
HAL Id: hal-03483387
https://hal.science/hal-03483387

Submitted on 16 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MixMo: Mixing Multiple Inputs for Multiple Outputs
via Deep Subnetworks

Alexandre Ramé, Rémy Sun, Matthieu Cord

To cite this version:
Alexandre Ramé, Rémy Sun, Matthieu Cord. MixMo: Mixing Multiple Inputs for Multiple Outputs
via Deep Subnetworks. ICCV 2021, Mar 2021, Paris, France. pp.823-833. �hal-03483387�

https://hal.science/hal-03483387
https://hal.archives-ouvertes.fr

MixMo: Mixing Multiple Inputs for Multiple Outputs via Deep Subnetworks

Alexandre Ramé*†1, Rémy Sun*1,2 and Matthieu Cord1,3

1Sorbonne Université, CNRS, LIP6, Paris, France
2Optronics & Missile Electronics, Land & Air Systems, Thales

3Valeo.ai

Abstract

Recent strategies achieved ensembling “for free” by fit-
ting concurrently diverse subnetworks inside a single base
network. The main idea during training is that each sub-
network learns to classify only one of the multiple inputs
simultaneously provided. However, the question of how to
best mix these multiple inputs has not been studied so far.

In this paper, we introduce MixMo, a new generalized
framework for learning multi-input multi-output deep sub-
networks. Our key motivation is to replace the subopti-
mal summing operation hidden in previous approaches by a
more appropriate mixing mechanism. For that purpose, we
draw inspiration from successful mixed sample data aug-
mentations. We show that binary mixing in features - par-
ticularly with rectangular patches from CutMix - enhances
results by making subnetworks stronger and more diverse.

We improve state of the art for image classification on
CIFAR-100 and Tiny ImageNet datasets. Our easy to im-
plement models notably outperform data augmented deep
ensembles, without the inference and memory overheads.
As we operate in features and simply better leverage the
expressiveness of large networks, we open a new line of re-
search complementary to previous works.

1. Introduction

Convolutional Neural Networks (CNNs) have shown ex-
ceptional performance in computer vision tasks, notably
classification [42]. However, among other limitations, ob-
taining reliable predictions remains challenging [34, 58].
For additional robustness in real-world scenarios or to win
Kaggle competitions, CNNs usually pair up with two prac-
tical strategies: data augmentation and ensembling.

Data augmentation reduces overfitting and improves

*Equal contribution.
†Correspondence to alexandre.rame@lip6.fr

Figure 1: MixMo overview. We embed M = 2 inputs
into a shared space with convolutional layers (c1, c2), mix
them, pass the embedding through further layers and out-
put 2 predictions via dense layers (d1, d2). The key point
of our MixMo is the mixing block. Mixing with patches
performs better than basic summing: 85.40% vs. 83.06%
(MIMO [30]) on CIFAR-100 with WRN-28-10.

generalization, notably by diversifying training samples
[51]. Traditional approaches are label-preserving. In con-
trast, recent mixed sample data augmentation (MSDA)
create artificial samples by mixing multiple inputs and their
labels proportionally to a ratio λ. The seminal work Mixup
[86] linearly interpolates pixels while Manifold Mixup [76]
interpolates latent features in the network. Binary masking
MSDAs [21, 29, 41] such as CutMix [83] have since di-
versified mixed samples by pasting patches from one image
onto another in place of interpolation.

Aggregating predictions from a diverse set of neural net-
works (i.e. with different failure cases) strongly improves
generalization [14, 28, 43], notably uncertainty estimation
[2, 27, 58]. An ensemble of several small networks usually
performs better than one large network empirically [9, 50].
Yet, unfortunately, ensembling is costly in time and memory
both at training and inference: this often limits applicability.

823

In this paper, we propose MixMo, a new generalized
multi-input multi-output framework: we train a base net-
work with M ≥ 2 inputs and outputs. This way, we fit
M independent subnetworks [23, 30, 66] defined by an in-
put/output pair and a subset of network weights. This is
possible as large networks only leverage a subset of their
weights [19]. Rather than pruning (ie, eliminating) inactive
filters [44, 47], we seek to fully use the available neurons
and over parameterization through multiple subnetworks.

The challenge is to prevent homogenization and enforce
diversity among subnetworks with no structural differences.
Thus, we consider M (input, label) pairs at the same time in
training: {(xi, yi)}0≤i<M . M images are treated simul-
taneously, as shown on Fig. 1 with M = 2. The M inputs
are encoded by M separate convolutional layers {ci}0≤i<M

into a shared latent space before being mixed. The represen-
tation is then fed to the core network, which finally branches
out into M dense layers {di}0≤i<M . Diverse subnetworks
naturally emerge as di learns to classify yi from input xi. At
inference, the same image is repeated M times: we obtain
ensembling “for free” by averaging M predictions.

The key divergent point between MixMo variants lies in
the multi-input mixing block that seeks features indepen-
dence. Should the merging be a basic summation or a con-
catenation, we would recover MIMO [30] or respectively
Aggregated Learning [66] - which both featured this multi-
input multi-output strategy.

Our main intuition is simple: we see summing as a bal-
anced and restrictive form of Mixup [86] where λ = 1

M .
By analogy, we draw from the considerable MSDA litera-
ture to design a more appropriate mixing block. In particu-
lar, we leverage binary masking methods to ensure subnet-
works diversity. Our framework allows us to create a new
Cut-MixMo variant inspired by CutMix [83], and illustrated
in Fig. 1: a patch of features from the first input is pasted
into the features from the second input.

This asymmetrical mixing also raises new questions re-
garding information flow in the network’s features. We
tackle the imbalance between the multiple classification
training tasks via a new weighting scheme. Conversely,
MixMo’s double nature as a new mixing augmentation in
features yields important insights on traditional MSDA.

In summary, our contributions are threefold:

1. We propose a general framework, MixMo, connecting
two successful fields: mixing samples data augmenta-
tions & multi-input multi-output ensembling.

2. We identify the appropriate mixing block to best tackle
the diversity/individual accuracy trade-off in subnet-
works: our easy to implement Cut-MixMo benefits
from the synergy between CutMix and ensembling.

3. We design a new weighting of the loss components to
properly leverage the asymmetrical inputs mixing.

Figure 2: Main results. CIFAR-100 with WRN-28-w. Our
Cut-MixMo variant (patch mixing and M = 2) surpasses
CutMix and deep ensembles (with half the parameters) by
leveraging over-parameterization in wide networks.

We demonstrate excellent accuracy and uncertainty esti-
mation with MixMo on CIFAR-10/100 and Tiny ImageNet.
Specifically, Cut-MixMo with M = 2 reaches state of the
art on these standard datasets: as exhibited by Fig. 2, it out-
performs CutMix, MIMO and deep ensembles, at (almost)
the same inference cost as a single network.

2. Related work

2.1. Data augmentation

CNNs are known to memorize the training data [85] and
make overconfident predictions [25] to the detriment of
generalization on new test examples. Data Augmentation
(DA) inflates the training dataset’s size by creating artificial
samples from available labeled data. Beyond slight pertur-
bations (e.g. rotation), recent works [11, 35] apply stronger
transformations [33]. CutOut [13] randomly deletes regions
of images in training and prevents models from focusing on
a single pixels region, similarly to how regularizations like
Dropout [67] or DropBlock [24] force networks to leverage
multiple features.

Mixed Sample Data Augmentation (MSDA) recently
expanded the notion of DA. From pairs of labeled
samples {(xi, yi), (xk, yk)}, they create virtual samples:
(mx(xi, xk, λ), λyi + (1− λ)yk) where λ ∼ Beta(α, α).
[48] shows that mixing the targets differently than this linear
interpolation may cause underfitting and unstable learning.
Indeed, approaches mainly focus on developing the most ef-
fective input mixing mx. In [38, 72, 73, 86], mx performs
a simple linear interpolation between pixels: e.g in Mixup
[86], mx(xi, xk, λ) = λxi + (1 − λ)xk. Theoretically, it
regularizes outside the training distribution [5, 26, 87] and
applies label smoothing [53, 61].

CutMix draws from Mixup and CutOut [13] by pasting
a patch from xk onto xi: mx(xi, xk, λ) = 1m ⊙ xi +

824

(1− 1m)⊙ xk where ⊙ represents the element-wise prod-
uct and 1m a binary mask with average value λ. CutMix
randomly samples squares, which often leads to rectangular
masks due to boundary effects. Such non-linear binary
masking improves generalization [68, 70] by increasing
dataset: it creates new images with usually disjoint patches
[29]. [3, 17] seek more diverse transformations via arbi-
trarily shaped masks: proposals range from cow-spotted
masks [21] to masks with irregular edges [29]. As mask-
ing of discriminative regions may cause label misallocation
[26], [41, 74] try to alleviate this issue with costly saliency
heatmaps [65]. Yet, ResizeMix [63] shows that they per-
form no better than random selection of patch locations.

In addition to Manifold Mixup [76], only a few works
[17, 46, 81, 83] have tried to mix intermediate latent fea-
tures as we do. Our goals and methods are however quite
different, as shown later in Section 3.4. In brief, they mix
deep features to smooth the decision boundaries, while we
mix shallow features only so that inputs can remain distinct.

2.2. Ensembling

Like [79], we explore combining DA with another stan-
dard technique in machine learning: ensembling [14, 28].
For improved performances, aggregated members should be
both accurate and diverse [57, 62, 64]. Deep ensembles
[43] (DE) simultaneously train multiple networks with dif-
ferent random initializations converging towards different
explanations for the training data [18, 80].

Ensembling’s fundamental drawback is the inherent
computational and memory overhead, which increases
linearly with the number of members. This bottleneck is
typically addressed by sacrificing either individual perfor-
mance or diversity in a complex trade-off. Averaging pre-
dictions from several checkpoints on the training process,
i.e. snapshot ensembles [37, 39], fails to explore multiple
local optima [2, 18, 80]. So does Monte Carlo Dropout
[22]. The recent BatchEnsemble [16] is parameter-efficient,
yet requires multiple forward passes. TreeNets [45, 69] re-
duce training and inference cost by sharing low-level layers.
MotherNets [78] share first training epochs between mem-
bers. However, sharing reduces diversity.

Very recently, the multi-input multi-output MIMO [30]
achieves ensemble almost “for free”: all of the layers ex-
cept the first convolutional and last dense layers are shared
(≈ +1% #parameters). [66] motivated a related Aggregated
Learning to learn concise representations with arguments
from information bottleneck [71]. The idea is that over-
parameterized CNNs [19, 52, 60] can fit multiple subnet-
works [75]. The question is how to prevent homogenization
among the simultaneously trained subnetworks. Facing a
similar challenge, [23] includes stochastic channel recombi-
nation; [15] relies on predefined binary masks; in GradAug
[82], subnetworks only leverage the first channels up to a

given percentage. In contrast, MIMO does not need struc-
tural differences among subnetworks: they learn to build
their own paths while being as diverse as in DE.

3. MixMo framework
We first introduce the main components of our MixMo

strategy, summarized in Fig. 3: we mix multiple inputs to
obtain multiple outputs via subnetworks. We highlight the
key mixing block combining information from inputs, and
our training loss based on a dedicated weighting scheme.

We mainly study M = 2 subnetworks here, both for clar-
ity and as it empirically performs best in standard parame-
terization regimes. For completeness, we straightforwardly
generalize to M > 2 in Section 3.5.

3.1. General overview

We leverage a training classification dataset D of i.i.d.
pairs of associated image/label {xi, yi}|D|

i=1. We randomly
sample a subset of |B| samples {xi, yi}i∈B that we ran-
domly shuffle via permutation π. Our training batch is
{(xi, xj), (yi, yj)}i∈B,j=π(i). The loss LMixMo is averaged
over these |B| samples: the networks’ weights are updated
through backpropagation and gradient descent.

Let’s focus on the training sample {(x0, x1), (y0, y1)}.
In MixMo, both inputs are separately encoded (see Fig. 1)
into the shared latent space with two different convolutional
layers (with 3 input channels each and no bias term): x0 via
c0 and x1 via c1. To recover a strictly equivalent formu-
lation to MIMO [30], we simply sum the two encodings:
c0(x0) + c1(x1). Indeed, MIMO merges inputs through
channel-wise concatenation in pixels: MIMO’s first convo-
lutional layer (with 6 input channels and no bias term) hides
the summing operation in the output channels.

Explicitly highlighting the underlying mixing leads us to
consider a generalized multi-input mixing blockM. This
manifold mixing presents a unique opportunity to tackle the
ensemble diversity/individual accuracy trade-off and to im-
prove overall ensemble results (see Section 3.2). The shared
representation M (c0(x0), c1(x1)) feeds the next convolu-
tional layers. We note κ the mixing ratio between inputs.

The core network C handles features that represent both
inputs simultaneously. The dense layer d0 predicts ŷ0 =
d0 [C (M{c0(x0), c1(x1)})] and targets y0, while d1 targets
y1. Thus, the training loss is the sum of two cross-entropies
LCE weighted by parametrized function wr (defined in Sec-
tion 3.3) to balance the asymmetry when κ ̸= 0.5:

LMixMo = wr(κ)LCE (y0, ŷ0)+wr(1−κ)LCE (y1, ŷ1) . (1)

At inference, the same input x is repeated twice: the core
network C is fed the sum c0(x)+ c1(x) that preserves max-
imum information from both encodings. Then, the diverse
predictions are averaged: 1

2 (ŷ0 + ŷ1). This allows us to
benefit from ensembling in a single forward pass.

825

3.2. Mixing blockM

The mixing blockM - which combines both inputs into
a shared representation - is the cornerstone of MixMo. Our
main intuition was to analyze MIMO as a simplified Mixup
variant where the mixing ratio κ is fixed to 0.5. MixMo
generalized framework encompasses a wider range of vari-
ants inspired by MSDA mixing methods. Our first main
variant - Linear-MixMo - fully extends Mixup. The mixing
block is MLinear-MixMo (l0, l1) = 2 [κl0 + (1− κ)l1], where
l0 = c0(x0), l1 = c1(x1) and κ ∼ Beta(α, α) with α
the concentration parameter. The second and more effective
variant Cut-MixMo adapts the patch mixing from CutMix:

MCut-MixMo (l0, l1) = 2 [1M⊙l0 + (1− 1M)⊙l1] , (2)

where 1M is a binary mask with area ratio κ ∼ Beta(α, α),
valued at 1 either on a rectangle or on the complementary
of a rectangle. In brief, a patch from c0(x0) is pasted onto
c1(x1), or vice versa. This binary mixing in Cut-MixMo ad-
vantageously replaces the linear interpolation in MIMO and
Linear-MixMo: subnetworks are more accurate and more
diverse, as shown empirically in Fig. 7.

First, binary mixing in M trains stronger individual
subnetworks for the same reasons why CutMix improves
over Mixup. In a nutshell, linear MSDAs [76, 86] pro-
duce noisy samples [5] that lead to robust representations.
As MixMo tends to distribute different inputs on non-
overlapping channels (as discussed later in Fig. 4a), this reg-
ularization hardly takes place anymore inMLinear-MixMo. On
the contrary, by masking features, we simulate common ob-
ject occlusion problems. This spreads subnetworks’ focus
across different locations: the two classifiers are forced to
find information relevant to their assigned input at disjoint
locations. This occlusion remains effective as the receptive
field in this first shallow latent space remains small.

Secondly, linear interpolation is fundamentally ill-suited
to induce diversity as full information is preserved from
both inputs. CutMix on the other hand explicitly increases
dataset diversity by presenting patches of images that do
not normally appear together. Such benefits can be directly
transposed to MCut-MixMo: binary mixing with patches in-
creases randomness and diversity between the subnet-
works. Indeed, in a similar spirit to bagging [4], different
samples are given to the subnetworks. By deleting asym-
metrical complementary locations from the two inputs, sub-
networks will not rely on the same region and information.
Overall, they are less likely to collapse on close solutions.

3.3. Loss weighting wr

Asymmetries in the mixing mechanism can cause one
input to overshadow the other. Notably when κ ̸= 0.5,
the predominant input may be easier to predict. We seek a
weighting function wr to balance the relative importance

Figure 3: Cut-MixMo training. We sample a mixing mask
given κ, and balance the losses with wr(κ) from Eq. 3.

of the two LCE in LMixMo. This weighting modifies the ef-
fective learning rate, how gradients flow in the network and
overall how mixed information is represented in features. In
this paper, we propose to weight via the parametrized:

wr(κ) = 2
κ1/r

κ1/r + (1− κ)1/r
. (3)

This defines a family of functions indexed by the parameter
r, visualized for r = 3 in red on Fig. 3. See Appendix 6.1
for complementary visualizations. This power law provides
a natural relaxation between two extreme configurations.
The first extreme, r = 1, w1(κ) = 2κ, is in line with lin-
ear label interpolation in MSDA. The resulting imbalance in
each subnetwork’s contribution to LMixMo causes lopsided
updates. While it promotes diversity, it also reduces reg-
ularization: the overshadowed input has a reduced impact
on the loss. The opposite extreme, r → ∞, w∞(κ) → 1,
removes reweighting. Consequently, wr inflates the impor-
tance of hard under-represented inputs, à la Focal Loss [49].
However, minimizing the role of the predominant inputs
destabilizes training. Overall, we empirically observe that
moderate values of r perform best as they trade off pros and
cons from both extremes.

Interestingly, the proper weighting of loss components is
also a central theme in multi-task learning [6, 8]. While it
aims at predicting several tasks from a shared input, MixMo
predicts a shared task from several different inputs. Beyond
this inverted structure, we have similar issues: e.g. gradients
for one task can be detrimental to another conflicting task.
Fortunately, MixMo presents an advantage: the exact ratios
κ and 1− κ of each task are known exactly.

3.4. From manifold mixing to MixMo

We have discussed at length how we extend multi-input
multi-output frameworks by borrowing mixing protocols
from MSDA. Now we reversely point out how our MixMo
diverges from MSDA schemes. At first glimpse, the idea

826

(a) Filters l1-norms of the input
encoders c0 and c1.

(b) Proportion of active filters in
the core network vs. width w.

Figure 4: Influence of MixMo on network utilization.
(a) The encoders have separate channels: the two subse-
quent classifiers can differentiate the two inputs. (b) Less
filters are strongly active (∥fi∥1 ≥ 0.4×maxf∈layer∥f∥1)
in wider networks: Cut-MixMo reduces this negative point.

is the same as manifold mixing [17, 46, 76]: M = 2 inputs
are encoded into a latent space to be mixed before being fed
to the rest of the network. Yet, while they mix at varying
depths, we only mix in the shallowest space. Specifically,
we only mix in features - and not in pixels - to allow sepa-
rate encodings of the inputs: they need to remain distinct in
the mixed representation for the subsequent classifiers.

Hence our two key differences: first, MixMo uses two
separated encoders (one for each input), and second, it out-
puts two predictions instead of a single one. Indeed, MS-
DAs use a single classifier that targets a unique soft la-
bel reflecting the different classes via linear interpolation.
MixMo instead chooses to fully leverage the composite na-
ture of mixed samples and trains separated dense layers,
d0 and d1, ensembled “for free” at test time.

Section 4.3.5 demonstrates that MixMo works because it
also uses two different encoders c0 and c1. While training
two classifiers may seem straightforward in MSDA, it ac-
tually raises a troubling question: which input should each
classifier predicts ? Having two encoders provides a sim-
ple solution: the network is divided in two subnetworks,
one for each input. Their separability is easily observed:
Fig. 4a shows the l1-norm of the 16 filters for the two en-
coders (WRN-28-10 on CIFAR-100). Each filter norm is
far from zero in only one of the two encoders: c0(x0) and
c1(x1) separate the inputs in different dimensions which al-
lows subsequent layers to treat them differently.

This leads MixMo to use most available filters. Follow-
ing the structured pruning literature [47], we consider in
Fig. 4b that a filter (in a layer of the core network) is active
if its l1-norm is at least 40% of the l1-norm from its layer’s
most active filter (see Appendix 6.2). This illustrates the
known increase in sparsity in wider networks. Conversely,
having 2 subnetworks in MixMo enables the weights ig-
nored by one subnetwork to be leveraged by the other.

3.5. Generalization to M ≥ 2 subnetworks

Most of the framework is easily extended by optimizing

LMixMo =
∑

0≤i<M M
κ
1/r
i∑

j κ
1/r
j

LCE (yi, ŷi) with {κi} ∼

Dir(α) from a Dirichlet distribution (see Appendix 6.3).
The key change is thatM now needs to handle more than 2
inputs: {ci(xi)}0≤i<M . While linear interpolation is easily
generalized, Cut-MixMo has several possible extensions: in
our experiments, we first linearly interpolate between M−1
inputs and then patch in a region from the M -th.

4. Experiments

We evaluate MixMo efficiency on standard image classi-
fication datasets: CIFAR-{10,100} [42] and Tiny ImageNet
[10]. We equally track accuracies (Top{1,5}, ↑) and the
calibrated Negative Log-Likelihood (NLLc, ↓). Indeed, [2]
shows that we should compare in-domain uncertainty esti-
mations after temperature scaling (TS) [25]: we thus split
the test set in two and calibrate (after averaging in ensem-
bles) with the temperature optimized on the other half, as
in [50, 64]. We nonetheless report NLL (without TS) along
with the Expected Calibration Error [54] in Appendix 6.5.

4.1. Implementation details

We mostly study the Linear-MixMo and Cut-MixMo
variants with M=2. We set hyper-parameter r=3 (see
Section 4.3.3). α=2 performs better than 1 (see Appendix
6.8). In contrast, MIMO [30] refers to linear summing, like
Linear-MixMo, but with κ=0.5 instead of κ ∼ Beta(α, α).

Different mixing methods create a strong train-test dis-
tribution gap [5, 51]. Thus, in Cut-MixMo we actually
substitute MCut-MixMo for MLinear-MixMo with probability
1− p to accommodate for the summing inM at inference.
We set the probability of patch mixing during training to
p=0.5, with linear descent to 0 over the last twelfth of train-
ing epochs (see pseudocode 1 in Appendix).

When MixMo is combined with CutMix, the pixels in-
puts are: (mx(xi, xk, λ),mx(xj , xk′ , λ′)) with interpolated
targets (λyi + (1− λ)yk, λ

′yj + (1− λ′)yk′)), where k, k′

are randomly sampled and λ, λ′ ∼ Beta(1, 1).
MIMO duplicates samples b times via batch repetition:

xi will be associated with xπ(i) and xπ′(i) in the same batch
if b=2. As the batch size remains fixed, the count of unique
samples per batch and the learning rate is divided by b. Con-
versely, the number of steps is multiplied by b. Overall, this
stabilizes training but multiplies its cost by b. We thus indi-
cate an estimated (training/inference) overhead (wrt. vanilla
training) in the time column of our tables. Note that some
concurrent approaches also lengthen training: e.g. GradAug
[82] via multiple subnetworks predictions (≈ ×3).

We provide more details in Appendix 6.4 and will open
source our PyTorch [59] implementation.

827

Table 1: Main results: WRN-28-10 on CIFAR. Bold high-
lights best scores, † marks approaches not re-implemented.

Dataset CIFAR-100 CIFAR-10

Approach
Time

Tr./Inf.
Top1
%, ↑

Top5
%, ↑

NLLc

10−2, ↓
Top1
%, ↑

NLLc

10−2, ↓

Vanilla

1/1

81.63 95.49 73.9 96.34 12.6
Mixup 83.44 95.92 65.7 97.07 11.2

Manifold Mixup† 81.96 95.51 73.4 97.45 12.2
CutMix 84.05 96.09 64.8 97.23 9.9

ResizeMix† 84.31 - - 97.60 -

Puzzle-Mix† 2/1 84.31 96.46 66.8 - -

GradAug†
3/1 84.14 96.43 - - -

+ CutMix† 85.51 96.86 - - -

Mixup BA† 7/1 84.30 - - 97.80 -

DE (2 Nets) 2/2 83.17 96.37 66.4 96.67 11.1
+ CutMix 85.74 96.82 57.1 97.52 8.6

MIMO

2/1

82.40 95.78 68.8 96.38 12.1

Linear-MixMo 82.54 95.99 67.6 96.56 11.4
+ CutMix 84.69 97.12 57.2 97.32 9.4

Cut-MixMo 84.38 96.94 56.3 97.31 8.9
+ CutMix 85.18 97.20 54.5 97.45 8.4

MIMO

4/1

83.06 96.23 66.1 96.74 11.4

Linear-MixMo 83.08 96.26 65.6 96.91 10.8
+ CutMix 85.47 97.04 55.8 97.68 8.7

Cut-MixMo 85.40 97.22 53.5 97.51 8.1
+ CutMix 85.77 97.42 52.4 97.73 7.9

4.2. Main results on CIFAR-100 and CIFAR-10

Tab. 1 reports averaged scores over 3 runs for our main
experiment on CIFAR with WRN-28-10 [84]. We re-use
the hyper-parameters given in MIMO [30]. Cut-MixMo
reaches (85.40% Top1, 0.535 NLLc) on CIFAR-100 with
b=4: it surpasses our Linear-MixMo (83.08%, 0.656) and
MIMO (83.06%, 0.661). Cut-MixMo sets a new state of the
art when combined with CutMix (85.77%, 0.524). Results
remain strong when b=2: Cut-MixMo (84.38%, 0.563)
proves better on its own than traditional DE [43], and MS-
DAs like MixUps [86, 76] or the stronger CutMix variant
[83]. On CIFAR-10, we see similar trends: Cut-MixMo
reaches 0.081 in NLLc, 0.079 with CutMix. Yet, the costlier
batch augmented Mixup BA [36] edges it out in Top1.

Fig. 5 shows how MixMo grows stronger than DE (green
curves) as width w in WRN-28-w increases. The parame-
terization becomes appropriate at w=4: Cut-MixMo (yel-
low curves) then matches DE - with half the parameters -
in Fig. 5a and its subnetworks match a vanilla network in
Fig. 5b. Beyond, MixMo better uses over-parameterization:
Cut-MixMo+CutMix surpasses DE+CutMix in NLLc for
w≥5, and this is true in Top1 for w≥10. Compared to
our strong Linear-MixMo+CutMix (purple curves), Cut-
MixMo performs similarly in Top1, and better with CutMix
for w≥4. While Linear-MixMo and DE learn from occlu-
sion, Cut-MixMo also benefits from CutMix, notably from
the induced label smoothing. Overall, Cut-MixMo, even
without CutMix, significantly better estimates uncertainty.

(a) Ensemble Top1 and NLLc. (b) Individual Top1.

Figure 5: Parameters efficiency (metrics/#params).
CIFAR-100 with WRN-28-w, b=4. Comparisons between
(a) ensemble and some of their (b) individual counterparts.

4.3. MixMo analysis on CIFAR-100 w/ WRN-28-10

4.3.1 Training time

We have just seen that CutMix improves Linear-MixMo at
varying widths w, but not enough to match Cut-MixMo in
NLLc: CutMix can not fully compensate for the advantages
from patch mixing over linear interpolation. We recover this
finding in Fig. 6, this time at varying batch repetition b ∈
{1, 2, 4} when w=10. Moreover, Cut-MixMo outperforms
DE for the same training time. Indeed, MixMo variants
trained with a given b matches the training time of DE with
N=b networks. In the rest of this section, we set b=2.

Figure 6: NLLc(↓) improves with longer training, via
batch repetitions (MixMo) or additional networks (DE).

4.3.2 The mixing blockM

Tab. 2 compares performance for several mixing blocks
[17, 29, 68, 83]. No matter the shape (illustrated in Ap-
pendix 6.7), binary masks perform better than linear mix-
ing: the cow-spotted mask (84.17%, 0.561) [20, 21] notably
performs well. The basic CutMix patching (84.38%, 0.563)
is nevertheless more accurate and was our main focus.

Table 2:M inspired by various MSDA approaches.

M
approach

Mixup
[86]

Horiz.
Concat.

Vertical
Concat.

PatchUp 2D
[17]

FMix
[29]

CowMask
[20, 21]

CutMix
[83]

Top1 ↑ 82.5 82.78 84.00 84.16 83.76 84.17 84.38
NLLc ↓ 0.676 0.627 0.573 0.581 0.602 0.561 0.563

828

We further study the impact of patch mixing through the
lens of the ensemble diversity/individual accuracy trade off.
As in [64], we measure diversity via the pairwise ratio-error
[1] (dre, ↑), defined as the ratio between the number of dif-
ferent errors and simultaneous errors for two predictors. In
Fig. 7 and 8, we average metrics over the last 10 epochs.

As argued in Section 3.2, patch mixing increases diver-
sity compared to linear mixing in Fig. 7. As the proba-
bility p of patch mixing grows, so does diversity: from
dre(p=0.0)≈0.78 (Linear-MixMo) to dre(p=0.5)≈0.85
(Cut-MixMo). We provide associated training dynamics in
Appendix 6.6. In contrast, DE has dre≈0.76 while MIMO
has dre≈0.77 on the same setup. Increasing p past 0.6
boosts diversity even more at the cost of subnetworks’ accu-
racies: this is due to underfitting and an increased test-train
distribution gap. p ∈ [0.5, 0.6] is thus the best trade off.

Figure 7: Diversity/accuracy as function of p with r=3.

4.3.3 Weighting function wr

We analyze the impact of the parameter r in the reweighting
function wr. Higher values tend to remove reweighting, as
shown in Appendix 6.1: they strongly decrease diversity in
Fig. 8. The opposite extreme with r=1 increases diversity
via lopsided gradient updates but it degrades accuracy. We
speculate it under-emphasizes hard samples. The range r ∈
[3, 6] strikes a good balance: results remain high and stable.

Figure 8: Diversity/accuracy as function of r with p=0.5.

4.3.4 Generalization to M ≥ 2 subnetworks

We try to generalize MixMo to more than M = 2 sub-
networks in Fig. 9. Cut-MixMo’s subnetworks perform at
82.3% when M=2 vs. 79.5% when M=3. In MIMO, it’s
79.8% vs. 77.7%. Because subnetworks do not share fea-
tures, higher M degrades their results: only two can fit
seamlessly. Ensemble Top1 overall decreases in spite of the
additional predictions, as already noticed in MIMO [30].

Figure 9: Ensemble/individual accuracies for M ≥ 2.

This reflects MixMo’s strength in over-parametrized
regimes, but also its limitations with fewer parameters when
subnetworks underfit (recall previous Fig. 5). Facing simi-
lar findings, MIMO [30] introduced input repetition so that
subnetworks share their features, at the cost of drastically
reducing diversity. Our generalization may be extended by
future approaches whose mixing blocks (perhaps not in-
spired by MSDA) would tackle these issues.

4.3.5 Multiple encoders and classifiers

Table 3: Number of en-
coders/classifiers.

Enc. # Clas. NLLc ↓
1 1 0.604
2 1 0.666
1 2⊖ 0.687
1 2⊗ 0.598

2 2 0.563

In Section 3.4, we com-
pared MixMo and MSDA.
Tab. 3 confirms the need for
2 encoders and 2 classi-
fiers. With 1 classifier and
linearly interpolated labels (in
the same spirit as [7]), the 2
encoders perform worse than
1 encoder. With 1 shared en-
coder and 2 classifiers, it is
not clear which input each classifier should target. In the
first naive⊖, we randomly associate the 2 classifiers and the
2 inputs (encoded with the same encoder). This ⊖ variant
yields poor results. In ⊗, the first classifier tries to predict
the label from the predominant input, the second targets the
other input: ⊗ reaches 0.598 vs. 0.563 for Cut-MixMo.

4.4. Robustness to image corruptions

Deep networks’ results decrease when facing unfamil-
iar samples. To measure robustness to train-test distribution
gaps, [34] corrupted CIFAR-100 test images into CIFAR-
100-c (more details in Appendix 6.4). As in Puzzle-Mix
[41], we report WRN-28-10 results with and without Aug-
Mix [35], a pixels data augmentation technique specifically
introduced for this task. Tab. 4 shows that Cut-MixMo
(b=4) best complements AugMix and reaches 71.1% Top1.

Table 4: Robustness comparison on CIFAR-100-c.

Approach 1 Net. CutMix Puzzle-Mix† DE (2 Nets) MIMO Linear-MixMo Cut-MixMo
AugMix - ✓ - - ✓ - ✓ - - ✓ - ✓

Top1 ↑ 52.2 67.8 51.93 58.09 70.46 53.8 69.9 53.6 55.6 70.4 57.0 71.1
Top5 ↑ 73.7 87.5 72.03 77.3 87.7 74.9 88.9 74.9 76.1 89.4 77.4 89.5
NLL ↓ 2.50 1.38 2.13 1.96 1.34 2.27 1.24 2.66 2.33 1.22 2.04 1.16

829

4.5. Pushing MixMo further: Tiny ImageNet

At a larger scale and with more varied 64 × 64 im-
ages, Cut-MixMo reaches a new state of the art of 70.24%
on Tiny ImageNet [10] in Tab. 5. We re-use the hyper-
parameters given in previous state of the art Puzzle-Mix
[41]. With w=1, PreActResNet-18 [32] is not sufficiently
parametrized for MixMo’s advantages to express them-
selves on this challenging dataset. MixMo’s full potential
shines with wider networks: with w=2 and 44.9M parame-
ters, Cut-MixMo reaches (69.13%, 1.28) vs. (67.76%, 1.33)
for CutMix. Compared to DE with 3 networks, Cut-MixMo
performs {worse, similarly, better} for width w ∈ {1, 2, 3}.
At (almost) the same numbers of parameters, Cut-MixMo
when w=2 performs better (69.13%, 1.28) than DE with 4
networks when w=1 (67.51%, 1.31).

Table 5: Results: PreActResNet-18-w on Tiny ImageNet.

Width w (# params) w = 1 (11.2M) w = 2 (44.9M) w = 3 (100.5M)

Approach
Time
Tr./Inf.

Top1
%, ↑

NLLc

↓
Top1
%, ↑

NLLc

↓
Top1
%, ↑

NLLc

↓

Vanilla

1/1

62.56 1.53 64.80 1.51 65.78 1.53
Mixup 63.74 1.62 66.62 1.50 67.27 1.51

Manifold Mixup† 58.70 1.92 - - - -
Co-Mixup† 64.15 - - - - -

CutMix 65.09 1.58 67.76 1.33 68.95 1.29

Puzzle-Mix† 2/1 64.48 1.65 - - - -

DE (2 Nets) 2/2 65.53 1.39 68.06 1.37 68.38 1.36
DE (3 Nets) 3/3 66.76 1.34 69.05 1.29 69.36 1.28
DE (4 Nets) 4/4 67.51 1.31 69.94 1.24 69.72 1.26

Linear-MixMo 2/1 61.58 1.61 66.62 1.41 68.18 1.36
Cut-MixMo 63.78 1.48 68.30 1.30 69.89 1.26

Linear-MixMo 4/1 62.91 1.51 67.03 1.41 68.38 1.38
Cut-MixMo 64.44 1.48 69.13 1.28 70.24 1.19

4.6. Ensemble of MixMo

Since MixMo adds very little parameters (≈ +1%), we
can combine independently trained MixMo like in DE. This
ensembling of ensemble of subnetworks leads in practice to
the averaging of M×N = 2×N predictions. Fig. 10 com-
pares ensembling for vanilla networks and Cut-MixMo on
CIFAR-100. We first recover the Memory Split Advantage
[9, 50, 77, 88] (MSA): at similar parameter counts, N=5
vanilla WRN-28-3 do better than a single vanilla WRN-28-
7 (+0.10 in NLLc). Cut-MixMo challenges this MSA: we
bridge the gap between using one network or several smaller
networks (−0.04 on same setup). Visually, Cut-MixMo’s
curves remain closer to the lower envelope: performances
are less dependent on how the memory budget is split. This
is because Cut-MixMo is effective mainly for larger archi-
tectures by better leveraging their parameters.

We also recover that wide vanilla networks tend to be
less diverse [55], and thus gain less from ensembling [50]:
N=2 vanilla WRN-28-14 (83.47% Top1, 0.656 NLLc)

Figure 10: Ensemble effectiveness (NLLc/#params), for
different widths w in WRN-28-w and numbers of members
N . Standard data augmentations on CIFAR-100 with b=4.
Curves interpolated through power laws [50].

perform not much better than N=2 WRN-28-7 (82.94%,
0.673). Contrarily, Cut-MixMo facilitates the ensem-
bling of large networks with (86.58%, 0.488) vs. (85.50%,
0.516) (more comparisons in Appendix 6.10).

When combined with CutMix [83], Cut-MixMo previ-
ously set a new state of the art of 85.77% with N=1 WRN-
28-10. Final Tab. 6 shows it further reaches 86.63% with
N=2 and even 86.81% with N=3.

Table 6: Best results for WRN-28-10 on CIFAR-100
via Cut-MixMo + CutMix [83] + N -ensembling and b=4.
Recent Top1 SoTAs: 85.23 [63], 85.51 [82], 85.74 [88].

N # params Average Best run
Top1 ↑ Top5 ↑ NLLc ↓ Top1 ↑ Top5 ↑ NLLc ↓

1 36.6M 85.77 ± 0.14 97.36 ± 0.02 0.524 ± 0.005 85.92 97.36 0.518
2 73.2M 86.63 ± 0.19 97.73 ± 0.05 0.479 ± 0.003 86.75 97.80 0.475
3 109.8M 86.81 ± 0.17 97.85 ± 0.04 0.464 ± 0.002 86.94 97.83 0.464

5. Conclusion
We introduce the MixMo framework that generalizes the

multi-input multi-output ensembling strategy. MixMo can
be analyzed as either an ensembling method or a mixed
samples data augmentation, while remaining complemen-
tary to works from both lines of research. Finally, MixMo
better exploits wide networks and improves the state of the
art on CIFAR-100, CIFAR-100-c and Tiny ImageNet.

Acknowledgments

This work was performed using HPC resources from
GENCI-IDRIS (Grant 2021-AD011012262), with financial
supports from the ANR agency in the chair VISA-DEEP
(ANR-20-CHIA-0022-01), and from Rémy’s CIFRE grant
between Thales Land and Air Systems and Sorbonne Uni-
versity. We thank Andrei Bursuc for his detailed feedbacks.

830

References
[1] Matti Aksela. Comparison of classifier selection methods for

improving committee performance. In MCS, 2003.
[2] Arsenii Ashukha, Alexander Lyzhov, Dmitry Molchanov,

and Dmitry Vetrov. Pitfalls of in-domain uncertainty esti-
mation and ensembling in deep learning. In ICLR, 2020.

[3] Kyungjune Baek, Duhyeon Bang, and Hyunjung Shim. Grid-
mix: Strong regularization through local context mapping.
Pattern Recognition, 2021.

[4] Leo Breiman. Bagging predictors. Machine learning, 1996.
[5] Luigi Carratino, Moustapha Cissé, Rodolphe Jenatton, and

Jean-Philippe Vert. On mixup regularization. ArXiv preprint,
2020.

[6] Rich Caruana. Multitask learning. Machine learning, 1997.
[7] John Chen, Samarth Sinha, and Anastasios Kyrillidis. Imclr:

Implicit contrastive learning for image classification. ArXiv
preprint, 2020.

[8] Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and An-
drew Rabinovich. Gradnorm: Gradient normalization for
adaptive loss balancing in deep multitask networks. In ICML,
2018.

[9] Nadezhda Chirkova, Ekaterina Lobacheva, and Dmitry P.
Vetrov. Deep ensembles on a fixed memory budget: One
wide network or several thinner ones? ArXiv preprint, 2020.

[10] Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. A
downsampled variant of imagenet as an alternative to the ci-
far datasets. ArXiv preprint, 2017.

[11] Ekin Dogus Cubuk, Barret Zoph, Jon Shlens, and Quoc Le.
Randaugment: Practical automated data augmentation with
a reduced search space. In NeurIPS, 2020.

[12] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei. Imagenet: A large-scale hierarchical image database. In
CVPR, 2009.

[13] Terrance DeVries and Graham W Taylor. Improved regular-
ization of convolutional neural networks with cutout. ArXiv
preprint, 2017.

[14] Thomas G Dietterich. Ensemble methods in machine learn-
ing. In MCS, 2000.

[15] Nikita Durasov, Timur Bagautdinov, Pierre Baque, and Pas-
cal Fua. Masksembles for uncertainty estimation. ArXiv
preprint, 2020.

[16] Michael Dusenberry, Ghassen Jerfel, Yeming Wen, Yian Ma,
Jasper Snoek, Katherine Heller, Balaji Lakshminarayanan,
and Dustin Tran. Efficient and scalable bayesian neural nets
with rank-1 factors. In ICML, 2020.

[17] Mojtaba Faramarzi, Mohammad Amini, Akilesh Badri-
naaraayanan, Vikas Verma, and Sarath Chandar. Patchup: A
regularization technique for convolutional neural networks.
ArXiv preprint, 2020.

[18] Stanislav Fort, Huiyi Hu, and Balaji Lakshminarayanan.
Deep ensembles: A loss landscape perspective. ArXiv
preprint, 2019.

[19] Jonathan Frankle and Michael Carbin. The lottery ticket hy-
pothesis: Finding sparse, trainable neural networks. In ICLR,
2019.

[20] Geoff French, Timo Aila, Samuli Laine, Michal Mackiewicz,
and Graham Finlayson. Semi-supervised semantic segmen-
tation needs strong, high-dimensional perturbations. ArXiv
preprint, 2019.

[21] Geoff French, Avital Oliver, and Tim Salimans. Milking
cowmask for semi-supervised image classification. ArXiv
preprint, 2020.

[22] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian
approximation: Representing model uncertainty in deep
learning. In ICML, 2016.

[23] Yuan Gao, Zixiang Cai, and Lei Yu. Intra-ensemble in neural
networks. ArXiv preprint, 2019.

[24] Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. Dropblock:
A regularization method for convolutional networks. In
NeurIPS, 2018.

[25] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger.
On calibration of modern neural networks. In ICML, 2017.

[26] Hongyu Guo, Yongyi Mao, and Richong Zhang. Mixup as
locally linear out-of-manifold regularization. In AAAI, 2019.

[27] Fredrik K Gustafsson, Martin Danelljan, and Thomas B
Schon. Evaluating scalable bayesian deep learning methods
for robust computer vision. In CVPR Workshops, 2020.

[28] Lars Kai Hansen and Peter Salamon. Neural network en-
sembles. IEEE transactions on pattern analysis and machine
intelligence, 1990.

[29] Ethan Harris, Antonia Marcu, Matthew Painter, Mahesan Ni-
ranjan, Adam Prügel-Bennett, and Jonathon Hare. Fmix: En-
hancing mixed sample data augmentation. ArXiv preprint,
2020.

[30] Marton Havasi, Rodolphe Jenatton, Stanislav Fort, Jeremiah
Liu, Jasper Roland Snoek, Balaji Lakshminarayanan, An-
drew Mingbo Dai, and Dustin Tran. Training independent
subnetworks for robust prediction. In ICLR, 2021.

[31] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016.

[32] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Identity mappings in deep residual networks. In ECCV,
2016.

[33] Zhuoxun He, Lingxi Xie, Xin Chen, Ya Zhang, Yanfeng
Wang, and Qi Tian. Data augmentation revisited: Rethink-
ing the distribution gap between clean and augmented data.
ArXiv preprint, 2019.

[34] Dan Hendrycks and Thomas Dietterich. Benchmarking neu-
ral network robustness to common corruptions and perturba-
tions. In ICLR, 2019.

[35] Dan Hendrycks, Norman Mu, Ekin Dogus Cubuk, Barret
Zoph, Justin Gilmer, and Balaji Lakshminarayanan. Aug-
mix: A simple data processing method to improve robustness
and uncertainty. In ICLR, 2019.

[36] Elad Hoffer, Tal Ben-Nun, Itay Hubara, Niv Giladi, Torsten
Hoefler, and Daniel Soudry. Augment your batch: Improving
generalization through instance repetition. In CVPR, 2020.

[37] Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E.
Hopcroft, and Kilian Q Weinberger. Snapshot ensembles:
Train 1, get m for free. In ICLR, 2017.

831

[38] Hiroshi Inoue. Data augmentation by pairing samples for
images classification. ArXiv preprint, 2018.

[39] Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry
Vetrov, and Andrew Gordon Wilson. Averaging weights
leads to wider optima and better generalization. In UAI,
2018.

[40] JangHyun Kim, Wonho Choo, Hosan Jeong, and Hyun Oh
Song. Co-mixup: Saliency guided joint mixup with super-
modular diversity. In ICLR, 2021.

[41] Jang-Hyun Kim, Wonho Choo, and Hyun Oh Song. Puz-
zle mix: Exploiting saliency and local statistics for optimal
mixup. In ICML, 2020.

[42] Alex Krizhevsky and Geoffrey Hinton. Learning multiple
layers of features from tiny images. Technical report, 2009.

[43] Balaji Lakshminarayanan, Alexander Pritzel, and Charles
Blundell. Simple and scalable predictive uncertainty esti-
mation using deep ensembles. In NeurIPS, 2017.

[44] Yann Lecun, J. S. Denker, Sara A. Solla, R. E. Howard, and
L.D. Jackel. Optimal brain damage. In NeurIPS, 1990.

[45] Stefan Lee, Senthil Purushwalkam, Michael Cogswell,
David J. Crandall, and Dhruv Batra. Why M heads are bet-
ter than one: Training a diverse ensemble of deep networks.
ArXiv preprint, 2015.

[46] Boyi Li, Felix Wu, Ser-Nam Lim, Serge Belongie, and Kil-
ian Q. Weinberger. On feature normalization and data aug-
mentation. ArXiv preprint, 2020.

[47] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and
Hans Peter Graf. Pruning filters for efficient convnets. In
ICLR, 2017.

[48] Daojun Liang, Feng Yang, Tian Zhang, and Peter Yang. Un-
derstanding mixup training methods. IEEE Access, 2018.

[49] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollár. Focal loss for dense object detection. In ICCV,
2017.

[50] Ekaterina Lobacheva, Nadezhda Chirkova, Maxim Kodryan,
and Dmitry P Vetrov. On power laws in deep ensembles. In
NeurIPS, 2020.

[51] Raphael Gontijo Lopes, Sylvia J. Smullin, Ekin D. Cubuk,
and Ethan Dyer. Affinity and diversity: Quantifying mecha-
nisms of data augmentation. In CoRR, 2020.

[52] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila,
and Jan Kautz. Pruning convolutional neural networks for
resource efficient transfer learning. In ICLR, 2017.

[53] Rafael Müller, Simon Kornblith, and Geoffrey E Hinton.
When does label smoothing help? In NeurIPS, 2019.

[54] Mahdi Pakdaman Naeini, Gregory Cooper, and Milos
Hauskrecht. Obtaining well calibrated probabilities using
bayesian binning. In AAAI, 2015.

[55] Brady Neal, Sarthak Mittal, Aristide Baratin, Vinayak Tan-
tia, Matthew Scicluna, Simon Lacoste-Julien, and Ioannis
Mitliagkas. A modern take on the bias-variance tradeoff in
neural networks. ArXiv preprint, 2018.

[56] Jeremy Nixon, Michael W Dusenberry, Linchuan Zhang,
Ghassen Jerfel, and Dustin Tran. Measuring calibration in
deep learning. In CVPR workshop, 2019.

[57] David Opitz and Richard Maclin. Popular ensemble meth-
ods: An empirical study. Journal of artificial intelligence
research, 1999.

[58] Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David
Sculley, Sebastian Nowozin, Joshua Dillon, Balaji Lakshmi-
narayanan, and Jasper Snoek. Can you trust your model’s
uncertainty? evaluating predictive uncertainty under dataset
shift. In NeurIPS, 2019.

[59] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library. In
NeurIPS. 2019.

[60] Ankit Pensia, Shashank Rajput, Alliot Nagle, Harit Vish-
wakarma, and Dimitris Papailiopoulos. Optimal lottery tick-
ets via subsetsum: Logarithmic over-parameterization is suf-
ficient. In NeurIPS, 2020.

[61] Gabriel Pereyra, George Tucker, Jan Chorowski, Łukasz
Kaiser, and Geoffrey Hinton. Regularizing neural networks
by penalizing confident output distributions. In ICLR work-
shop, 2017.

[62] Michael Perrone and Leon Cooper. When networks disagree:
Ensemble methods for hybrid neural networks. Neural net-
works for speech and image processing, 1993.

[63] Jie Qin, Jiemin Fang, Qian Zhang, Wenyu Liu, Xingang
Wang, and Xinggang Wang. Resizemix: Mixing data with
preserved object information and true labels. ArXiv preprint,
2020.

[64] Alexandre Rame and Matthieu Cord. Dice: Diversity in
deep ensembles via conditional redundancy adversarial es-
timation. In ICLR, 2021.

[65] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das,
Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra.
Grad-cam: Visual explanations from deep networks via
gradient-based localization. In ICCV, 2017.

[66] Masoumeh Soflaei, Hongyu Guo, Ali Al-Bashabsheh,
Yongyi Mao, and Richong Zhang. Aggregated learning:
A vector-quantization approach to learning neural network
classifiers. In AAAI, 2020.

[67] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. Dropout: a simple
way to prevent neural networks from overfitting. Journal
of Machine Learning Research, 2014.

[68] Cecilia Summers and Michael J Dinneen. Improved mixed-
example data augmentation. In WACV, 2019.

[69] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going deeper with
convolutions. In CVPR, 2015.

[70] Ryo Takahashi, Takashi Matsubara, and Kuniaki Uehara.
Data augmentation using random image cropping and patch-
ing for deep cnns. IEEE Transactions on Circuits and Sys-
tems for Video Technology, 2020.

[71] Naftali Tishby. The information bottleneck method. In Aller-
ton Conference on Communication, Control and Computa-
tion, 2001.

832

[72] Yuji Tokozume, Yoshitaka Ushiku, and Tatsuya Harada.
Between-class learning for image classification. In CVPR,
2018.

[73] Yuji Tokozume, Yoshitaka Ushiku, and Tatsuya Harada.
Learning from between-class examples for deep sound
recognition. In ICLR, 2018.

[74] A. F. M. Shahab Uddin, Mst. Sirazam Monira, Wheemyung
Shin, TaeChoong Chung, and Sung-Ho Bae. Saliencymix:
A saliency guided data augmentation strategy for better reg-
ularization. In ICLR, 2021.

[75] Andreas Veit, Michael Wilber, and Serge Belongie. Resid-
ual networks behave like ensembles of relatively shallow net-
works. In NeurIPS, 2016.

[76] Vikas Verma, Alex Lamb, Christopher Beckham, Amir Na-
jafi, Ioannis Mitliagkas, David Lopez-Paz, and Yoshua Ben-
gio. Manifold mixup: Better representations by interpolating
hidden states. In ICML, 2019.

[77] Xiaofang Wang, Dan Kondratyuk, Kris M. Kitani, Yair
Movshovitz-Attias, and Elad Eban. Multiple networks are
more efficient than one: Fast and accurate models via en-
sembles and cascades. ArXiv preprint, 2020.

[78] Abdul Wasay, Brian Hentschel, Yuze Liao, Sanyuan Chen,
and Stratos Idreos. Mothernets: Rapid deep ensemble learn-
ing. In MLSys, 2020.

[79] Yeming Wen, Ghassen Jerfel, Rafael Muller, Michael W
Dusenberry, Jasper Snoek, Balaji Lakshminarayanan, and
Dustin Tran. Combining ensembles and data augmentation
can harm your calibration. In ICLR, 2021.

[80] Andrew Gordon Wilson and Pavel Izmailov. Bayesian deep
learning and a probabilistic perspective of generalization.
NeurIPS, 2020.

[81] Yoichi Yaguchi, Fumiyuki Shiratani, and Hidekazu Iwaki.
Mixfeat: Mix feature in latent space learns discriminative
space. Openreview preprint, 2019.

[82] Taojiannan Yang, Sijie Zhu, and Chen Chen. Gradaug:
A new regularization method for deep neural networks.
NeurIPS, 2020.

[83] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk
Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix: Regu-
larization strategy to train strong classifiers with localizable
features. In ICCV, 2019.

[84] Sergey Zagoruyko and Nikos Komodakis. Wide residual net-
works. In BMVC, 2016.

[85] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin
Recht, and Oriol Vinyals. Understanding deep learning re-
quires rethinking generalization. ICLR, 2017.

[86] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and
David Lopez-Paz. mixup: Beyond empirical risk minimiza-
tion. In ICLR, 2018.

[87] Linjun Zhang, Zhun Deng, Kenji Kawaguchi, Amirata Ghor-
bani, and James Zou. How does mixup help with robustness
and generalization? ICLR, 2021.

[88] Shuai Zhao, Liguang Zhou, Wenxiao Wang, Deng Cai,
Tin Lun Lam, and Yangsheng Xu. Splitnet: Divide and co-
training. ArXiv preprint, 2020.

833

