot to automatically grasp/contact
the deformable object, then carry out the task of active
deformation or separation/sorting. Other works consider the
concept of diminishing rigidity to do deformation control [66],
[67].
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B. Challenges and outlook

Feedback control has been commonly used in most DOM
works, by referring to the state of the object, to achieve the
task. Note that such state is retrieved from the output of its
deformation model and measured with sensors, and that output
and state do not necessarily have the same representation and
dimension. Furthermore, we can distinguish between model-
based and model-free control. Due to the complexity of
modeling the deformation, when using the model to derive
control policies, the controller has to take into account that
the model will be inaccurate or even wrong.

Model-free approaches do not require information about
the deformation parameters or the structure of the deforma-
tion model. Examples include LfD or (Deep) reinforcement
learning, where the challenges are: efficient use of data, and
policy generalization. To address these issues, we can combine
the offline and online learning methods. In the offline phase,
the supervised network can be trained to estimate the model,
by collecting pairs of a series of predefined inputs (e.g., the
velocity of the robot end-effector) and the deformation of
the object. The estimated model in the offline phase can be
further updated online during the control task with adaption
techniques (e.g., the adaptive NNs), to compensate the errors
due to insufficient training in the offline phase or the changes
of the deformation model. Hence, both complement each other.

When multiple features on the deformable object are con-
trolled in parallel, the system becomes under-actuated, with
less control inputs than error outputs. Then, the robot con-
troller should be able to deal with the conflicts between
multiple features or decouple the control of multiple features
in a sequential manner, to guarantee controllability.

In addition, due to the deformation during control, the
contact between robot end-effector and deformable object may
not always be maintained. Most existing systems require a
certain level of human assistance to initiate the contact or
to re-establish it, if it is lost during the task. To improve
autonomy, the robot controller should automatically grasp or
touch the object first, whenever physical contact is lost, laying
the foundation of the subsequent manipulation task. Such a
capability would allow the robot to effectively deal with the
unforeseen changes due to deformation.

VII. PRACTICAL APPLICATIONS

In previous sections, we centered our discussions from a
scientific point of view, here, we instead discuss challenges
in various applications where DOM can be translated to
solutions.

Automatic laundry: A typical domestic application of
DOM is laundry folding. A Tokyo-based company unveiled its
prototype laundry-folding robot in 2015 (Fig. 6a). However,
the company was announced bankrupt in 2019 due to lack
of funding for development and difficulties in improving the
robot to reach a satisfactory level [68]. Although cloth folding
has been tackled in a few previous research [69]–[72], it
remains largely a laboratory product (limited to structured en-
vironments, certain types of the clothes, etc). Commercializing
the technology seems requiring a substantial efforts.

Assistive dressing: Robotic dressing assistance has the
potential to become an important technology due to the press-
ing needs for ageing society support. Research can roughly
be categorized into simulation-based learning [73], [74] and
imitation learning [75] approaches. Examples are dressing
support for shoes [76], shirts [77]–[79] and pants. However,
several technical and societal challenges have to be addressed
before robot-assisted dressing will become a broadly used
DOM technology: physical safety for the human, modeling and
prediction of the human-robot interaction, robustness for large
variations of geometric and dynamic properties of textiles,
low-cost high-reliable robot hardware, human acceptance of
such technologies.

Surgical robotics: Soft tissue manipulation is mainly per-
formed with tele-operation solely using visual feedback. Au-
tonomous manipulation, however, still has a long way to go
and demands developing various DOM hardware and software
(Fig. 6d). The biggest concern for an autonomous solution is
the safety of operation. A soft robot with intrinsic compliance
will probably enhance the safety.

Food production & Retail: Handling deformable objects
is a major challenge in the whole chain from production to
sales. In an agricultural setting, automated harvesting of fruits
and vegetables requires interactions with deformable objects
that are at the same time easy to damage, which immediately
decreases their value and shelf live. Frequently, these products
also undergo an intermediate processing step (e.g., filleting and
packaging meat). More generally, deformable products (e.g.,
everything packaged in flexible bags, (Fig. 6c)) need to be
handled in warehouses, in order picking, and in restocking.
Solutions for specific applications and products have been
developed, but more complex objects and operations still are
frequently handled by human workers.

Marine robotics: Underwater grasping has been led by oil
and gas industry for decades, resulting in heavy machines
with strong grippers for inspection and maintenance tasks
(Fig. 6e). Gradually the demands turned to more detailed
tasks in marine biology, sedimentology and archaeology (Fig.
6f). Another DOM application can be found in tethered robot
umbilical modeling and control. Negative buoyancy cable can
be modeled in real time as a simple catenary shape and tracked
to control a tethered ROV [80].

VIII. SUMMARY AND KEY MESSAGES

The revolution of robots from automating repetitive tasks
to humanizing robot behaviours is taking place with better
hardware, robust sensing capabilities, accurate modeling, in-
creasingly versatile planning and advanced control. Manipu-
lation of deformable objects breaks fundamental assumptions
in robotics such as rigidity, known dynamics models and low
dimensional state space. It therefore requires breakthroughs
in all the areas mentioned above, and serves as a great test-
bench for novel ideas in both robotic hardware and software.
A summary of challenges and ideas discussed are presented
in Fig. 7.

In terms of hardware, recently, the community has been
shifting more and more from rigid to soft robots. Robotic ma-
nipulation is also gradually shifting from rigid to deformable
objects. One open question is if some of the algorithms in one
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(a)

(b) (c)

(d) (e) (f)

Fig. 6. Various applications of DOM – (a): laundry-folding robot from Seven
Dreamers Laboratories Inc. [81], (b): A mock-up for robotics dressing assis-
tance, (c): a robot picking a flexible bag of goods on the shelf, courtesy AIR-
Lab Delft [82], (d): autonomous surgical manipulation by the dVRK system
[83], (e): ROV Victor 6000 sampling black smokers (IFREMER/GENAVIR)
courtesy D. Desbruyères, (f): Ultra soft underwater gripper for jellyfish [84].

Fig. 7. A summary of open research problems and ideas/methods to pursuit
discussed in this paper. Research problems in each subarea are written with
bold black texts, whereas ideas/methods to resolve them are marked with bold
white texts in red eclipses.

field are transferable to the other? We believe the interaction
between a soft robot and a deformable object will bring more
challenges to the robotic community.

Sensing plays a vital part in robotics manipulation of
deformable objects. Depending on the nature and complexity
of the task, one or multiple fused sensing modes may be
needed. Machine learning will facilitate the development of
robust algorithms to process data from different sensors, to
generate meaningful representations of deformation.

All models are wrong, some are useful. We do not believe
there exists the “best” model for deformation. While more and
more models tend to be data-driven, we would like to draw
the readers’ attention to the importance of physical models for
studying interactions.

For planning, current research lacks a high level semantic
reasoning of the DOM task. Furthermore, while often the
purpose of planning is to avoid contact and collision, we argue
that for DOM, it can be very useful to plan for contact.

Under-actuation is a key challenge of DOM, due to the de-
formable bodies’ high DoF. Another practical issue introduced
with deformation is contact loss during manipulation; future
controllers should be able to detect contact loss and to react
accordingly.

REFERENCES

[1] “La fontaine memory care.” [Online]. Available: https://www.
lafontaine-mc.com/

[2] “Cable harness.” [Online]. Available: https://www.nai-group.com/
products/custom-cable-harness/

[3] B. G. Soe, “A woman harvesting seasonal fruit in a garden,” May
2020. [Online]. Available: https://commons.wikimedia.org/wiki/File:
A woman harvesting seasonal fruit in a garden (May 2020).jpg

[4] J. C. Mutter, “Plastic surgeon Vishal Kapoor, MD performing ab-
dominoplasty surgery.” Oct 2010. [Online]. Available: https://commons.
wikimedia.org/wiki/File:Vishal Kapoor MD TummyTuck Suture.jpg

[5] J. Zhu, B. Navarro, R. Passama, P. Fraisse, A. Crosnier, and A. Cheru-
bini, “Robotic manipulation planning for shaping deformable linear
objects with environmental contacts,” IEEE Robotics and Automation
Letters, vol. 5, no. 1, pp. 16–23, 2019.
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