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Abstract 

Quality assurance of the final build part in L-PBF is greatly influenced by the various process steps such as 

Powder handling, Powder bed spreading, and Laser-material interaction. Each process step is interlinked 

to each other and can affect the overall behavior of the succeeding steps. Therefore, it is vital to monitor 

each step individually, post-process, and establish a link among the data to develop an approach to 

quantify the defects via inline monitoring. This study focuses on using pre-and post-exposure powder bed 

image data and in-situ melt pool monitoring data to monitor the build's overall quality. Two Convolutional 

Neural Networks have been trained to treat the pre and post-exposure images with a trained accuracy of 

93.16 % and 96.20 %, respectively. The supervised machine-learning algorithm called “Support Vector 

Machine” is used to classify and post-process the photodiodes data obtained from the melt pool 

monitoring. A case study on “Benchmark Part” is presented to check the proposed algorithms' overall 

working and detect abnormalities at three different process steps (Pre and Post-Exposure, Melt Pool 

Monitoring) individually.  This study shows the potential of machine learning approaches to improve the 

overall reliability of the L-PBF process by inter-linking the different process steps. 

Keywords: Machine Learning, Laser powder bed fusion, Quality assurance, Melt pool monitoring, Defect 

detection 

1. Introduction 

Recently, Additive manufacturing (AM) has observed tremendous growth in various industries such as 

aerospace, biomedical, automotive, energy, and tooling due to its capability to manufacture complex 

parts with ease. According to Wohler’s report of 2019, the metal additive manufacturing industry has 

shown record growth with an increase of 41.9 % [1]. The reported growth indicates that the AM industry 

has significant potential in patient-specific medical implants, lightweight components for the aerospace 



and automotive sector, which eventually reduced fuel consumption. However, the process repeatability 

and reliability remain a significant concern in AM [2]. Therefore, the need for implementing in-situ or real-

time monitoring sensors is inevitable.  

Laser-powder bed fusion (L-PBF) also, commonly known as selective laser melting (SLM) or direct laser 

melt sintering (DMLS), is one of the many additive manufacturing techniques. L-PBF uses the metal 

powder material deposited in a layer by layer fashion to create a 3-Dimensional (3-D) model from a digital 

computer-aided design (CAD) design. After each powder recoating layer, the laser fuses the metal powder 

material selectively for that specific layer; afterward, the next new layer of powder is uniformly distributed 

by the recoater. The process repeats until the whole 3D model is manufactured. The total manufacturing 

time can vary from hours to days, based on the part's geometrical features.  Despite tremendous 

technological advancements in developing the latest commercial L-PBF systems, the process reliability 

and repeatability still need to materialize. Thus, the L-PBF process has many input parameters that can 

significantly influence the part's overall quality [3-5]. For instance, Van Elsen has listed at least 50 

parameters that can affect the final part quality [6]. The expensive and time-consuming non-destructive 

techniques (NDT) such as computer tomography (CT) is used to check the overall part health and quantify 

the defects [6]. Therefore, to improve the comprehensive quality assurance and monitor the process in 

real-time, active research is directed on using in-situ sensors based on real-time monitoring, data 

analytics, and process control. The overall thrust has been developing the models with hardware and data 

analytics techniques to isolate the type, location, and severity of the defects in real-time [7]. The final aim 

can be achieved by developing a closed feedback control loop to mitigate these defects inline. In the 

literature, different means of measurement, such as infrared thermography, pyrometry, optical 

spectroscopy, ultrasonic sensors, etc., are reported to monitor the L-PBF process [8]. Considering the 

subject's vast scope, we focus mainly on reviewing the recent development in fault detection in the L-PBF 

process using machine learning based on sensors' responses.  

A large scale of data being generated with an increase in the number of sensors used to monitor the 

process. An extensive set of data also poses a significant challenge related to storage and post-processing. 

Machine learning (ML) is an alternative way to cope with the challenges mentioned above. Furthermore, 

ML can post-process the data in real-time. Many powerful and sophisticated ML models have been 

developed with advanced hardware in the last decade, capable of identifying complex non-linear 

relationships from massive data [9-12]. Ideally, ML approaches can be divided into three subgroups: 

supervised, semi-supervised, and unsupervised approaches. Supervised ML requires a labeled dataset to 



train the specific model. In other words, each training datapoint has a label, e.g., “good” and “bad,” and 

users must know the ground truth of the training dataset before learning. In many applications such as 

AM, sometimes, it is a very costly and laborious task to understand the data points' labels. Whereas in the 

unsupervised ML approach, there is no prior requirement of the labels for the training dataset. The 

algorithm tries to find a pattern based on some relationships among the dataset. As the name suggests, 

the semi-supervised learning approach uses a combination of supervised and unsupervised approaches 

at the same time. In other words, it requires both labeled and unlabeled datasets. This approach can be 

helpful where obtaining the ground truth dataset is a very challenging task [13-16]. 

Abdelrahman et al. proposed in-situ flaw detection using a layerwise optical imaging system that captures 

the powder bed's images before and post-printing in the L-PBF process.   The images were captured in 

different lighting conditions to enhance the chances of flaw detection. The proposed approach showed a 

sensitivity of  91.5 %  and specificity of 84 % [17].  Scime and Beuth used a visible range optical camera to 

capture the powder bed images, which were then used to detect powder bed flaws such as “Part-

Hopping,” part failure, streaking, super-elevation, .etc by using computer vision and machine learning 

approaches. In their earlier work, they have proposed a machine learning algorithm called “bag of words” 

to classify the flaws mentioned above with an accuracy ranging from 65% to 99 % [18]. Their recent work 

has proposed a multi-scale Convolutional neural network (CNN) based using a transfer learning approach, 

which showed an accuracy of 72.7 % [19]. Okaro et al. developed a semi-supervised model using 

photodiode data to classify the finished parts based on their mechanical properties. The reported model 

showed an accuracy of 77 % [20].  Gobert et al. proposed a supervised ML approached based on the 

layerwise in-situ images captured using a digital single-lens reflex camera. The proposed supervised ML 

approach was able to predict cracking, porosity, lack of fusion defects with a reported accuracy of 85 %. 

The anticipated ML results were matched with the CT scans results as well [21]. Ye et al. and Schevchik et 

al. used an acoustic signals-based ML model for defect detection. The proposed model showed an 

accuracy of 70 % on raw data and 93 % for the Fourier transformed processed data [22, 23]. Khanzadeh 

et al. compared different supervised ML approaches for the melt pool monitoring images. The k-nearest 

neighbor algorithm showed the best results with an accuracy of 98 % to label melt pool signatures as 

regular melt pools or pores [24]. Yuan et al. developed a CNN model to monitor the single deposited 

tracks' quality using co-axial high-speed video camera data.  The training dataset was prelabeled using the 

offline characterization techniques such as macroscopic analysis of the deposited tracks, which was 

further used to predict the deposited consistency using a trained CNN model [25].  Imani et al. fabricated 

cylindrical samples with varying power, scanning speed, and hatch distance to induce varied samples' 



varied porosity. The obtained samples were quantified for the distribution of the porosity using computer 

tomography. In parallel, the parts' in-situ images were analyzed using the spectral graph approach, and 

extracted features were further used as input for machine learning algorithms [26]. Recently, Williams et 

al. developed a deep learning (DL) model called densely connected convolutional block architecture for 

multi-modal image regression (DCB-MIR) to detect defects such as porosity and geometric deviations in 

titanium and Inconel parts. They have used the optical image derived from the acoustic velocity maps as 

the proposed model's input data. Williams et al. proposed a cosine similarity ranging from 25 % to 60 % 

between optical signature and optical micrographs derived from DCB-MIR [27]. Clijsters et al. proposed a 

novel data analytics method to check the quality of the parts in the L-PBF process. The melt pool signatures 

were captured with a combination of near-infrared range CMOS camera and photodiode. Later, a mapping 

algorithm was modeled to capture the phenomenon’s like overheating, detection of the pore in 2-D space, 

and 3-D space based on the data from both sensors [28]. Recently, Chen et al. studied the effect of 

recoating orientation, hatching pattern, height, and width on the roughness of the thin-wall structures by 

using a model based on the computer tomography images and CAD design of the part [29]. 

Machine learning techniques have recently gained much attention from many AM field researchers due 

to their easy applicability and versatile nature to solve the problems related to post-processing of the in-

situ data in the AM process. The use of machine learning approaches in L-PBF processes is summarized in 

[8].  Before proceeding further, it shall be essential to discuss the challenges associated with the machine 

learning approaches in the AM process, especially with L-PBF, which are as follows: 

1. The artificial neural networks (ANN) predominately works on a large set of the labeled training 

dataset, which is a very challenging and laborious task in the L-PBF process. It is very challenging to 

quantify and detect defects in the captured in-situ data and often requires expensive and time-consuming 

techniques such as computer tomography for quantification of the defects. 

 Therefore, the inherent challenge to the L-PBF process is that the ML approaches developed tend to be 

a part, material, or geometry specific. 

2. Secondly, the multi-scale nature of the L-PBF process defects is another major challenge.  The 

defects, such as internal porosity, can be < 100 μm, whereas the geometric distortion can be > 1mm. 

Therefore, it not feasible to use one type of sensor to detect all types of defects. With an increasing 

number of sensors, there is multiplication in data generation, eventually increasing post-processing 

complexity.  

3. Thirdly, the defects are also linked with the different steps in the process itself. Therefore, it is 

vital to monitor the process at all possible levels such as powder health, powder spread quality, post-



exposure quality, monitoring while printing, final part health, etc. All steps are interlinked with each other. 

Therefore, overall monitoring will improve the quality assurance and reliability of the process. 

This study focuses on using a combination of ML and DL algorithms to monitor the L-PBF process at three 

different stages, i.e., Pre-Exposure step, Post-Exposure Step, and Exposure (Fig. 1). We have used two 

separate CNN models for treating the Pre and Post-Exposure images captured using Layer Control System 

(LCS) and a Support Vector Machine (SVM) classifier to post-process the photodiodes data obtained from 

Melt Pool Monitoring. We present a case study on “Benchmark Part” to check the robustness of the 

proposed algorithms. This study serves as the initial step to discuss the possibilities of interlinking the 

different monitoring steps via post-processing of the data and improving the confidence interval regarding 

the product health. The working principle of CNN Models and SVM classifier can be found in supporting 

material. 

2. Experimental Methods 

2.1. Materials and methods 

The gas atomized AlSi7Mg0.6 spherical powder supplied by SLM Solutions was used to print specimens 

with varying process parameters. The particle size distribution was 20 – 63 µm with a mean diameter of 

41.88 µm as specified by the supplier. The powder's apparent density was 1.53 g/cm3, and the chemical 

composition of the as-received powder is tabulated in Table 1. 

Convolutional Neural 
Network (CNN)

Support Vector 
Machine (SVM)

Convolutional Neural 
Network (CNN)

Pre-
Exposure

Post-
Exposure

Melt Pool 
Monitoring 

(MPM)

Part 
Quality

Fig. 1. Flow chart of the proposed working model. 



Table 1. Elemental composition of as received AlSi7Mg0.6 powder (All the values are given in wt %). 

 

 

 

 

 

The 

commercial SLM 280HL (SLM Solutions Group AG, Lübeck, Germany) equipped with 700 W twin continuous 

wave (CW) ytterbium fiber lasers with an emitting wavelength of 1070 nm and a spot diameter of 115 μm 

was used for printing. The build envelope volume is 280 x 280 x 365 mm3, and the build chamber was 

maintained in the Ar gas environment with an oxygen level below 0.1 %. The Aluminium base plate was 

preheated to 150 °C before printing to reduce thermal stresses in part [30]. 

The SLM 280HL machine is also equipped with the in-situ monitoring devices called ‘Melt Pool Monitoring,’ 

which consists of two on-axis photodiodes to monitor the melt pool, and Layer Control System (LCS) to 

check the powder bed spreading. The specifications and working principles are discussed in sections 2.3 

and 2.4, respectively.  

2.2. Part geometry and process parameters 

To prepare a training dataset for the CNN models (CNN 1: For pre-exposure images, CNN 2: For post-

exposure images) and SVM classifier (For melt pool monitoring), a balanced dataset comprising an equal 

number of each label is necessary. An artificial drift is introduced in the samples to obtain the balanced 

ground-truth dataset of each label. Therefore, the unique geometrical specimens were printed, as shown 

in Fig. 2. The process parameters tabulated in Table 2 were varied to obtain varied volumetric energy 

density in the range of 40-73 J/mm3 for each shown geometry. The decision to vary the process 

parameters in the above-specified range was made based on the fact that drift is created in the final parts 

due to power, scanning speed, and hatch distance. A total of 81 samples were fabricated, combining 

varied parameters as tabulated in Table 2. The overhang samples (Fig. 2. (a), and 2. (b)) with an overhang 

Element Al Cu Fe Mg Mn Si Ti Zn Others 

Minimum [wt %] Balance - - 0.45 - 6.50 - - - 

Actual [wt %] Balance <0.01 0.08 0.55 <0.01 6.90 0.07 0.01 <0.03 

Maximum [wt %] Balance 0.05 0.19 0.70 0.10 7.50 0.25 0.07 0.03 



of 5 mm was printed without any support structure. No down-skin parameters were used for the overhang 

layer. As sometimes, due to bad powder spreading, there is non-uniformity in the powder bed, and some 

regions are not covered with the powder uniformly for a few layers. Nevertheless, in the next recoating 

passes, the areas with a lack of powder are uniformly covered, but then the laser prints a thicker layer 

compared to other regions with uniform powder spreading [31]. Therefore, to simulate a lack of fusion 

samples, an internal cuboid type groove with dimensions 10 *8 * 0.09 mm3 was printed (Fig.2. (c)). The 

groove's thickness was set to 0.09 mm, i.e., three times the layer thickness of 30 microns. Based on the 

trial and error method, it was noticed that the thickness of 0.09 mm was able to create a lack of fusion 

defect in the final part. For testing the CNN models and SVM classifier, a case study part called “Benchmark 

Part” shown in Fig. 2. (d) was printed with optimized process parameters (Marked in bold italics in Table 

2 ). The optimized parameters are selected based on the density level (>99.99 %) using the trial and error 

method. 

 

Table 2. Varied process parameters for printing. 

Varied Parameter Values 

Power (W) 300, 350, and 400 

Scanning speed (mm/s) 1200, 1400, 1650, and 1900 

Hatch distance (mm) 0.13, 0.26, and 0.52 

Layer thickness (mm) 0.03 

Scanning strategy Stripes 

Fig. 2. Sketch of the specimens (a) cubic overhang (size 10*10 *10 mm3), (b) cylindrical overhang (diameter: 10 mm 
and height 10 mm), (c) specimen with inner groove, and (d) Benchmark part (125*125*775 mm3). 

(a) (b) (c) (d) 

10 mm 

2 mm 

10 mm 

10 mm 
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2.3. Melt Pool Monitoring System 

The co-axial melt pool monitoring (MPM) system installed on the commercial machine SLM 280HL was 

used to collect thermal emissions from the melt pool formed due to laser-powder interaction. The melt 

pool systems are co-axial systems, which means it is in the laser path's alignment and collects the real-

time emissions from the laser path at an acquisition frequency of 100 kHz. The MPM module consists of 

two photodiodes with different sensitive areas. The spectral range of the photodiodes cannot be revealed 

due to confidentiality issues. However, both the photodiodes capture the thermal emission in the near-

infrared region. The schematic diagram of the MPM system is shown in Fig. 3. Only the emissions traveling 

perpendicular to the build platform are considered. The thermal radiations follow the same path as the 

laser and are directed into the MPM module with a semi-transparent mirror, which does not allow laser 

wavelength to pass. The signal is split into two different spectral ranges and captured, respectively, by the 

two photodiodes. The received signal is forwarded to associated ADCs (Analog to digital convertor) and 

provided in an FPGA (field-programmable gate array) by the individual photodiodes. The captured thermal 

emissions from photodiodes 1 and 2 are stored along with the x/y-coordinates (16-bit). The values are 

stored parallel with the laser on/off signal from FPGA to PC in every 10 µs. All the data is stored for every 

Fig. 3. Schematic of Melt pool monitoring system, and Layer control system installed on SLM 280HL. 



layer in a data file, accessed as 2D representation in MPM software provided by the SLM Solutions [32]. 

The new file is created automatically for each layer after the complete exposure. For this work, no 

additional modifications are made to the installed hardware. 

2.4. Layer Control System 

The layer control system (LCS) installed on SLM 280HL includes a visible range camera that captures each 

layer's images for pre-post-exposure. The chamber is illuminated with LEDs from the build chamber's 

sidewalls to maintain uniformity of light distribution on the overall build plate. The camera is placed 

outside on top of the build chamber at a specific angle of 650 w.r.t normal direction of the build plate, as 

shown in Fig. 3. The geometric correction of the captured images is performed by the machine supplier 

for the installed equipment. The camera captures a JPEG image of 1500*1460 px2 size covering an area of 

280*280 mm2 of the build plate and neighboring region outside of the build plate that needed to be 

cropped before processing. The camera has a pixel size of 4.4 μm and a lens focal length of 9 mm.  

 

3. Definitions 

This section elaborates the definitions of the keywords used in this study in context to post-processing of 

Powder bed images and MPM data. 

3.1. Terminology related to Powder Bed Images 

 

1. OK: The “OK” label is used for the block (image patch), free from other considered anomalies such 

as Recoater Streaking, Uneven Powder Spread, Part Hopping, and Part Overheating.  

2. Uneven Powder Spread: The “Un-even Powder Spread” indicates the areas where the lack of 

uniformity in powder spread is observed. Such anomaly can be caused due to recoater silicon lip 

failure, lack of powder, and part failure. 

3. Part Overheating: The “Part-Overheating” is the area of the part which is distorted due to poor 

heat conductivity. The poor heat flow phenomenon is linked to the lack of proper support 

structures beneath the part [33]. This anomaly is considered only for the post-exposure images. 

4. Part Hopping: The area of the part which is above the powder spread and not fully covered by the 

powder spread is termed “Powder Hopping.” This anomaly is considered only for the pre-

exposure images. In the context of this study, the part hopping serves as cross-validation criteria 

for the anomaly “part-overheating” in the post-exposure images. 



5. Recoater Streaking: Recoater streaking is the horizontal lines observed in the powder bed images 

due to distortion of the soft silicon lip of the recoater. Recoater streaking is detected in post pre 

and post-exposure images. 

 

3.2. Terminology related to MPM data 

 

1. Hotspot: The layer's area is termed as “Hotspot,” which has higher thermal counts than the rest 

of the layer. These hotspots are the most probable areas of causing drift in the final part. The 

same hypothesis is also confirmed by Mohr et al. where they showed the link between the 

porosity in the final part with the melt pool hot spot regions [34] 

2. Drift Layer: The layers which comprise the hotspots mentioned above are termed as “Drift Layer.” 

Identifying hotspots and labeling the layers as “Drift Layer” was done manually suing MPM viewer 

provided by SLM Solutions. 

3. No-Drift Layer: The absence of the hotspots in the respective layers are defined as “No-Drift 

Layer.” 

 

4. Image Preprocessing 

The captured raw images (1500*1460 px2) possess difficulties such as in-homogeneity in light intensity. 

Therefore, they cannot be used directly for CNN operations. As the camera and environment conditions 

remain unchanged for all the captured images, the same homogeneity correction factor can be used for 

all images. For light intensity homogenization, we have used the in-built functions of MATLAB called 

“imcomplement,” and “imreducehaze” [35-37]. For our studies, we have used the maximum haze value 

of 1, which removes the maximum haze from the image.  Firstly, the captured raw image was converted 

to a grayscale image to reduce the operation's complexity and our CNN model's requirement. The 

grayscale image was then complemented, which means it inverts the pixel values.  In other words, the 

black is converted into white and vice-versa. Then the “imreducehaze” function was used on the 

complemented image (Equation 1): 

                                                               𝐼(𝑥) = 𝐽(𝑥)𝑇(𝑥) + 𝐿(1 − 𝑇(𝑥))                                                           (1) 

𝐼(𝑥): Observed Intensity; 𝐽(𝑥): Scene Radiation, 𝐿(𝑥): Atmospheric Light, and 𝑇(𝑥): Transmission map of 

the light reaching the camera. Dezhaing operation estimates the Scene radiation 𝐽(𝑥)  by estimating the 

𝑇(𝑥), and 𝐿(𝑥), which is given by equation 2: 



                                                     𝐽(𝑥) = (𝐼(𝑥) − 𝐴)/(max⁡(𝑇(𝑥), 𝑇(0) + 𝐴)                                                (2) 

The dehazing function involves steps as follows: 

1. Firstly, the atmospheric light (L(x)) is estimated using a dark channel. 

2. Secondly, the transmission map (T(x)) is estimated. 

3. Refinement of the estimated transmission map (T(x)). 

4. Restoration of the image. 

5. Lastly, perform contrast enhancement on the restored image. 

Fig. 4 shows an example of a raw image and image after preprocessing operation. It can be observed that 

even after the preprocessing operation, the light intensity is not entirely homogenized at the edges. 

Therefore, we do not take into consideration the edges for CNN operation and start the algorithm only 

for an area of 1000*1000 px2 as marked in the red rectangle box. The dimensions of the region of interest 

are selected intuitively; most of the time, parts are built at the build plate's center. Intentionally, cropping 

of the image is avoided to minimize the border effect and prevent operation padding, significantly 

affecting border patches results. If we consider the borders, it will not be possible to select the blocks with 

the same center as the sizes vary enormously. Secondly, the light intensity at the borders may also affect 

the accuracy of the overall model. 

 

 

5. Anomalies Description 

5.1. For Pre-Exposure Images 

Area considered for CNN 

operation  

Fig. 4. An Example of (a) captured raw image, and (b) pre-processed image. 

 (a)   (b)  



Our study has considered four cases: the CNN network's detection features, which serve as the so-

called “labels” shown in Fig. 5. Pre-exposure images can have critical information regarding the overall 

quality of the powder bed spreading. It shall be noted that the labels' selection is based on the visual 

inspection of the images, and only the most common human visually verified powder bed spread 

anomalies are considered, which are presented as follows. “Recoater-Streaking” is the most common 

anomaly that occurs due to damage to the silicone lip due to part-hopping (Fig. 5. (b)). Another critical 

anomaly called “incomplete spreading” or “Uneven Powder Spreading” can also be captured by pre-

exposure images (Fig. 5. (c)). It shall be noted that the pre-exposure image captures not only the 

powder spreading quality for a particular layer but also captures the information regarding the quality 

of printing in the preceding step. “Part-hopping” is such an anomaly which mainly influenced by the 

quality of printing in the previous step (Fig. 5. (a)). The fourth category, (Fig. 5. (d) and (e)) called “OK,” 

represents the areas that are free from above-discussed anomalies. The Fig. 5. (d) is the “OK” image 

for the case where there is no printed area underneath. In contrast, Fig. 5. (e) represents the printed 

part covered with the powder layer. 

 

5.2. Post-Exposure Images 

Fig. 5. An example of anomalies extracted from pre-exposure images (a)Part-Hopping, (b) Recoater 

streaking, (c) Uneven powder spreading, (d) OK powder layer, and (e) OK part layer. 

 (a)   (b)   (c)   (d)   (e)  



Post-exposure images can serve as the verification step and contain vital information about the part 

and powder's quality. In our study, we have considered the same cases as pre-exposure images for 

our labels.  Instead of “Part hopping,” we have labeled it as the areas likely to an undergone 

overheating phenomenon, which leads to hopping in the next recoating step due to internal residual 

stresses. The labels are summarized in Fig. 6. For training the CNN models, a dataset of 500 images 

for each label was prepared for pre-and post-exposure images. We have considered the most 

common anomalies, which does not mean these are the only anomalies that occur during the process. 

Other anomalies such as spatter ejection and burn-out areas are not considered due to the lack of 

artificial reproducibility of these anomalies for the CNN models' training. 

 

5.3. Melt Pool Monitoring Anomalies 

As explained in section 2.3, the melt pool monitoring system captures the thermal emissions during laser-

powder interaction in the near-infrared region. The captured thermal emissions layer shows the areas 

with higher thermal emissions values, termed as “hot-spot regions.” These hot spots regions are the 

highest potential areas of inducing defects in the final part. The same hypothesis is also confirmed by 

Mohr et al., where they showed the link between the porosity in the final part with the melt pool hot spot 

regions [34]. Therefore, in our study, we have termed layers with hotspots as “Drift” and the layers with 

no hot-spots as “No-Drift.” However, it is essential to highlight that the hotspots are the most probable 

areas of causing a defect. Still, it cannot be guaranteed that there will be a defect at that location due to 

the complexity of the L-PBF process itself. 

5.4. Scale Variant of Anomalies in Pre and Post-Exposure cases 

Fig. 6. An example of anomalies extracted from post-exposure images (a)Part-overheating, (b) Recoater 

streaking, (c) Uneven powder spreading, (d) OK powder layer, and (e) OK part layer. 

 (a)   (b)   (c)   (d)   (e)  



The scale of the detection area dramatically influences the detection of any particular anomaly. For 

example, as shown in Fig. 7, if we take the scale of 20*20 px2 (Case 1- red box) for uneven powder spread, 

it may not be detectable similarly if we consider 150*150 px2 (Case 2 - green box) for “Part-Hopping” we 

may end up incorporating other anomalies such as “Recoater-streaking.” Moreover, not all anomalies 

have the same spatial detection scale. Therefore, it is of great importance to choose the correct spatial 

scale of the described anomalies such as “Part-Hopping,” overheating, recoater-streaking, and uneven 

powder spread. Therefore, in our study, we have chosen three different scales for the above-described 

anomalies based on the trial-error method. Scale 1, i.e., 20* 20 px2 block, was set for “Part-Hopping” and 

overheating, as this anomaly should be captured with as small as possible scale. The 20* 20 px2 scale is a 

good compromise between the computational time and the proposed CNN model's accuracy. Scale 2, i.e., 

75*75 px2, was chosen for “Recoater-Streaking,” whereas scale 3, i.e., 150*150 px2, was set for uneven 

powder spread. It is also noted that all three scale blocks were extracted from the same center, and also 

the scale 1 blocks were non-overlapping, whereas the scale 2 and scale 3 are over overlapping blocks that 

stride with a step of the smallest block size. 

6. Training and Testing of Models 

6.1. Training CNN models 

The CNN training aims to find the optimal kernels for the given case. In our CNN model, we have used the 

standard loss function for regression predictions and cross-entropy loss, which is shown as 𝐻(𝑝, 𝑞) =

−∑ 𝑞(𝑥) log 𝑝(𝑥)⁡𝑥 where 𝑝(𝑥) is the classification function from softmax operation corresponding to the 

input image used for classification operation whereas 𝑞(𝑥) is the ground-truth label of that image. The 

minimization of loss function during training is the optimal criterion for the selection of optimal kernels. 

Case 1 
Case 2 

Fig. 7. An example of scale variance of different types of anomalies is shown. Red box represents the 

scale 1 of size 20*20 px2 whereas the scale 3 represented by green box which has size of 150*150 px2. 



During training, kernel weights are recursively updated by using the training images. The prediction error 

gradient decides the updating of the weights for each layer backpropagated for that layer. It shows the 

direction of weight adjustment, which allows a steep decrease in prediction error. For our CNN model, we 

have utilized the sgdm optimizer with an initial learning rate of 10-3 for regression, batch size of 20, and 

max training epoch number of 100. L2 regularization is applied to all the weights for suppressing over-

fitting. The regularization coefficient is set as 10-3. For both CNN models, i.e., CNN 1 and CNN 2, the best-

fit settings are the same, which showed the highest training accuracy for both pre and post-exposure 

images. The reported training accuracy of CNN 1 and the CNN 2 models is 93.16 % and 96.20 % for pre 

and post-exposure images. 

 

6.2. Training SVM Classifier 

For this study, artificial drifts, i.e., overheating drift due to overhang and lack of fusion in the parts with 

special geometrical features (see Fig. 6) and by the varying process, were created. The careful selection 

of the layers from the build parts (81 parts) and labeling it as ‘Drift’ and ‘No-drift’ was performed by 

analyzing the layers in the MPM software provided by the SLM solutions and statistical analysis. For our 

study, we have chosen the mean and median of each layer as the input features. As we know, the mean 

and median measures the data's central tendency and gives us information regarding the data's skewness. 

Median is an important feature when the data has extreme values.  It is also important to mention that 

other features such as standard deviation and root mean square for each layer were also studied. Still, 

SVM results were not satisfactory compared to mean and median. The drawback of choosing two points 

as the features per layer is that it compresses the whole layer data into two issues. Therefore, in the study, 

individual hotspots' exact location in a particular layer is not studied. A balanced labeled dataset of 170 

data points, which comprises an equal number of “drift” and “no-drift” data points so that the biasing of 

the SVM model can be avoided, was prepared.  

The best-fitting parameters are to be selected for the SVM classifier to increase the classifier's success 

rate. A Bayesian optimization algorithm was used to find the best-suited hyperparameters for the model. 

A hyperparameter is an internal parameter of an algorithm that needs to be optimized. For example, in 

our case (SVM model), the box constraint, kernel-function, and kernel-scale are the hyperparameters. 

These parameters can significantly influence the performance of the algorithm. Thus, optimization of the 

hyperparameters is advisable. However, optimization is difficult and time-consuming. Therefore, Bayesian 



optimization is well suited for classification and regression algorithms in machine learning. The Bayesian 

optimization algorithm minimizes the objective function f(x) for x in a bounded domain. The f(x) can be 

scholastic or deterministic, which means it can return different results for the same point x.  

Table 3. Bayesian optimization results of SVM classifier for different hyperparameters. 

 

 

 

 

 

 

The 10-fold cross-validation of the optimized SVM classifier was performed on the training dataset. The 

whole dataset was partitioned into 70 % and 30 % sub-datasets to cross-validate and check the SVM 

model's performance of different hyperparameters. The performance and accuracy % of the different 

hyperparameters are tabulated in Table 3. The linear SVM has the highest accuracy with a cross-validation 

success rate of 98.8 % and 99.2 % for photodiode 1 and photodiode 2, respectively. Fig. 8 shows the labels 

of the trained linear SVM classifier for both photodiodes. 

 

6.3. Testing of CNN Model 

SVM Model Photodiode 1 Photodiode 2 

Linear SVM 98.8 % 99.2 % 

Quadratic SVM 97.8 % 98.4 % 

Cubic SVM 98.0 % 97.8 % 

Fine Gaussian SVM 97.8 % 97.7 % 

Medium Gaussian SVM 96.4 % 98.9 % 

Coarse Gaussian SVM 90.4 % 75.7 % 
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Fig. 8. SVM trained data for (a) photodiode 1, and (b) photodiode 2. 
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6.3.1. Labeling Test Images 

Several conditions shall be imposed on the pre and post labeled data to minimize the probability of 

mislabeling, and the conditions are different for both pre and post-exposure images. As mentioned earlier, 

we extract three different scales (20*20 px2, 75*75 px2, 150*150 px2) blocks from the same center, leading 

to having three different labels for the same center. Therefore, it is necessary to take specific conditions 

for each block. The conditions for pre-exposure test images are as follows (Fig. 9): 

• Firstly, scale 1, i.e., 20*20 px2 block, will be extracted and passed through the trained CNN 1 

model. If the scale 1 block overlaps with the part area and has labeled “Part-Hopping,” the 

program will skip the training operation for scale 2 and scale 3 for that specific center and proceed 

to another center.  

• In case the label is not “Part-Hopping,” the center will not save the predicted label for scale 1 for 

that center and will make a decision based on scale 2 and scale 3, which is decided by the decision 

matrix shown in the Table 4. The reason for this particular condition is that, when the “Part-

Hopping” occurs, other anomalies cannot happen at the same center. However, when there is no 

“Part-Hopping,” then there could be “Recoater-Streaking,” “Uneven Powder Spreading,” and 

“OK” part labels.  

 

The conditions for post-exposure test images are as follows (Fig. 10): 

Fig. 9. Flow chart for labeling the pre-exposure test images. 

 



• After the exposure step, there is no powder in the part area. Therefore, it is impossible to have 

defects such as uneven powder spread and “Recoater-Streaking” in that particular area. Thus, the 

scale 1 block, i.e., 20*20 px2, will first pass to a precondition to check whether the block overlaps 

or intersects with the part are or not. If not, the scale 1 labels will not be predicted for that specific 

center as it is not in the part area. If yes, then the possible labels can be “Part-Overheating” or 

“Part OK.” If the predicted label is other than “Part-Overheating” and “Part OK,” the label will be 

marked as mislabeling. 

• If the scale 1 block does not intersect with the part area, then there can be labels related to 

powder anomalies, i.e., “Recoater-Streaking,” “Uneven Powder Spreading,” or “OK.” Therefore, 

for that specific center, the labels will be predicted for scale 2 and scale 3, i.e., 75*75 px2 and 

150*150 px2. The final decision will be made based on the decision matrix shown in Table 4, like 

for the pre-exposure procedure.  

Scale 2 Labels 
(75*75 px2) 

Scale 3 Labels 
(150*150 px2) 

Final 
Decision 

Uneven Uneven Uneven 

Part Hopping/Overheating Uneven Uneven 

Uneven Streaking Mislabel 

Uneven Part Hopping/Overheating Uneven 

OK OK OK 

Part Hopping/Overheating OK OK 

Uneven OK OK 

Part Hopping/Overheating Part Hopping/Overheating Mislabel 

Table 4: The decision matrix for scale 2 and scale 3 labels. 

Fig. 10. Flow chart for labeling the post-exposure test images. 

 



Part Hopping/Overheating Streaking Streaking 

OK Part Hopping/Overheating OK 

OK Streaking Mislabel 

OK Uneven Uneven 

Streaking Part Hopping/Overheating Streaking 

Streaking Streaking Streaking 

Streaking Uneven Mislabel 

Streaking OK Streaking 

 

6.3.2. Confusion Matrices 

The training dataset was divided into three subcategories, i.e., training set, validation set, and test set 

with 60:20:20 ratios. The training process aims to fit the ML model to the training dataset. The training 

process's performance is evaluated by the validation set, which, in return, can be used to find the best-

fitted design parameters to obtain the highest validation accuracy. However, it is essential to note that 

the model may overfit or underfit the validation set and training set. Therefore, the ML model's actual 

performance is attributed to the testing dataset, and the confusion matrix evaluates the algorithm. The 

confusion matrix compares the ground truth labels with the predicted labels. In other words, the false 

positive and false negative attributes of the ML model is indicated by the confusion matrix representation. 

The confusion matrices for both cases, i.e., pre and post-exposure images, are shown in Fig. 11, where the 

output class represents the ground-truth label. The target class denotes the predicted label. It is 

Fig. 11. Confidence matrices for trained CNN models for (a) pre-exposure images, and (b) post-exposure 

images. 

 (a)   (b)  



noticeable that the “Uneven powder spread” and “OK” labels are the most difficult labels to predict for 

the trained CNN 1 model and often confused among each other. Similarly, CNN 2, which predicts labels 

for post-exposure images, is often confused in predicting “Uneven powder spread” and “OK” labels. This 

inaccurate prediction of labels is due to the uneven spreading anomaly, which has a signature similar to a 

good powder bed. 

6.4. Programming Environment 

All the programming has been implemented using MATLAB R2020a software, which included the relevant 

add-on packages such as Image Processing Toolbox, Statistics Toolbox, and Deep Learning Toolbox. The 

system configuration used for implementation is as follows: Operating system: Microsoft Windows 10, 

System RAM: 4GB, Processor type:  Intel(R) Core(TM) i5-6200U CPU@ 2.30 GHz 2.40 GHz, Graphics Card: 

NVIDIA GEFORCE 940MX. 

 

7. Results: Case Study 

Our study performed the analysis on a so-called “Benchmark Part,” used as a benchmark tool in material 

development in AM. Finding the best fit process parameters is a time-consuming and costly step based 

on trial and error methods. Therefore, specific designs are used as a benchmark tool to find the best 

process parameters such as critical overhang angle, process settings (Laser Power, Hatch distance, Layer 

Thickness), border thickness, etc. Knowledge of this angle is essential to position the supports correctly. 

Indeed, as we know, the critical overhang angle for Al alloys is 300, so we can conclude that the benchmark 

part is prone to failure at some point due to the absence of supports below a critical overhang angle [38]. 

Another important reason to choose this model as our case study part was that the part's failure could be 

confirmed via visual inspection without using costly computer tomography techniques. It is then used to 

test the accuracy of our trained CNN model and SVM classifier. Validation of other defects such as 

porosities requires, on the other hand, expensive techniques such as computer tomography. 

7.1. CNN Models 

The total 2582 images of the benchmark part were analyzed by our trained two CNN models for pre-

exposure and post-exposure images, respectively. The percentage of the predicted anomalies in a specific 

layer is calculated and plotted along with the building height to monitor the building part's overall quality. 

Fig.12 (a) shows the anomalies percentage for the pre-exposure images.  It can be observed that in the 



last layers of the build, there is a huge peak for all the anomalies (“Part-Hopping,” “Recoater-Streaking,” 

and “Uneven Powder Spreading”). The “Part-Hopping” anomaly percentage gradually starts to increase 

from layer 2400, whereas the recoating streaking and uneven powder spread anomalies occur after layer 

number 2543 and 2556. The theory can explain that the part hopping destroys the soft silicone lip used 

for the recoating. When the silicone lip's quality worsens, the recoater lines, also called “Recoater-

Streaking,” start to occur on the powder bed.  The center of the scale variant blocks (20*20 px2, 75*75 

px2, 150*150 px2) used as the input for the proposed CNN 1 model was saved to locate the location the 

particular predicted anomalies in the specific layer. For example, the layer's raw image numbered 2579, 

and the location of predicted anomalies for that layer is depicted in Fig.12 (b).  



 

In our study, we used the post-exposure analysis as the cross-validation for the pre-exposure analysis 

results and to make a confident decision regarding the quality of a particular layer. The anomalies such as 

recoating streaking, uneven powder spread can be present in both cases, i.e., pre and post-exposure at 

the same location except for the printed area. “Part-Overheating” anomaly in the post-exposure step due 

to lack of supports can also lead to “Part-Hopping” anomaly in the pre-exposure step for the next 

succeeding layers. As both the cases (pre and post-exposure) serve as the two different process steps and 

are interlinked, it is crucial to use both images for cross-validation and monitor the build quality.  The 

Fig. 12. (a) The percentage of pre-exposure anomalies predicted by the CNN model along the build height, (b) An 

pre-exposure image example showing the exact location of predicted anomalies  (Red: “Uneven Powder Spreading”, 

Green: “Part-Hopping”, and Blue: “Recoater-Streaking”)  for layer 2579. 

 (a)  

 (b)  
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percentage of the predicted anomalies concerning build height for post-exposure images is plotted in Fig 

13. (a). Like the pre-exposure analysis step, the CNN 2 model predicted the highest percentage of all 

anomalies in the last layers. Similar to “Part-Hopping,” the “Part-Overheating” anomaly starts to occur 

gradually from layer numbered 2121. The location of the individual predicted anomalies for layer number 

2580 is shown in Fig. 13. (b). The “Part-Hopping” anomaly in pre-exposure images start to gradually 

increase from layer numbered 2400 (marked with a black arrow in Fig. 12. (a)) whereas the “Part-

Overheating” anomaly starts to appear from layer numbered 2121 (marked with a black arrow in Fig. 13. 

(a)) in post-exposure images.  Therefore, it can be concluded that the “Part-Overheating” anomaly first 

reaches a limit before it starts to impact the recoating step. The given layer thickness is not enough to 

fully cover the overheating anomaly, and it starts to appear in the pre-exposure step as a “Part-Hopping” 

anomaly. 

 

It is also observed that the mislabel percentage also increases for the last layers in both cases. As shown 

in the confusion matrix (Fig.11), the proposed CNN models have high confusion probability for “OK” and 

“Uneven Powder Spread” labels for both cases. As the “Uneven Powder Spread” anomaly occurs only in 

the last layers, the mislabel percentage also increases in the previous layers. 



 

7.2. SVM Classifier 

The two linear SVM classifiers for Photodiode 1 and Photodiode 2, respectively, were trained on the 

certified training dataset, as discussed in section 6.2. The mean and median of each layer was treated as 

the input features for the trained SVM classifiers. The SVM classifiers predicted the two class labels, i.e., 

“Drift” and “No-Drift,” for each layer for the respective photodiode, as shown in Fig.14. (a,b). The layers 

numbered 2436, 2412, 2498, 2541, 2542, 2552, 2560, 2561, 2562, 2563, 2571, 2572, and 2573 were 

Fig. 13. (a) The percentage of anomalies predicted by the CNN model along the build height, (b) A post-

exposure image example showing the exact location of predicted anomalies (Red: “Uneven Powder 

Spreading”, Green: “Part-Overheating”, and Blue: “Recoater-Streaking”) for layer 2580. 
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marked as drift layers for photodiode 2, whereas only two layers, i.e., 2541 and 2561, were marked as 

drift layers for photodiode 1.  These predicted last layers lead to failure of the part as well as shown in 

Fig.14. (c). As presented in the previous section 2.3, the spectral detection range of both photodiodes is 

different. Therefore, it can be concluded that based on the type of material, one photodiode is more 

sensitive compared to another for specific materials, i.e., low and high melting materials.   

 

We have used the MPM viewer installed on the SLM 280HL system to verify the hotspots' presence in the 

predicted “Drift” layers. The screenshot of the MPM viewer for layer number 2561 (which was predicted 

“Drift” by both SVM classifiers also circled in red in Fig.14. (a,b))  is shown in Fig.15. It can be observed 

that there are regions (marked in red) that have higher thermal emissions compared to the rest of the 

layer for both photodiodes. These hotspots are the highest probable regions of producing defects in final 

parts. It is also noticeable that the hotspot regions in photodiode 1 (Fig.15. (a)) are not evident as like for 

photodiode 2 (Fig.15. (b)), which is because photodiode 2 spectral range is more sensitive to AlSi7Mg0.6 

(low melting material). 

 

Fig. 14. SVM classifier predicted labels for benchmark part for (a) photodiode 1, (b) photodiode 2, and (c) printed 

benchmark part. 
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The building part layers predicted as drift layers for both photodiodes indicate a link between the powder 

spread quality and printed part quality. For example, in this particular layer, the pre-exposure image 

indicates the region of part-hopping, which is because the powder was not uniformly spread over the 

whole part (marked by the green block in Fig.15. (c)). As a result, the region which was not covered by the 

powder leads to overheating, i.e., predicted by the CNN model as marked by green boxes in Fig. 15. (d). It 

shall be noted that the additional 4 rectangular bars were also printed along with the benchmark part, 

which is also visible in Fig. 15. (c,d). These rectangular bars were printed for internal studies and are not 

included in this study. Therefore, it is vital to monitor each process step and establish a link between the 

Fig. 15. Screenshot from MPM viewer showing presence of hotspots in layer 2561 for (a) Photodiode 1 with higher 

thermal emission values, and (b) Photodiode 2, (c) the pre-exposure powder spread image, and (d) post-exposure 

image. 

 (a)   (b)  

 (c)   (d)  
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different steps to improve the process's overall quality assurance. The confidence interval based on the 

different monitoring steps can separate good and bad parts from a batch of parts (in serial production 

case). It can serve as a decision to use other non-destructive techniques for good parts for quality 

assessment. It will save time and money by initially marginalizing the bad parts out of good parts. 

8. Conclusion 

Despite technological advancement in L-PBF systems over the last decade, the process's reliability and 

repeatability are a significant challenge due to uncertainties related to defects in the final parts. These 

defects can have a detrimental effect on the building part's performance, such as small porosities that can 

significantly degrade the final part's fatigue properties. The need for monitoring the process at each step 

is inevitable for building confidence about the final quality of the part. There are very few studies that 

have been focused on interlinking or monitoring the process at different steps.  

Our study aims to monitor and post-process the in-situ data obtained at three different steps, i.e., Pre and 

Post-Exposure, and during exposure. Pre and Post-Exposure images capture critical information regarding 

the powder-bed spreading and printed layer quality. Therefore, both images were treated in an 

automated fashion using CNN models to detect the anomalies such as “Part-Hopping/Part-Overheating,” 

“Recoater-Streaking,” and “Uneven Powder Spreading.” The scale variant of discussed anomalies is 

considered, and three different scales (20*20 px2, 75*75 px2, 150*150 px2) for each anomaly were chosen. 

Similarly, the Melt Pool Monitoring data were analyzed using the SVM classifier to classify the layers into 

“Drift” and “No-Drift.” As the two photodiodes have different spatial detection limits, it was observed that 

photodiode 2 captures the drift occurring due to the presence of hotspots much efficiently than 

photodiode 1. A case study on “Benchmark Part” was done to check the proposed CNN model and SVM 

classifier's accuracy. It was noticed that algorithms successfully predict the above discusses anomalies for 

both cases.  

The full potential of the installed in-situ monitoring devices can only be realized by developing a closed-

loop feedback control system by inter-linking the individual signals from each process step. It will help to 

improve the overall quality assurance of the building part.  
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