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Abstract

Risk assessment of cyber-physical systems, such as power plants, con-
nected devices and IT-infrastructures has always been challenging: safety
(i. e., absence of unintentional failures) and security (i. e., no disruptions
due to attackers) are conditions that must be guaranteed. One of the
traditional tools used to consider these problems is attack trees, a tree-
based formalism inspired by fault trees, a well-known formalism used in
safety engineering. In this paper we define and implement the transla-
tion of attack-fault trees (AFTs) to a new extension of timed automata,
called parametric weighted timed automata. This allows us to parameter-
ize constants such as time and discrete costs in an AFT and then, using
the model-checker IMITATOR, to compute the set of parameter values
such that a successful attack is possible. Moreover, we add the possibility
to define counter-measures. Using the different sets of parameter values
computed, different attack and fault scenarios can be deduced depend-
ing on the budget, time or computation power of the attacker, providing
helpful data to select the most efficient counter-measure.

Keywords— security, attack-fault trees, parametric timed automata, IMITATOR

1 Introduction

In the past few years, the range of security breaches in the security of organizations
has become larger and larger. The process of unifying them by determining relations
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between and consequences of separated events has become more difficult: how to link
the presence of solid oxygen in a helium tank with the explosion of SpaceX rocket
Falcon 9 during firing tests? What is the cost for the attacker and damages caused to
SpaceX manufacturing plants? One of the tools available to help structure risk assess-
ments and security analyses is attack trees, recommended, e. g., by NATO Research
and Technology Organisation (RTO) [RR08] and OWASP (Open Web Application
Security Project) [13]. Attack trees [Sal+98] were formalized in [Kor+10] as a popu-
lar and convenient formalism for security analysis (see [KPS14] for a survey) and are
inspired by fault trees [FMC09; RS15], a well-known formalism used in safety engi-
neering. Bottom-up computation for a single parameter (e. g., cost, probability or time
of an attack), can be performed directly on attack trees [Bag+12]. Attack trees and
fault trees are quite similar but differ on their gates and/or goals [Bag+12; Kor+14].
Both are constructed with leaves that model component and attack step failures or
successes that propagate through the system via gates. While fault trees focus on
safety properties, attack trees considerate skills, resources and risk appetite possessed
by an attacker performing actions. Attack-fault trees (AFTs) [KS17] combine safety
properties from fault trees and security conditions from attack trees; therefore gates
of both fault trees and attack trees are used in this formalism.

Quantitative analysis of AFTs with multiple quantitative annotations on AFTs
like cost, time, failure probabilities—which can functionally be dependent on each
other—evaluates risks and helps to figure out the most risky scenarios and therefore
to select the most effective counter-measures.

Contribution In this work, we study a more abstract version of the security prob-
lem, and we propose an approach to synthesize times and costs necessary to individual
actions in order to perform a successful attack or individual failures causing the fail-
ure of the entire system. The global attack time and cost can then be expressed as
a combination of the parametric unit costs. To this end, we propose a formalization
of attack-fault trees using an ad-hoc extension of parametric timed automata called
parametric weighted timed automata (PWTAs). PWTAs can be seen as a generaliza-
tion of parametric timed automata (PTAs) [AHV93] and weighted/priced automata
[Beh+01; ALP04] with only costs on transitions.

We implement our framework within the tool ATTop presented in [Kum+18],
allowing to define AFTs in the Galileo format, and provide an automated translation
into the IMITATOR input format [And21].

As a proof of concept, we apply our framework to an attack tree of [KS17] and
an original attack-fault tree. With the help of the parametric timed model checker
IMITATOR, we are able to synthesize constraints in several dimensions; further we
discuss induced possible attack and fault scenarios.

This enlarges the scope of quantitative analysis for AFTs by parameterizing multi-
ple annotations on the AFT at once such as time, cost and damages and then compute
for instance the optimal combination of parameter values for the attack to fail quickly
while keeping damages to the system low.

We further extend our framework to attack-defense trees [Kor+14].

Related work Risk assessment is a wide research area, studied over the past years
through different methods [ODK99; WSJ07] and standards [MSR06]. More specifi-
cally, the formalism of attack trees has been studied through lattice theory [Kor+10],
laying the formal foundations of the modeling methodology. Attack tree analysis later
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required more powerful analysis techniques to deal with complex behaviors of sys-
tems. Analysis through Bayesian networks [GIM15] is a first step in the definition
of a method to reuse and combine attack trees. Transformations of attack trees into
input-output interactive Markov chains and continuous time Markov decision process
have been studied in [KGS15; Arn+15] and a tool such as [Arn+13] helps with the
analysis. Probabilities of occurrence for events is heavily used in the literature, for
example with stochastic games [ANP16] and attack-defense diagrams [Her+16] and
stochastic Petri nets [Dal+06]. Timed automata extended with costs have been used
to express attack trees [KRS15] and attack-fault trees [KS17], while [Kum+18] offers
a methodology analysis using Priced Timed Automata. More details are available in
the recent survey [Wid+19] on formal methods for attack tree analysis.

Regarding tool development, Uppaal has been used for automatic model transfor-
mations in [Sch+17] and in [HV06] UML sequence diagrams are manually transformed
into timed automata models.

Tools such as [Gad+16b; Kum+18] offer the possibility to use combinations of
known time durations, probabilities and costs. While [Boz+19] is a quite complete
tool, uncertainty is not tackled the way we do with unknown parameters. [KS17]
especially tackles the problem of multiple complex risk metrics and attacker profiles,
in a probabilistic and timed formalism that can be computed and analyzed using
stochastic model-checking [RS14] and Uppaal SMC [Dav+15]. AFTs are modeled in
the Galileo format and translated with the tool ATTop [Kum+18] into stochastic timed
automata [Dav+11].

However, synthesis of multidimensional parameters (time, cost for the attacker,
damages for the organization. . . ) at once for fully timed systems is not treated in the
previously cited works, and these works require testing one by one a set of possible
attribute values for an AFT.

In a completely different area, asynchronous hardware circuits’ gates were trans-
lated into (parametric) timed automata in [Che+09]; our translation of AFTs gates
into PWTAs synchronized using parallel composition shares some similarities with
that approach.

Another famous extension of attack trees is attack-defense trees in order to model
and figure out the best fitted countermeasures and whether it is worth to develop
against an attack. Attack-defense trees are well-studied and new analysis methods
are still developed [Kor+14; Gad+16a; KW18; Pet+19; Val+20], even with parame-
ters [Ari+20]. In our approach, we propose to use parameters to help figuring out the
best countermeasures.

Outline We recall attack-fault trees in Section 2. We then introduce the formalism
of parametric weighted timed automata in Section 3. Our translation from AFTs to
PWTAs is given in Section 4. Then, we describe our implementation in Section 5 and
report on experiments in Section 6. Section 7 extends our work by allowing counter-
measures. We conclude by discussing future works.

2 Attack-fault Trees

Attack-fault trees (AFTs) model how a safety or security goal can be refined into
smaller sub-goals, represented as gates, until no further refinement is possible, rep-
resented as leaves. The leaves of the tree model are either basic component failures
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k/n

Figure 1: From left to right: AND, SAND, PAND, OR, SOR, XOR, FDEP, SPARE,
VOT(k/n) gates

(BCF) or basic attack steps (BAS). Since subtrees can be shared in the literature (see
e. g., [KS17]), AFTs are actually directed acyclic graphs, rather than trees. In this pa-
per, we consider only trees without shared gates or leaves. Safety is compromised with
the failure of a BCF, i. e., without any outside spark action. Security is compromised
when an outside attacker causes the activation of a BAS. Following the terminology
of [KS17], in this paper write that a gate or a leaf is disrupted if the output is true
i. e., it succeeds, and fails otherwise. A success event (disruption) models the fact
that a component (gate or leaf) is compromised i. e., the attack is successful or the
component fails. In contrast, a fail event models the robustness of the component
against an attacker through a BAS, or a BCF.

2.1 AFT leaves

AFT leaves are equipped with an execution time and a rich cost structure that includes
the cost incurred by an attacker and damage inflicted on the organization. In contrast
to [RS15; Her+16; KS17] where BCF and BAS are equipped with probability distri-
butions, we consider both BCF and BAS as parametric time-dependent events. This
allows us to compute a range of cost values, damages values and time intervals at once
in order to perform operations such as optimum time values for a counter-measure
while keeping damage to the organization low, and cost for the attacker high.

2.2 AFT gates

In order to model complex scenarios with multiple leaves, BCF and BAS have to be
composed. For this purpose, logical gates are used that output either the propagation
of a disruption, or not. Gates take as an input either leaves or outputs from gates in
their subtrees. Logical gates used in AFTs are taken from both dynamic fault trees
and attack trees: AND, PAND, SAND, OR, SOR, FDEP, SPARE, VOT(k/n), depicted
in Fig. 1. These gates are the translatable ones in ATTop [Kum+18] from the Galileo
format. We also added the XOR gate to improve our modeling capabilities.

An AND gate propagates a disruption (i. e.,, it synchronizes a success event [KS17])
if all of its children are disrupted, regardless of the order of disruption. Children are
activated initially by the AND. Children of a SAND gate are activated sequentially
from left to right. After the success (disruption) of the leftmost child, the second
left most child is activated, and so on until the disruption of rightmost child. If all
children are disrupted, the SAND gate is disrupted. However, if any child fails (to
be disrupted), the SAND gate directly fails. SAND gate is a specific gate of attack
trees. Compared with a SAND gate, all children of a PAND gate are activated initially
when the PAND gate is activated. The rest of the execution is similar to a SAND gate,
and propagates a disruption if all children are disrupted from left to right (which in
contrast is not mandatory for an AND gate), otherwise the PAND gate fails.
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compromise IoT device

exploit software vulnerability in IoT device

cost = 60 US$, duration = 1 hour

access home network run malicious script

cost = 50 US$
duration = 0.5 hour

gain access to private networksget credentials

cost = 40 US$,
duration = 10 hours

access LAN access WLAN

find LAN access port

cost = 20 US$,
duration = 1 hour

spoof MAC address

cost = 30 US$,
duration = 0.5 hour

find WLAN

cost = 2 US$,
duration = 5 hours

break WPA keys

cost = 80 US$,
duration = 2 hours

0–20–5

0–10

10–11

11–11.5

Figure 2: Attack Tree modeling the compromise of an IoT device from [Sch+17].
Leaves are equipped with the cost and time required to execute the correspond-
ing step. The parts of the tree attacked in a successful attack are indicated by
a darker color, with start and end times for the steps in this attack denoted in
red.

An OR gate propagates a disruption if at least one of its children is disrupted.
Children are activated initially by the OR gate. Similarly to a SAND gate, children of
a SOR gate are activated sequentially after the termination of the previous one and
from left to right. It propagates a disruption when one of its children is disrupted,
otherwise if all children fail the SOR gate fails. A XOR gate propagates a disruption
if one of its children is disrupted and the other one fails.

A FDEP (functional dependency) gate consists of a trigger event and several depen-
dent events, and is a specific gate of fault trees (named TRIGGER gate in [Her+16]).
When the trigger event occurs, all its dependent BCF events are disrupted (i. e., the
failure of the power supply automatically deactivate the alarm and security cameras,
therefore the BCFs are successful).

A SPARE gate is similar to the SAND, but is a specific gate for fault events while
the SAND gate is used for attack events. A SPARE gate consists of one primary BCF
and several secondary BCF which are activated sequentially. If the primary BCF is
disrupted (i. e., the component fails), a secondary becomes primary. If no BCFs are
left (they all are disrupted), the SPARE gate propagates a disruption.

A VOT(k/n) gate is similar to an OR gate and consists of n ∈ N children initially
activated. A VOT(k/n) gate is disrupted when k of its n children are disrupted.

3 Parametric weighted timed automata

Let N, Q, Q+, and R+ denote the set of non-negative integers, rationals, non-negative
rationals and non-negative reals, respectively.

We assume a set C = {x1, . . . , xH} of clocks, i. e., real-valued variables that evolve
at the same rate. A clock valuation is a function ν : C → R+. We write ~0C for the

5



clock valuation assigning 0 to all clocks. Given d ∈ R+, ν+d denotes the valuation s.t.
(ν+d)(x) = ν(x)+d, for all x ∈ C. Given R ⊆ C, we define the reset of a valuation ν,
denoted by [ν]R, as follows: [ν]R(x) = 0 if x ∈ R, and [ν]R(x) = ν(x) otherwise.

We assume a set TP = {p1, . . . , pJ} of timing parameters, i. e., unknown timing
constants. A timing parameter valuation tv is a function tv : TP → Q+. We assume
./ ∈ {<,≤,=,≥, >}. A guard g is a constraint over C ∪ TP defined by a conjunction
of inequalities of the form x ./ d, or x ./ p with x ∈ C, d ∈ N and p ∈ TP. Given g, we
write ν |= tv(g) if the expression obtained by replacing each x with ν(x) and each p
with tv(p) in g evaluates to true.

We assume a set W = {w1, . . . , wM} of weights. A weight valuation µ is a function
µ : W → Q. We write ~0W for the weight valuation assigning 0 to all weights. We
assume a set WP = {q1, . . . , qN} of weight parameters, i. e., unknown weight constants.
A weight parameter valuation wv is a function wv : WP → Q.1 A linear arithmetic
expression over W ∪ WP is

∑
i aiwi +

∑
j bjqj + c, where wi ∈ W, qj ∈ WP and

ai, bj , c ∈ Q. Let LA(W ∪ WP) denote the set of arithmetic expressions over W
and WP. A parametric weight update is a partial function α : W 9 LA(W ∪WP).
That is, we can assign a weight to an arithmetic expression of parametric weights and
other weight values, and rational constants. Given a weight valuation µ, a parametric
weight update α and a weight parameter valuation wv, we need an evaluation function
evalwv(α, µ) returning a weight valuation, and defined as follows:

evalwv(α, µ)(w) =

{
µ(w) if α(w) is undefined

µ(wv(α(w))) otherwise

where µ(wv(α(w))) denotes the replacement within the linear arithmetic expression
α(w) of all occurrences of a weight parameter qi by wv(qi), and of a weight variable wj

with its current value µ(wj). Observe that this replacement gives a rational constant,
therefore evalwv(α, µ) is indeed a weight valuation W → Q. That is, evalwv(α, µ)
computes the new (non-parametric) weight valuation obtained after applying to µ the
partial function α valuated with wv.

Parametric timed automata (PTA) extend timed automata [AD94] with timing
parameters within guards and invariants in place of integer constants [AHV93]. We
extend further PTA with (discrete) rational-valued weight parameters, giving birth to
parametric weighted timed automata (PWTA).

Definition 1. A parametric weighted timed automaton (PWTA) A is a tuple
A = (Σ, L, l0, F,C,TP,W,WP, I, E), where:

1. Σ is a finite set of synchronization actions,

2. L is a finite set of locations,

3. l0 ∈ L is the initial location,

4. F ⊆ L is the set of accepting locations,

5. C is a finite set of clocks,

6. TP is a finite set of timing parameters,

7. W is a finite set of weights,

8. WP is a finite set of weight parameters,

1Observe that, in contrast to timing parameters that should be non-negative (which is
usual for parametric timed automata), our weight parameters may be negative.
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9. I is the invariant, assigning to every l ∈ L a guard I(l),

10. E is a finite set of edges e = (l, g, a,R, α, l′) where l, l′ ∈ L are the source and
target locations, g is a guard, a ∈ Σ, R ⊆ C is a set of clocks to be reset, and
α : W 9 LA(W ∪WP) is a parametric weight update.

Given a timing parameter valuation tv and a weight parameter valuation wv, we
denote by tv|wv(A) the non-parametric structure where all occurrences of a timing
parameter pi have been replaced by tv(pi), and all occurrences of a weight parameter qj
have been replaced by wv(qj). The resulting structure can be seen as an extension of
a parametric weighted/priced timed automaton [Beh+01; ALP04] with only rational
weights on edges.2 However, our structure goes beyond a simple parametric extensions
of weighted/priced timed automata, for two reasons:

1. we allow multiple weights;

2. we allow to not only increment weight values over a path, but also perform more
complex operations on that weight, notably incrementing it with another weight
value, which is clearly not possible in [Beh+01; ALP04].

Note that, if we restrict our parametric weight update function to expressions of the
form α(wi) = wi + z, where z is either a weight parameter or a rational constant, then
our formalism is exactly the parametric extension of (the discrete “switch” weight part
of) [Beh+01; ALP04].3

In addition, our formalism shares some similarities with the statically parametric
timed automata of [Wan00], where timed automata are extended with parameters
that can only be used in guards, but not compared to clocks. In contrast, our weight
parameters can only be used in updates, and not in guards; in addition, we also feature
the timing parameters of [AHV93] that can be compared to clocks.

l1 l2 l3
press

x := 0
y := 0
w := 2e

prepare

y = p1

press
y ≤ 5 ∧ x > 1

x := 0
w := w + q

serve
y = p2

Figure 3: A PWTA modeling a coffee machine

Example 1. In the PWTA in Fig. 3, we have the following elements: L = {l1, l2, l3},
l0 = l1 (also the unique element of F ), C = {x, y}, and Σ = {press,prepare, serve},
with the set TP = {p1, p2} and weights W = {w}, WP = {q}. There are four edges:

2In [ALP04] cost is defined as the sum of each discrete cost on transitions (switch cost)
plus the time spent in a location multiplied by an integer rate (duration cost), resulting in a
rational value. Here, we omit the duration costs.

3Technically, as weighted/priced timed automata use integer constants, a rescaling of the
constants is necessary: by multiplying all constants in tv|wv(A) by the least common mul-
tiple of their denominators, we obtain an equivalent (integer-valued) weighted/priced timed
automata.
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� e1 = 〈l1, g, a, R, l2〉 where R sets both x, y to 0, α is w = 2e,

� e2 = 〈l2, g, a, R, l2〉 where g is y ≤ 5 ∧ x > 1 and R sets x to 0, α is w := w + q,

� e3 = 〈l2, g, a, R, l3〉 where g is y = p1 and

� e4 = 〈l3, g, a, R, l1〉 where g is y = p2.

Let us now define the concrete semantics of PWTA as the union over all timing
parameter and weight parameter valuations.

Definition 2 (Semantics of a valuated PWTA). Given a PWTA A =
(Σ, L, l0, F,C,TP,W,WP, I, E), a timing parameter valuation tv, and a weight param-
eter valuation wv, the semantics of tv|wv(A) is given by the timed transition system
(TTS) (S, s0,→), with

� S = {(l, ν, µ) ∈ L× RH
+ ×QM | ν |= tv(I(l))},

� s0 = (l0,~0C,~0W),

� → consists of the discrete and (continuous) delay transition relations:

1. discrete transitions: (l, ν, µ)
e7→ (l′, ν′, µ′), if (l, ν, µ), (l′, ν′, µ′) ∈ S, and

there exists e = (l, g, a,R, α, l′) ∈ E, such that ν |= tv(g), ν′ = [ν]R, and
µ′ = evalwv(α, µ)(w);

2. delay transitions: (l, ν, µ)
d7→ (l, ν+d, µ), with d ∈ R+, if ∀d′ ∈ [0, d], (l, ν+

d′, µ) ∈ S.

That is, a state is a triple made of the current location, the current (non-
parametric) clock valuation, and the current (non-parametric) weight valuation. The
clock valuations evolve naturally as in timed automata, while the current weight
evolves according to the weight update function.

Moreover we write (l, ν, µ)
(e,d)−→ (l′, ν′, µ′) for a combination of a delay and discrete

transition if ∃ν′′ : (l, ν, µ)
d7→ (l, ν′′, µ)

e7→ (l′, ν′, µ′). Given tv|wv(A) with concrete
semantics (S, s0,→), we refer to the states of S as the concrete states of tv|wv(A). A
run of tv|wv(A) is an alternating sequence of concrete states of tv|wv(A) and pairs of
edges and delays starting from the initial state s0 of the form s0, (e0, d0), s1, · · · with
i = 0, 1, . . . , ei ∈ E, di ∈ R+ and (si, ei, si+1) ∈ →.

Example 2. A concrete execution of the PWTA tv|wv(A) of Example 1 with w = 2e,
wv(q) = 0.5e, tv(p1) = 5 and tv(p2) = 8 is

(l1, (0, 0), (0))
(press,2)−→ (l2, (0, 0), (2))

(press,1.5)−→ (l2, (0, 1.5), (2.5))
(press,1)−→

(l2, (0, 2.5), (3))
(prepare,2.5)−→ (l3, (2.5, 5), (3))

(serve,3)−→ (l1, (5.5, 8), (2.5)).
Note that no coffee can be served if tv(p1) = 8 and tv(p2) = 5.

Remark 1. Despite the name of weights (justified by our context of measuring costs
and damages), our parametric weights are in fact sufficiently expressive to encode
parametric (rational-valued) data.

4 Translation of AFTs to PTAs

4.1 Overview of the translation

We will model an attack-fault tree using a network of PWTAs that will synchronize
along actions (using the usual composition semantics). Each gate and each leaf (i. e.,
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l1 l2

x ≤ 5

l3

l4

start

x := 0

success
x ≥ 5

wparent := wparent + wleaf

fail
x ≥ 5

Figure 4: PWTA translation of leaf that can reach the success location in exactly
5 units of time, and of weight wleaf

BAS or BCF) will be modeled as a PWTA. Leaves PWTA have a duration and a
weight, while gates PWTA store the weight value of their children to forward it to
their parents. Therefore, each gate PWTA maintains its own weight, and its value
will be added to that of their parents in case of success (thanks to the parametric
weight update).

All gates and leaves PWTAs initially synchronize their start action—referred as
activation in this paper—, and end with either a success or fail synchronization action.
After gates synchronize their start action, they synchronize the start action of their
children.

Intuitively, the process is top-bottom-top: the top level gate PWTA activates
its children, which themselves activate their children (if any), and so on until the
leaves PWTAs at the bottom of the attack-fault tree. Once a leaf PWTA terminates,
it synchronizes either its success or fail action. In case of success, the leaf PWTA
forwards its weight value to its parent, where this value is stored. When its parent
gate PWTA terminates, the gate PWTA synchronizes either a success or a fail action.
In case of success, the gate PWTA forwards its weight value to its parent, and so on
until the top-level gate PWTA terminates.

If the top-level PWTA terminates in its success location, the attack is successful.
We apply the reachability synthesis algorithm of PTAs on the success location in
the top-level PWTA, that is, we synthesize all valuations for which this location is
reachable: this gives us the success conditions of an attack. The set of constraints
on time and weight (such as cost for the attacker, damages for the organization) that
allowed this attack to be successful are output by this analysis.

As a running example, we consider the attack tree in Fig. 2 taken from [Sch+17].

4.2 Translation of leaves

A BAS/BCF is modeled as a PWTA with clocks and weights (see Fig. 4). Note that in
real life while a BAS needs to success so the attack is possibly successful, a BCF needs
to fail in order to propagate a disruption (as in basic component failure). However we
consider in our models that both BAS and BCF need to reach the success location.
there are two paths in a BAS/BCF PWTA, one that reaches the success location and
one that reaches the fail location. In case of success, its weight is forwarded to and
stored in its parent gate.

Example 3. The translation of leaf find WLAN of Fig. 2 is given in Fig. 6c. To
express the leaf find WLAN we use four locations, one clock x4. The first step is to
activate the basic attack step using the synchronization action launchFindWLAN.
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AND gate

A B

l1 l2 l3 l4 l7

l5

lf

l8

l6 ls
startAND startA startB

successA successB

successAND
wparent += wANDsuccessB successA

failA
failB

failB

failA

failAND

SAND gate

BA C

l1 l2 l3 l4 l5 l6 l7 l8 ls

l9 lf

startSAND startA

successA

failA

startB

successB

failB

startC

successC

failC

successSAND
wparent += wSAND

failSAND

OR gate

A B

l1 l2 l3 l4 l7

l5

ls

l8

l6 lf
startOR startA startB

failA failB

failOR

failB failA

successA
successB

successB

successA

successOR

wparent += wOR

Table 1: Translation rules of AND, SAND and OR gates to PWTA

Once activated, and at most five units of time after (modeled by the invariant 5 ≥ x4
and the guard x4 ≥ 5) it can either success with the action successFindWLAN or fail
with the action failFindWLAN. If the success state is reached, the weight of its parent
gate is increased by its own weight 10.

4.3 Translation of gates

Concrete translations of SAND, AND, OR gates are given in Table 1 (yellow locations
denote urgency: time cannot elapse). We describe them and give examples in the
following. Other gates are similar. Note that our translations are parameterized
versions of the gates of [KRS15; KS17] which are convenient to capture the behavior
of the gates with automata in general.

AND Recall that an AND gate is disrupted if all of its children are disrupted. It
activates all of its children then waits for their disruptions regardless of the order of
the successes. At any moment if one fails, the AND gate fails. If the success action is
synchronized, its parent weight wparent is updated: the weight wAND carried by the
AND gate is added to wparent.

Example 4. We give in Fig. 5b the PWTA corresponding to the AND gate
access home network of Fig. 2. When all children are activated in the PWTA of
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Fig. 5b, there are four paths leading to the fail state, while only two (success of the
two children in any order) leading to the success state. startAND3 launches the AND
gate access home network. Both children, the BAS get credential and the OR gate
gain access to private networks are activated with the synchronization of the ac-
tions launchGetCred and startOR. Unlike the SAND gate, an AND gate waits for any
of its child to synchronize a success action. If successGetCred is synchronized, it then
will wait for successOR to go to the location success. If failGetCred is synchronized,
the automaton will go to the location failing. When waiting for the action successOR,
if failOR is synchronized the automaton will also go to the location failing. The other
possibility (successOR then successGetCred) is similar. When in location failing it
synchronizes the action failAND3, while if going to the location success it will syn-
chronize the action successAND3. If the success state is reached, the weight of its
parent gate is increased by its own weight.

SAND Recall that a SAND gate is disrupted if all its children from left to right
are disrupted sequentially from left to right. It activates its leftmost child then waits
for its success or failure, then activates its second leftmost child and so on. If the
rightmost child succeeds, the SAND gate is disrupted. If one child fails, the SAND
gate fails. For a SAND gate modeled as a PWTA with n children, there is only one
path leading to the success state, while there are n paths leading to the fail state (one
from each child). If the success action is synchronized, its parent weight wparent is
updated: the weight wSAND carried by the SAND gate is added to wparent.

Example 5. The top event of the attack tree in Fig. 2 is a SAND gate. We give the
PWTA corresponding to this SAND in Fig. 5a. It synchronizes the action startSAND.
Then it activates its leftmost child access home network with the action startAND3,
which is an AND gate. If the action successAND3 is synchronized, its second left-
most child is activated with the action launchExploit. If the action successExploit is
synchronized, its third and last child is activated with the action launchRunMScript.
If the action successRunMScript is synchronized, the action successSAND is synchro-
nized. At any moment, if one of its children fail and an action failAND3, failExploit
or failRunMscript is synchronized the automaton goes to the location failing where
the action failSAND is synchronized. If the success state is reached, the weight of its
parent gate is increased by its own weight.

OR An OR gate initially activates all of its children. An OR gate is disrupted if at
least one of its children is disrupted, and fails if all of its children fail. Therefore in the
case of two children, one child can fail and the OR gate still propagates a disruption if
the other one succeeds right after. However, if one child succeeds no need to wait for
the second one and the success action of the OR gate is synchronized. If the success
action is synchronized, its parent weight wparent is updated: the weight wOR carried
by the OR gate is added to wparent.

Example 6. The PWTA translating the only OR of Fig. 2 (given in Fig. 6a) activates
all of its children, then waits for one to succeed, regardless of the order. Afterwards,
whatever happens leads to the success state. If one child fails, then the other has to
succeed, otherwise the OR fails. Therefore there is six possible paths to the success
state, while there are two paths to the fail state (failure of both children in any order).
startOR launches the OR gate gain access to private networks which activates its
two children using the actions startAND1 and startAND2 which activates the AND

11



(a) Translation of the top-level SAND gate

(b) Translation of the AND gate
access home network

Figure 5: SAND and AND gate

access LAN and AND access WLAN. Only one action successAND1 or successAN2 is
needed to be synchronized so the automaton goes to the location success regardless of
which action is synchronized afterwards. Then it synchronizes the action successOR.
If at first the action failAND1 (resp. failAND2 ) is synchronized, then successAND2
(resp. successAND1 ) has to be synchronized afterwards in order to reach the location
success. Otherwise, if failAND2 (resp. failAND1 ) is synchronized, the automaton will
go to the location failing and then synchronize the action failOR. If the success state
is reached, the weight of its parent gate is increased by its own weight.

4.4 Top-level automaton

Finally, we need to create an automaton that will activate the first top-event gate of
the AFT. We call it rootTA. This PWTA is the one that starts the chain reaction by
activating the top-event PWTA gate, which at its turn will activate its own children
and so on. It waits for the success or fail action of this PWTA gate. In case of

12



(a) Translation of the OR gate
gain access to private networks

(b) OR

(c) BAS translation of find WLAN

Figure 6: OR gate and BAS

success, its weight has been updated with the total weight value of the execution
forwarded by the top-event gate PWTA. This bottom-to-top addition stores in the
weight current cost root the total weight of the attack. The rootTA also stores the
total time spent since the first activation of the top-event PWTA (using an extra clock
and parameter).

l1 l2

l3

l5

l4

l6

startSAND

successSAND
successRoot

total cost = current cost root
abs time = total time

failSAND

failROOT

Figure 7: The rootTA

13



Example 7. We give in Fig. 7 the top-level PWTA for the AFT in Fig. 2. It is
very similar to a leaf PWTA. It activates the top-level gate PWTA, then waits for
its success or fail action. If the success action is synchronized, its weight has been
updated to the total weight value of the execution and is checked against an additional
parameter total cost so IMITATOR outputs this current cost root value. Likewise, the
clock abs time which is never reset since the activation of rootTA is checked against a
timing parameter total time. Therefore IMITATOR outputs the total time of execution.

5 Implementation of the translation

5.1 IMITATOR

IMITATOR [And21] is a parametric model checker taking as input networks of para-
metric timed automata extended with synchronization, stopwatches and discrete vari-
ables. IMITATOR supports global (shared) discrete rational-valued variables, that can
be either concrete (in which case they are syntactic sugar for an unbounded num-
ber of locations), or symbolic, in which case they can be updated to or compared
with parameters. While IMITATOR technically considers a single type of parameters
(where symbolic variables can be compared or even updated to timing parameters),
our weight parameters are never compared to timing parameters, and this setting can
be considered as a subclass of the IMITATOR expressiveness.

IMITATOR implements several synthesis algorithms, notably reachability synthesis
(EFsynth), that attempts to synthesize all parameter valuations for which a given loca-
tion is reachable—which is the algorithm we use here. IMITATOR relies on the symbolic
semantics of parametric timed automata (see e. g., [And+09; JLR15]), where symbolic
states are made of a discrete location, and a constraint over the clocks and parame-
ters. The weight parameters are added to this symbolic semantics in a straightforward
manner, with symbolic states enriched with linear constraints over weight parameters.

Note that, while parametric timed automata are highly undecidable (see [And19]
for a survey), and while our parametric extension adds a new layer of complexity, all
analyses terminate with an exact result (sound and complete) because our models are
acyclic: our AFTs are trees, and their translation yields structurally acyclic PWTAs.
As a consequence, the symbolic semantics of these PWTAs can be represented as a
finite structure, and the analysis is guaranteed to terminate.

5.2 Translation from AFTs to PWTAs

The translation from AFTs to PWTAs was implemented within the framework of
ATTop [Sch+17]. The existing software ATTop can take as input a Galileo formatted
file. This format is easy to use and to understand. The code in Fig. 8 expresses an
attack-fault tree of one OR gate named A, with two children B and C. The BAS B takes
between 50 and 100 units of time to terminate, and costs $50 to the attacker. The BAS
C takes between 30 and 70 units of time to terminate, and costs $30 to the attacker.

ATTop takes as an input a Galileo file and parses it to represent it as an attack-
fault tree meta-model (ATMM) (see [Sch+17, Section 3], and Fig. 9 for a screenshot
of the tool).

Then, different translations are available: one quite interesting is the translation
into an Uppaal file, for instance a network of stochastic timed automata [KS17]. ATTop
takes the ATMM and translates it in its Uppaal meta-model, then serializes it into an
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1 toplevel ”A” ;
2 ”A” or ”B” ”C” ;
3 ”B” mintime=50 maxtime=100 cost=50;
4 ”C” mintime=30 maxtime=70 cost=30;

Figure 8: Example of Galileo attack tree

Figure 9: Screenshot of the tool ATTop after the translation of the SpaceX AFT

Uppaal formatted file. In our approach we directly translate the representation of
the ATMM into an IMITATOR formatted file, using the Epsilon Generation Language
(EGL) [Ros+08]. This translation is a very efficient way to obtain AFTs modeled
using PWTAs: designing manually a PWTA model from an AFT is very tedious to
achieve, while defining an AFT within the Galileo syntax is simple.

Once the PWTA obtained, we synthesize using IMITATOR all parameter valuations
for which the success location of the rootTA can be reached (using EFsynth). These
sets of parameter values will help us to determine attack and fault scenarios in the
following section.

6 Case studies

As a proof of concept, we apply our approach to an attack tree from the literature
and an original attack-fault tree. Experiments were conducted with IMITATOR 2.10.4
“Butter Jellyfish”,4 on a 2.4 GHz Intel Core i5 processor with 2 GiB of RAM in a
VirtualBox environment. Computation times of parameter values range from 1 to 9
seconds with four parameters.

4Sources, binaries, models and results are available at imitator.fr/static/ACSD19PAT/

and 10.5281/zenodo.5062314
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6.1 Compromising an IoT device

We apply our approach to the AFT depicted in Fig. 2 taken from [Sch+17]. We
choose to parametrize the cost of finding a LAN access point (CostFindLAN AP) and
the maximum amount of time to break WPA keys (tMax Break) of the AFT. This
configuration will describe which attack (WLAN or LAN) is smarter for the attacker,
depending on their resources: finding a LAN access point can be difficult depending
on the infrastructure security and perhaps social engineering is needed. However, if
the attacker does not have enough resources but a large amount of time (s)he can
spend time trying to break WPA keys. IMITATOR computes several constraints on
these parameters such that the attack is successful.

Different constraints are possible representing possible time and weight values s.t.
an attack is possible. This is represented as a disjunction of conjunctions of constraints
on parameters. For instance it can be a quick but very costly attack, or a long but
cheap one; therefore different attack and fault scenarios appear. The conjunction of
constraints

2 ∗ tMax Break ≥ 23 ∧ CostFindLAN AP ≥ 0

∧CostFindLAN AP + 180 = total cost ∧ 2 ∗ total time = 23

represents an attack that is very expensive for the attacker: indeed, the total cost of
the attack is at least $180 and fully depends on the cost of finding a LAN access point.
However, the time spent on the attack is negligible and fixed (11.5h).

In opposition, the constraint

2 ∗ tMax Break + 3 ≥ 2 ∗ total time

∧CostFindLAN AP ≥ 0

∧2 ∗ total time ≥ 23 ∧ total cost = 232

shows a an attack that will last at least 11.5h—that is, the attacker does not ex-
actly know when (s)he will break the WPA keys depending for instance of her/his
computation power—but with a fixed cost of $232.

Contrarily to our initial intuition, the cost of this second attack can be high above
the first one, as breaking the WPA keys is quite costly ($80) in opposition with finding
a LAN access point. A smart attacker could choose, regardless of their time and
resources the first attack through LAN access point.

6.2 SpaceX rocket Falcon 9 explosion

Our second case study is an adaptation of the anomaly investigation that followed
the explosion of SpaceX rocket Falcon 9 in september 20165. The AFT in Fig. 10
depicts the different configurations that can eventually end up with the explosion.
The objective of this case-study is to show that the explosion is more likely to be
accidental, due to the expensiveness of the BAS for the attacker who could attempt a
sabotage.

The rocket carries a helium tank with three composite overwrapped pressure vessels
(COPVs) inside. One COPV possibly had a manufacturing defect and buckles in its

5SpaceX anomaly update, https://www.spacex.com/news/2016/09/01/anomaly-updates
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Figure 10: AFT of SpaceX rocket explosion

liner and the carbon overwrap (AND gate). Afterwards (PAND gate) liquid oxygen
(LOx) can pool in these buckles and become trapped when pressurized under the
carbon overwrap, resulting in a flawed COPV. An other possibility is the presence of
solid oxygen (SOx) either due to the loading temperature of helium or placed here
intentionally by an attacker (OR gate).

These two configurations result in a compromised COPV. When the COPV is
compromised, a friction due to take-off tests can start the rocket ignition (SAND
gate).

BCFs have a duration representing the time taken until the component failure.
Damage is the cost for the organization for having built a defective component, or the
cost induced when the component has failed. BASs have a cost for the attacker to
perform the attack, and a duration for the attack to be successful.

We choose to parametrize damages induced to the manufacturing facility by
damage BuckleInInnerLiner, and the cost of pooling solid oxygen near the COPV,
cost SOXmaliciouslyIntroduced.

The constraint

13 ≥ total time ≥ 8

∧cost SOXmaliciouslyIntroduced ≥ 0

∧total damages ≥ 100

∧damage BuckleInInnerLiner + 100 = total damages

∧total cost = 1700
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represents the attack using the malicious introduction of LOx between the inner liner
and the carbon overwrap of the COPV. Clearly this attack is very costly ($1700)
and assumes the presence of these buckles. It is highly prejudicial to SpaceX as the
company may want to investigate the manufacturing facility that produces COPV
components.

The other attack, represented by the constraint

total time = 6

∧cost SOXmaliciouslyIntroduced ≥ 0

∧total damages = 0

∧damage BuckleInInnerLiner ≥ 0

∧total cost = cost SOXmaliciouslyIntroduced

shows that the cost of the attack is equal to the cost of introducing SOx near the
COPV. The higher is the parameter cost SOXmaliciouslyIntroduced, the higher is the
cost of the attack. We may assume this cost is high enough as SpaceX surely secured
its launch complex. Otherwise, an efficient counter-measure would be to find means
to increase this cost for the attacker.

The constraint

cost SOXmaliciouslyIntroduced ≥ 0

∧total damage ≥ 150

∧damage BuckleInInnerLiner + 150 ≥ total damage

∧total time = 3 ∧ total cost = 0

represents the fact that buckles in the inner liner and in the carbon overwrap of the
COPV, and then LOx pooled under the overwrap, lead to a complete failure of the
system, i. e., the rocket explodes. In this scenario, there is in all likelihood no attacker.
However, damages for the manufacturing facility can be huge if it is flawed: SpaceX
should probably investigate in their manufacturing facilities in order to prevent the
production of other flawed components.

Finally, the constraint

cost SOXmaliciouslyIntroduced ≥ 0

∧total damage = 100

∧damage BuckleInInnerLiner ≥ 0

∧3 ≥ total time ≥ 1 ∧ total cost = 0

shows that the explosion can be provoked by the presence of SOx due to cold helium.
This case is possible without any attacker or component failure and is therefore fully
accidental. No damages are caused to SpaceX (excepted the cost of the unusable
rocket) or its suppliers.

These scenarios indicate that the rocket explosion is more likely to be accidental,
as the cost in both scenarios where there is an attacker is very high. However, the
worst case indicates that SpaceX should investigate their production lines to prevent
other flawed components, as well as the presence of an attacker.
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AND

BAS BC

l1 l2 l3 l4 l7

l5

lf

l8

l6 ls
startAND startBAS startBC

successBAS failBC

successAND
wparent += wANDfailBC successBAS

failBAS
successBC

failBC

failBAS

failAND

Table 2: Translation rules of the defense AND gate to PWTA

7 Counter-measures

Basic attack steps threaten the security of cyber-physical systems and their impact
can be expressed and analyzed using the techniques presented in the previous sections.
However, in security, it is of crucial interest to be able to find and especially define
counter-measures to these attacks.

7.1 Automatically add counter-measures in AFTs

One possibility is to add a defender whose purpose is to counteract the attacker.
This has been the subject of several papers related to attack-defense trees [Kor+14;
Gad+16a]. In such scenarios, the defender is opposed to the attacker similarly to a
parent node. Once an attack is realized, i. e., a basic attack step is disrupted, the
disruption may be blocked by the defender: the success of the attack is propagated to
the defender node at first, before being propagated to a logical gate. The defender acts
similarly to a firewall, trying to block the attacks instead of propagating to the rest of
the system. We propose a slightly different approach that emphasizes the concurrency
between an attacker and a defender, similarly to [Her+16], where there is no parameter,
and to [Ari+20] for a parametric version. Compared to the aforementioned works, we
add parameters that we use to directly synthesize the different costs of a defense, as
well as the possibility to start events and counter-measures simultaneously that evolve
at possibly different time rates. In the meantime, we do not provide a new semantics
definition here. This also exposes the limits of our model, where new semantics—
notably for the gates—must be formally defined based for example on the use of the
model, i. e., the goal of the tree, the damages we would like to compute and optimize.
Concurrency is often met in real-life situations: it is possible that a defender tries to
counteract an attacker in real time, during the attack. We choose here to consider
an attacker and a defender as two tasks running concurrently. Both the attacker and
the defender can be parameterized. Each basic attack step will be split into a parent
AND gate with two children. Table 2 depicts the translation of these new elements
that model the attack. One of the two is the basic attack step and remains as is. The
success location in this basic attack step still models the success of the attack. The
second event will be called basic countermeasure (BC). It is the same leaf as the basic
attack step and the basic component failure, with an initial location, a success and a
failure location. However, in the case of the basic countermeasure, the difference is
that the success location if reached will not be propagated to its parent AND gate. In
fact, the basic countermeasure will be activated if it fails.
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l1 l2

x ≤ 5

l3

l4

start

x := 0

success
x < 5

wparent := wparent + wBC

fail
x ≥ 5

Figure 11: PWTA translation of a basic countermeasure against the leaf of
Fig. 4 has to succeed within 5 units of time and of weight wBC

Both basic countermeasure and basic attack step will be started at the same time.
They are designed similarly and can reach their respective success or failure location
according to dependent timing constraints: the key point is that the countermeasure
has to succeed before the basic attack step succeeds. That is, if an attack has to
succeed in exactly 5 units of time, the countermeasure has to succeed in strictly less
than 5 units of time. Otherwise, the countermeasure fails, regardless of whether the
attack is successful or not. Moreover, if the CM is successful, then it inhibits the
concurrent BAS. The main difference with [Ari+20] is that we allow the possibility of
time elapsing at a different rate for the defender than for the attacker. For example, a
weak defender may see its time clock being divided by 2, i. e., the clock is evolving at
0.5 times the rate of the regular attacker clock. Conversely, a highly skilled defender
may see its time clock evolving at twice the rate of the regular attacker clock.

Fig. 11 presents the PWTA working as a countermeasure against the event modeled
in Fig. 4. Recall that this event can succeed in 5 units of time exactly. According to
this statement, the countermeasure of Fig. 11 has to succeed in strictly less than 5 units
of time, otherwise the only remaining path leads to a failure of the countermeasure.
Similarly to basic attack steps and basic component failures, the basic countermeasure
has a cost for the defender. It is modeled as a weight in the PWTA and written wBC
in Fig. 11. In scenario analyses such as the ones presented in Section 6, this cost can be
considered as a damage for the organization. Even if a BC fails, it causes damages to
the organization. It represents the cost of preparing and executing a counter-measure.
Consider Fig. 2: adding a countermeasure to the basic attack step break WPA keys
has potentially a financial cost for the defender who owns the IoT device. Therefore
in case of success one can consider this additional cost as damage to the organization.

Both events are combined in an AND gate as the one presented in Table 2. Similarly
to our previous definition of the AND gate, children’s weights are forwarded to the
parent gate, and the parent AND gate is disrupted if the basic attack step succeeds
and the basic countermeasure fails. If it is disrupted, it forwards its own weight to its
parent, as described in the previous sections.

This procedure to add a basic countermeasure against a basic attack step becomes
more interesting when timing deadlines of success and failures are parameterized. We
explain the implementation of our modifications in the following section.

7.2 Compromising a bank account

We propose here a small case study of a parametric attack tree with a parametric
counter-measure.
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Implementation. The translation from AFTs to PWTAs was implemented within
the framework of ATTop [Sch+17] as described in Section 5.2. ATTop can take as
input a Galileo formatted file, and with our implementation it is sufficient to signal to
the software, with a boolean variable, our willingness to add a counter-measure to a
BAS. If so, the BAS is automatically split into a new AND gate, a new CM and the
original BAS. Still as in Section 5.2 we obtained a PWTA in the IMITATOR format.

Experiment. The experiment was conducted with the same equipment as in Section 6
and computation times of parameter values range from 1 to 3 seconds with four/five
parameters.

Fig. 12 depicts a minimal attack to access a bank account. Either the hacker
exploits a vulnerability in the operating system (OS) of the bank terminal, or finds a
remote access to the browser of the account owner. We choose to parametrize damages
induced to the bank by the attack damage access browser.

We automatically translate the parametric attack tree in a network of PWTAs
and with IMITATOR we synthesize all parameter values such that there is a successful
attack. IMITATOR outputs the following constraints such that an attack is possible:

The first constraint is

total time = 90

total damages = 12

∧total cost = 40

and represents the attack that exploits a vulnerability in the bank terminal OS (left
branch in Fig. 12).

The second constraint is

50 ≥ total time ≥ 30

∧damage access browser = total damages ≥ 0

∧total cost = 20

and represents the attack that obtains a remote access to the browser (right branch
in Fig. 12). Damages is an unknown parameter and potentially high for the bank.

access bank account

OS exploit

cost = 40 US$,
damages = 12 US$,
duration = 90 minutes

access browser

cost = 20 US$,
damage access browser,
duration = 30-50 minutes

0–500–90

Figure 12: Parametric attack tree modeling the access of a bank account device.
Leaves are equipped with the cost, damage and time required to execute the
corresponding step. Start and end times for the steps in this attack denoted in
red.

We now choose to define a counter-measure to the remote access to the browser
and to parametrize damages induced to the bank by the counter-measure damage CM.

We notify ATTop of the counter-measure to the remote access to the browser. The
software automatically translates the parametric attack tree into a network of PW-
TAs with the following modifications: the initial BAS access browser is transformed
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into the parent AND gate CM access browser with two children, a duplicated BAS
access browser and a BC counter browser access. The parametric attack tree with
the counter-measure we obtain is depicted in Fig. 13.

access bank account

OS exploit

cost = 40 US$,
damages = 12 US$,
duration = 90 minutes

CM access Browser

counter browser access

damage CM,
duration = 30-50 minutes

access browser

cost = 20 US$,
damage access browser,
duration = 30-50 minutes

0–500–50

0–90

Figure 13: Transformed parametric attack tree with counter-measure modeling
the access of a bank account device. Leaves are equipped with the cost (for
BAS and not for BC), damage and time required to execute the corresponding
step. Start and end times for the steps in this attack denoted in red.

IMITATOR outputs the same constraints for the OS exploit, and the following
constraints for the browser access (right branch in Fig. 12):

50 ≥ total time ≥ 30

∧total damages = damage access browser + damage CM

∧total cost = 20

It is the representation of the successful remote access to the account owner’s browser.
In this case, a counter-measure was launched, but failed. This still has a cost for the
bank, therefore is part of the total damages. Both damages are unknown parameters
and therefore the total damages for the organization is possibly high.

8 Conclusion

We addressed the problem of formalizing attack-fault trees in a more abstract frame-
work allowing to cope with parametric timings, costs and damages. We defined and
implemented a translation from attack-fault trees to PWTAs (a new extension of
PTAs) that can be analyzed using the IMITATOR model-checker. This translation al-
lows us to define easily an AFT using the Galileo syntax, and obtain as an output this
AFT modeled with PWTAs. Using IMITATOR, we synthesize all parameter values
such that there is a successful attack and/or a system failure. Finally, obtaining a
disjunction of convex sets of parameter values allows us to define different attack and
fault scenarios. Therefore it help to select the most plausible scenario and the most
efficient counter-measures.

We extended our basic attack step model by allowing basic parametric counter-
measures to be defined. The countermeasure is run concurrently to the attack to try
to block the attack in real-time.

Future works In this paper, we only considered three parameters: timing, cost and
damage parameters. However, it is trivial to split these parameters into more precise

22



ones, such as human damages (health and insurance) and material damages caused
by the attacker or the failure of the system: an attack can be cheap for the attacker
but inflict many kinds of damages to the organization, as in our SpaceX case study.
Thanks to the vector of weights defined in our PWTAs, this would be immediate to
consider in our framework and implementation.

Moreover, adding probabilities in order to create probabilistic parametric attack-
fault trees will be an interesting and challenging future work, especially to specify the
probability of a countermeasure to succeed. Indeed, in our SpaceX rocket case study
adding probabilities to the manufacturing defects of the COPV on top of damages
inflicted to the company would strengthen considerably our formalism.

Finally, improving current modeling methodologies for risk assessment with a spe-
cial focus on attack-fault trees is an ambitious future work. It would require powerful
and efficient tools. Therefore we would like to perform different benchmarks and com-
parisons between existing tools for attack-fault tree analysis, with an emphasis on
scalability for very complex models.
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[And+09] Étienne André, Thomas Chatain, Emmanuelle Encrenaz, and Laurent
Fribourg. “An Inverse Method for Parametric Timed Automata”. In:
International Journal of Foundations of Computer Science 20.5 (Oct.
2009), pp. 819–836. doi: 10.1142/S0129054109006905 (cit. on p. 14).
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“The Value of Attack-Defence Diagrams”. In: POST (Apr. 2–8, 2016).
Ed. by Frank Piessens and Luca Viganò. Vol. 9635. Lecture Notes in
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“How to Efficiently Build a Front-End Tool for UPPAAL: A Model-
Driven Approach”. In: SETTA (Oct. 23–25, 2017). Ed. by Kim Guld-
strand Larsen, Oleg Sokolsky, and Ji Wang. Vol. 10606. Lecture Notes in
Computer Science. Changsha, China: Springer, 2017, pp. 319–336. doi:

10.1007/978-3-319-69483-2_19 (cit. on pp. 3, 5, 9, 14, 16, 21).

[Val+20] Samaikya Valluripally, Aniket Gulhane, Reshmi Mitra, Khaza Anuarul
Hoque, and Prasad Calyam. “Attack Trees for Security and Privacy in
Social Virtual Reality Learning Environments”. In: CCNC (Jan. 10–13,
2020). IEEE, 2020, pp. 1–9. doi: 10.1109/CCNC46108.2020.9045724 (cit. on

p. 3).

27

https://doi.org/10.1109/MSP.2006.145
https://doi.org/10.1109/32.815323
https://doi.org/10.1109/ICECCS.2019.00015
https://doi.org/10.1007/978-3-540-69100-6_1
https://doi.org/10.1007/978-3-662-45489-3
https://doi.org/10.1007/978-3-662-45489-3
https://doi.org/10.1016/j.cosrev.2015.03.001
https://doi.org/10.1145/310889.310900
https://doi.org/10.1145/310889.310900
https://doi.org/10.1007/978-3-319-69483-2_19
https://doi.org/10.1109/CCNC46108.2020.9045724


[Wan00] Farn Wang. “Parametric Analysis of Computer Systems”. In: Formal
Methods in System Design 17.1 (2000), pp. 39–60. doi: 10 . 1023 / A :

1008782501688 (cit. on p. 7).

[Wid+19] Wojciech Widel, Maxime Audinot, Barbara Fila, and Sophie Pinchi-
nat. “Beyond 2014: Formal Methods for Attack Tree-based Security
Modeling”. In: ACM Computing Surveys 52.4 (2019), 75:1–75:36. doi:

10.1145/3331524 (cit. on p. 3).

[WSJ07] Lingyu Wang, Anoop Singhal, and Sushil Jajodia. “Toward measuring
network security using attack graphs”. In: QoP (Oct. 29, 2007). Ed. by
Günter Karjoth and Ketil Stølen. Alexandria, VA, USA: ACM, Oct.
2007, pp. 49–54. doi: 10.1145/1314257.1314273 (cit. on p. 2).

28

https://doi.org/10.1023/A:1008782501688
https://doi.org/10.1023/A:1008782501688
https://doi.org/10.1145/3331524
https://doi.org/10.1145/1314257.1314273

	Introduction
	Attack-fault Trees
	AFT leaves
	AFT gates

	Parametric weighted timed automata
	Translation of AFTs to PTAs
	Overview of the translation
	Translation of leaves
	Translation of gates
	Top-level automaton

	Implementation of the translation
	IMITATOR
	Translation from AFTs to PWTAs

	Case studies
	Compromising an IoT device
	SpaceX rocket Falcon 9 explosion

	Counter-measures
	Automatically add counter-measures in AFTs
	Compromising a bank account

	Conclusion

