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Abstract. The present manuscript tackles the issues of model inter-
pretability and variable importance in random forests, in the presence of
correlated input variables. Variable importance criteria based on random
permutations are known to be sensitive when input variables are corre-
lated, and may lead for instance to unreliability in the importance ranking.
In order to overcome some of the problems raised by correlation, an orig-
inal variable importance measure is introduced. The proposed measure
builds upon an algorithm which clusters the input variables based on their
correlations, and summarises each such cluster by a synthetic variable.
The effectiveness of the proposed criterion is illustrated through simula-
tions in a regression context, and compared with several existing variable
importance measures.

1 Introduction

Variable importance and model interpretability are essential for conducting com-
prehensive data analysis. Random Forests (RF) are an attractive technique for
supervised learning because of their good empirical performances, yet they are
often considered as black-boxes because of their lack of interpretability. Usually,
for RF, interpretability may be assessed by quantifying variable importance.
From a statistical point of view, computing variable importance aims at two
goals: i) find the contribution of each input variable to the prediction, and ii)
measure the dependency between the input variables and the output one. How-
ever, one should note that these objectives might be contradictory when variables
are correlated. In fact, if two variables are strongly correlated, one of them may
be discarded without degrading the performance of the model, while still being
related to the output variable.

Two criteria are currently the benchmark for measuring variable importance
for RF: the Mean Decreased Accuray (MDA) [1] which quantifies the decrease
of accuracy when a given input variable is permuted, and the Mean Decreased
Impurity (MDI) [1] which quantifies the decrease of impurity over all nodes in
the forest split according to a given input variable. Both criteria are known
to raise some issues in practice: the MDI usually overestimates the importance
of non-discriminant variables, while the MDA may not detect important vari-
ables when dependency is present [2]. In particular, it has been proven by [2]



that, in the case of independent input variables, the MDA tends to estimate the
proportion of output variance explained by each input variable, whereas in the
case of dependent inputs, the MDA is ill-defined because of what is called the
sampling bias. The latter has been studied empirically by [3], who argue that
permutation-based methods tend to over-estimate the importance of correlated
input variables.

Several alternatives have been proposed in the literature in order to overcome
some of the known flaws of MDA. [4] introduced a conditional version of the MDA
(CMDA), based on a conditional permutation scheme, where the considered
input variable is permuted only within groups of observations, so as to preserve
the correlation structure and make the criterion more reliable in the presence
of correlated variables. Recently, [2] proposed the Sobol-MDA criterion, along
with a theoretical analysis. The Sobol-MDA method is based on the total Sobol
index and computes the degraded accuracy by ignoring the nodes containing
the considered the input variable in each tree. Unlike the MDA, in the case of
dependent input variables, the Sobol-MDA aims to estimate the proportion of
output variance explained by each input variable.

Nevertheless, relying on any of these measures alone may be misleading. If,
for example, two input variables are identical, they would be expected to explain
the same amount of the output variance. However, this is not guaranteed in
practice since each tree will randomly chose one of them. Thus, the amount of
output variance explained by each of them will be different according to their
being included in the model or not. Not only all of the above methods are
hence subject to what may be called selection bias, but one should note also
that they are mostly designed to meet objective i) and only aim at assessing the
contribution of the input variables to the prediction.

This manuscript focuses mainly on objective ii) above, and on discovering
relationships between the input variables and output one. It introduces a new
criterion for assessing variable importance, based on the MDA computed on a
set of synthetic variables and using RF. The synthetic variables are defined as
summaries of the input variables, using the correlation structure of the input
data and a clustering procedure, as proposed by [5]. The rest of the paper is
organised as follows: Section 2 contains the details of the proposed methodology
and enumerates its main steps, while Section 3 illustrates the proposed criterion
and compares it with the existing literature, for a simulated data set.

2 Methodology

The proposed criterion is based on the following steps: first, the input variables
are clustered according to their correlation structure; second, each cluster of
input variables is summarised by a synthetic variable and more specifically by
the first principal component computed within the cluster; third, a RF algorithm
is trained on the synthetic variables and for each of them the associate MDA
is computed; fourth, the importance of each of the original input variables is
assessed using the MDA of the synthetic variables and the correlations between



synthetic and original variables. The first three steps were introduced in [5],
while the last one represents the original contribution of the manuscript. Each
of these four steps will be briefly described in the following paragraphs.

Variable clustering and computation of synthetic variables Let the data set
Dn = {(xi, yi)}1≤i≤n, consisting of n observations with the input matrix X ∈
Rn×p of p variables, y ∈ Rn and xj ∈ Rn indicates the j-th variable of X.

Input variables are clustered together using a Hierarchical Clustering Anal-
ysis (HCA). The criterion used in the dendrogram construction is based on a
homogeneity measure and aims at reducing information redundancy. Two clus-
ters Ck and Ck′ are compared through a dissimilarity defined as

d(Ck, Ck′) = H(Ck) +H(Ck′)−H(Ck ∪ Ck′),

where
H(Ck) =

∑
xj∈Ck

r2fk,xj and fk = argmax
u∈Rn

∑
xj∈Ck

r2u,xj .

In the equation above, r2u,xj stands for the squared Pearson correlation between

some synthetic feature u and the input variable xj, and one may notice, as shown
in [5], that fk is actually the first principal component associated to cluster Ck.

Random Forests on Synthetic Variables The above procedure establishes a hier-
archy of dependency between input variables in terms of redundant information,
but does not provide the optimal number of clusters, and implicitly the optimal
number of synthetic variables fk to use hereafter. In order to establish it, one
may train a RF algorithm for each level of the dendrogram, hence for a num-
ber of clusters K = 1, ..., p. For each K and for each associate input variable
partitioning, one will train a RF on the corresponding synthetic variables and
compute the resulting Out-Of-Bag (OOB) error. The optimal number of clus-
ters of variables K∗ is chosen as the one leading to the minimum OOB error
rate. [5] have shown that clustering variables not only enhances interpretability,
but can also improve the predictive performance of the algorithm. Once the
optimal number of synthetic features K∗ has been selected, one may select the
RF trained on those and compute the MDA associated to (fk)k=1,...,K∗ .

Synthetic MDA (SMDA) Variable clustering combined with RF trained on syn-
thetic variables provides an appealing solution to avoid selection and sampling
bias, at least to some extent. Indeed, homogeneity-based clustering should result
into small correlations between synthetic variables, and may prevent both types
of bias. Nevertheless, the above procedure allows to compute MDA measures for
synthetic variables only and does not assess the importance of the original ones.
To fill this gap, a new criterion for measuring the importance of the original
variables through the synthetic ones is defined. The Synthetic-MDA (SMDA)
conditionally to a variable partitioning into K? clusters is defined as:

SMDAK∗(xj) = MDAK∗(fk)× r2fk,xj ,



where xj is a feature clustered in cluster Ck, and fk is the synthetic variable
summarising the same cluster, for k = 1, ...,K∗ and j = 1, ..., p. MDAK∗(fk) is
computed as the average decrease of accuracy in the OOB sample, before and
after permutation of the synthetic feature fk over all trees:

MDAK∗(fk) =
1

T

T∑
t=1

[
Rm(D

πk,t

oob,t, t)−Rm(Doob,t, t)
]
,

with T the number of tree of the RF m, Rm(Doob,t, t) is the risk of the t-th tree
computed on its OOB sample and D

πk,t

oob,t is the OOB sample of the t-th tree
where the k-th variable has been permuted, i.e. OOB samples and permutations
are different between trees. The risk can be defined differently depending on
the context, and in the simulations below we consider the regression context
with the mean squared error as associated risk. The clustering of variables re-
duces but does not completely remove the correlation in the data since synthetic
variables are not necessarily orthogonal. Hence, there is a trade-off between in-
terpretability and performance that can be adjusted via the number of clusters
used to fit the RF m. Nonetheless, thanks to the SMDA formulation, the rela-
tionship between the input variables and the output variable should be better
assessed since the importance is not diluted by the correlations, which helps to
meet objective ii), unlike other measures which give a lower contribution to the
correlated variables due to the selection bias.

3 Experimental Results

For the experimental section, the data was simulated in a regression context and
using a linear model, as follows:

y =

p1∑
j=1

βj × xj +
1

2
× x̃1 + ε, where βj =

p1 − j + 1

p1
, j = 1, . . . , p1,

where y ∈ Rn, ε normally distributed with 0 mean and variance 0.5. The
important variables are normally distributed s.t.:

1. Xp1 ∈ Rn×p1 are p1 independent variables with 0 mean.

2. x̃1 ∈ X̃p2 , X̃p2 ∈ Rn×p2 have 0 mean and pairwise correlation of 0.9.

Two additional set of noise variables normally distributed are added:

1. Zq1 ∈ Rn×q1 are q1 independent variables with 0 mean.

2. Z̃q2 ∈ Rn×q2 have 0 mean and pairwise correlation of 0.9.

Hence, the input matrix X is composed of 4 groups of variables, independent of
each other, such that X = [Xp1 |X̃p2 |Zq1 |Z̃q2 ], with p = p1 + p2 + q1 + q2.

Since a linear regression model without interaction is considered, the impor-
tance of a variable xj in the true model may be defined via its correlation with



y: r2y,xj . Indeed, since it is objective ii) that is being considered, the importance
of a variable must not depend on the presence or the absence of other variables.
(given our model without interaction). Note that the specific value of the co-
efficient r2y,xj is not relevant, yet it is the ranking of variables it provides that
is pertinent. Once the data has been simulated with samples of size n = 500,
the RF in the proposed strategy were fitted using the R-package ranger [6] with
default parameters and T = 1000.

In the first experiment, p1 = 3, p2 = 3, q1 = 2, q2 = 0. Table 1 compares the
theoretical importance as defined by the squared correlation with the empirical
variable importance as computed with the MDA, the CMDA, the Sobol-MDA
and the SMDA over 100 independent samples of data. As one may see, the
MDA underestimates the importance of the input variables correlated with x̃1.
The CMDA fairly ranks the variables but the importance of the input variables
correlated with x̃1 is almost 0, which may raise some issues if one seeks to discover
relationships between input variables and y. The Sobol-MDA estimates negative
weights, in particular for x̃1, suggesting, wrongly, that the performance of the
model could be improved by discarding x̃1. On the other hand, the SMDA
provides a good estimate of the ranking, and the computed values appear as
meaningful. For the SMDA procedure, over the 100 samples, the algorithm
repeatedly selected K? = 6, and clustered the input variables in the X̃p2 block
together. Hence, one shortcoming of the proposed method is that all variables
in this block have consequently the same importance.

Table 1: Results of simulations with p1 = 3, p2 = 3, q1 = 2, q2 = 0. Average
importance over 100 samples is reported. Standard deviations are below 10−3.

x1 x2 x3 x̃1 x̃2 x̃3 z1 z2

MDA 0.690 0.269 0.063 0.128 0.061 0.074 0.000 -0.001
Sobol-MDA 0.482 0.179 0.027 -0.002 -0.014 -0.015 -0.011 -0.011
CMDA 1.076 0.423 0.095 0.011 0.000 0.001 -0.001 -0.001
SMDA 0.802 0.311 0.064 0.151 0.151 0.150 0.001 0.001

r2
y,xj 0.56 0.24 0.06 0.14 0.11 0.11 0.00 0.00

In the second experiment, p1 = 10, q1 = 25, and p2 and q2 take different
values as described in Table 2. The comparison of variable-importance measures
has been extended here to MDI and MDICor. The latter is supposed to handle
correlation, according to [6]. The theoretical importance was compared with the
empirical importance as measured by the various criteria using the Spearman
correlation. The percentage of important variables among the p1 + p2 firstly
ranked input variables is also reported. The case p2 = 1, q2 = 50 should be
the easiest one for all criteria, since all important variables are independent, the
others being noise variables, and indeed most criteria are equivalent.

In the presence of correlated important variables and correlated noise (p2 =
50, q2 = 50), the MDA is negatively affected by the sampling bias which is
stronger in the presence of many correlated variables in constrast to the MDI
favourably biased because of the selection bias (and by definition it is not
sampling-based). Overall, our method was significantly better. The number



of clusters chosen is almost equivalent in the three settings and is in average
equal to 36 with a standard deviation of 5. In particular, depending on the
simulations, seldom independent variables were put together and each group of
correlated variables may have been separated into two clusters.

Table 2: Spearman correlation between the true and the estimated variable-
importance, and percentage of important variables in the p1 + p2 firstly ranked
input variables. p1 = 10, q1 = 25. Average values over 100 samples are reported.
Standard deviations are provided in the brackets.

p2 = 1; q2 = 50 p2 = 50; q2 = 0 p2 = 50; q2 = 50
Sp %sel Sp %sel Sp %sel

MDICor 0.41(.089) 86(7.3) 0.64 (.085) 91(4.1) 0.68(.053) 87(6.1)
MDI 0.42(.045) 87(5.9) 0.13(.182) 61(3.2) 0.59(.072) 65(4.5)
MDA 0.27(.054) 73(5.7) 0.75(.026) 98(1.1) 0.69(.051) 88(4.1)
CMDA 0.21(.078) 81(6.4) 0.15(.152) 81(3.2) 0.16(.087) 43(5.2)
Sobol-MDA 0.27(.086) 82(7.1) 0.11(.101) 67(2.9) 0.25(.099) 31(4.5)

SMDA 0.42(.093) 89(6.8) 0.77(.031) 98(1.4) 0.81(.035) 98(0.9)

4 Conclusion

According to the results above, the performance of the proposed criterion is su-
perior or similar with the existing measures for variable importance. Simulation
results pointed out that handling correlations is important if one seeks to dis-
cover relationships between input variables and output variable. The proposed
criterion may be generalised whether in terms of clustering method for the in-
put variables (k-means), or in terms of algorithm for the supervised learning
step. Furthermore, variable clustering can be done for mixed data [5] (mixture
of categorical and numerical variables). A theoretical analysis of the sampling
bias and several additional experiments have been also conducted, but are not
presented here because of the reduced number of pages. The implementation of
our method and the code to simulate data are publicly available1.
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