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A Systemic Approach for Pellet Reactor

Modeling: Application to Water Treatment

L. Montastruc, C. Azzaro-Pantel, L. Pibouleau, and S. Domenech

Laboratoire de Génie Chimique, UMR 5503 CNRS/INP/UPS, ENSIACET, 31077 Toulouse Cedex 4, France

The development is reported of a model for a fluidized-bed process for phosphate precip-
itation and removal from wastewater. The general framework of this study involves a two-step
procedure. The first modeling level was previously presented elsewhere and leads to the
development of a thermodynamic model for the computation of phosphate conversion for the
Ca—PO ~H,0 system. The second step of the modeling procedure is the core of this report and
computes the reactor efficiency from the identification of the so-called pellet reactor model as
a reactor network involving a combination of elementary systems representing basic ideal flow
patterns (perfect mixed flow, plug flow, and so on). For solving the involved mixed-integer
quadratic programming (MIQP) problem, a hybrid procedure based on simulated annealing
(SA) and quadratic programming (QP) is implemented. The SA generates reactor network
structures deduced from a superstructure and for each one, a QP is carried out. The goal is
to find not only the most appropriate model, but also the simplest one (in terms of the smallest
possible number of elementary units). Thus the objective function is augmented with an outer
penalty quadratic function representing the number of elementary units. The methodology was
first validated on an example previously treated with a classical MINLP method involving a
limited number of variables. The main interest of the approach proposed here is that it can
handle large-size problems with a limited exploration of the search space and can be
consequently extended to combinatorial problems. A comparison with experimental results
obtained in the pilot unit designed for this study shows the efficiency of the systemic approach.

Keywords: model identification, pellet reactor, phosphate, quadratic programming, re-
actor network, simulated annealing

Introduction

Phosphorus recovery from wastewater corresponds with the
increasing demand of sustainable development of the phos-
phate industry and the associated stringent environmental qual-
ity standards. In this context, numerous engineering solutions,
aiming at addressing phosphorus recovery from wastewater by
precipitation of calcium phosphates in a recyclable form
(Morse et al., 1998), have been proposed in the last decade. An

advanced alternative is to implement the so-called pellet reac-
tor approach (Hirasawa and Toya, 1990, Seckler et al., 1996).
The objective of this report is thus to address a real environ-
mental issue by appropriately designing an optimal pellet re-
actor.

In this framework, a two-step procedure is proposed with
Ca-PO,—H,O0 as a support system (see Figure 1). This article
reports on the study of the precipitation features of calcium
phosphate in a fluidized bed reactor in a concentration range
between 50 and 4 mg/L. The first modeling level was previ-
ously presented in detail (Montastruc et al., 2003) and leads to
the development of a thermodynamic model for predicting
phosphate conversion for the Ca—PO,~H,0O system. It is im-
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Figure 1. Principles of pellet reactor modeling.

portant to recall, however, that the computation of the evolu-
tion of phosphate conversion rate as a function of pH, with
respect to precipitation of the different calcium phosphate
species, implies mass and electroneutrality conservation bal-
ances as well as supersaturation relations.

The second step of the modeling procedure is the core of this
report and involves the computation of the pellet reactor effi-
ciency. It must be emphasized that a phenomenological way to
treat the problem would imply the precise knowledge of some
key parameters of the induced agglomeration process (such as
coating), which are in fact difficult to obtain practically, such as
calcium phosphate density and thickness.

For this purpose, another alternative is proposed herein
based on a reactor network—oriented model: the pellet reactor
model is actually identified as a combination of elementary
systems, representing basic ideal flow patterns (perfect mixed
flows, plug flows, and so on). The arrangement of elementary
units finally selected must represent—as adequately as possi-
ble—the pellet reactor in terms of number of elementary units,
volume, and flow rate for each elementary cell, given the total
flow rate, the inlet concentration, the total reactor volume, and
the outlet concentration. A superstructure, involving the set of
all possible solutions corresponding to the physical reactor, has
to be defined. Then, potential solutions are extracted from the
superstructure and evaluated according to a given objective
function.

This article is organized as follows. The first section de-
scribes the typical features of the process used for calcium
phosphate precipitation and the equipment unit used through-
out the study. The performance process indicators, based on the
conversion of phosphate from liquid to solid phase and on
phosphate removal efficiency, are also presented. The second
section clarifies the underlying assumptions of the mathemat-
ical formulation for pellet reactor modeling. This constitutes a
master problem (structure optimization) using a stochastic pro-
cedure and a slave problem (continuous variables optimization,
that is, flow rates and volumes) based on a classical quadratic
programming technique. The use of a superstructure at the
master level is then justified and constitutes a key point of the
proposed strategy. The identification procedure for agglomer-
ation rate is also explained. In the third section, the superstruc-
ture approach is tested for validation purpose on a previously

treated example (Floquet et al., 1989) related to a settling tank
model. The fourth section illustrates the solution strategy for
fluidized bed modeling with superstructure embedding. The
model parameters are determined by comparison with the ex-
perimental data. The objective function to be minimized is the
quadratic deviation between experimental and modeled ag-
glomeration rates, augmented with an outer quadratic function
representing the number of elementary units. The goal is to find
simultaneously the most appropriate model with respect to the
experimental output, but also the simplest model, that is, the
model involving the smallest possible number of elementary
units, that constitutes a key point for future control purposes of
the process. The implementation of the simulated annealing
procedure used as master problem optimization and the choice
of its main parameters (number of cooling stages for the
stopping criterion, reducing factor of the temperature, length of
cooling stage) are discussed in the fifth section.

Finally, the main results obtained are summarized and some
perspectives of this work are given.

Process Description

The process is based on calcium phosphate precipitation
obtained by mixing a phosphate solution with calcium ions and
a base. More precisely, it involves a fluidized bed of sand
continuously fed with aqueous solutions (see Figure 2). Cal-
cium phosphate precipitates upon the surface of sand grains; at
the same time, small particles, also called “fines,” leave the bed
with the remaining phosphate not recovered in the reactor. Two
different regimes were experimentally observed (see Figure 3).
On the one hand, for high values of fluidization velocity (>90
L/h), only one zone is observed at the bed top, in which fines
leave the bed with the liquid effluent. Process efficiency is thus
mainly attributed to fine coating on sand grains. On the other
hand, for low values of fluidization velocity (<50 L/h), an
additional layer is observed at the upper zone of the fluidized
bed where fines stagnate and agglomerate. Because of the
stratified form and size of the agglomerates, the fines remain at
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Figure 2. Pellet reactor.
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the surface of the bed. Inside the fluidized bed, fines totally
cover the sand grains and constitute large particles of complex
structure.

It has been suggested elsewhere (Montastruc et al., 2003)
that the modeling of fines production involves amorphous
calcium phosphate (ACP) for the higher pH values, and both
ACP and DCPD (dicalcium phosphate dihydrate) for lower pH
values according to the following reaction schemes

Ca,(PO,)
2+ - 3 4)2
3Ca +2PO;” =\ p
CaHPO
2+ 2— 4
Ca’* + HPO]” — opp

Both total and dissolved concentrations of phosphorus, pH,
and temperature were measured at the outlet stream. To mea-
sure the dissolved concentrations, the upper outlet stream was
filtered over a 0.45-um filter. The sample of total phosphorus
was pretreated with HCI to dissolve any suspended solids. The
phosphate removal efficiency (7)) of the reactor and the con-
version of phosphate from liquid to solid phase (X) are defined
as

n= )]
p.in
w in w SOl
X=_" o paol 2)
p.in

where w, ;,, represents the flow rate of the phosphorus compo-
nent at the reactor inlet, w,,, gives the total flow rate of
phosphorus both dissolved and in fines at the reactor outlet, and
W, 501 18 the flow rate of dissolved P at the reactor top outlet. If
Nage 18 the agglomeration rate, which is the ratio between
phosphorus in the bed and in the inlet stream, the following

relation can be deduced

M = NageX 3)

The precipitation phenomenon is considered as an agglom-
eration process, and is represented by Smoluchowski’s equa-
tion (Mullin, 1993), expressed as

i

P —kNN; (i = fines, j = grains) 4)

that is
9Ci_ _ken 5
dt - itVj ( )

where N is the particle concentration (m>), C is the concen-

tration (mg/m?®), and K and k represent kinetic constants (m>
—1

s )

(6)

The bed porosity ¢ is calculated from a modified Kozeny—
Carman equation, as follows

S
l1—e¢ g2r)"* \p; — py

where r; is the grain radius, v,,, is the superficial velocity (m/s),
vis the kinematic viscosity (m?/s), and p is the density (kg/m?).

The height of the bed is then given by (where D is the
column diameter)

)

M
L= 8)

T p(1
1 (I — &)p,

The grains covered with phosphate are removed from the
bottom of the bed and replaced intermittently by fresh sand
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Figure 4. Two-step solution procedure.

grains. From many studies reported in the literature (Morse et
al., 1998), the phosphate removal efficiency of a single-pass
reactor, even at industrial scale, has an order of magnitude of
only 50%. It has been shown (Montastruc et al., 2002) that the
pellet reactor efficiency depends not only on pH, but also on
the hydrodynamic conditions.

Modeling Principles

Two models are successively used to compute the reactor
efficiency. At the first level (see Figure 1), the thermochemical
model determines the quantity of phosphate both in the liquid
and solid phase vs. pH value, temperature, and calcium con-
centration. Moreover, this model quantifies the produced
amount of ACP and DCPD as a function of the initial condi-
tions (Montastruc et al., 2003).

In classical approaches, the second step involves an agglom-
eration model requiring as data (Mullin, 1993) the density
value of the calcium phosphates that have precipitated in the
pellet reactor and also diameter of the fines. Furthermore, the
agglomeration rate depends on the hydrodynamic conditions,
particularly the eddy sizes. The experimental determination of
these values is not straightforward and their estimation requires
a lot of assumptions that are difficult to verify practically. For
these reasons, this solution was not adopted in the second step.

An alternative is to compute the pellet reactor efficiency,
from the identification of the pellet reactor model as a reactor
network involving a combination of elementary systems, rep-
resenting basic ideal flow patterns (perfect mixed flows, plug
flows, and so on).

Each elementary system is characterized by specific param-
eters such as volume and flow rate. The goal is to determine the
reactor network representing as adequately as possible the
pellet reactor, that is, the number of elementary units and the
volume and flow rate for each elementary unit, given the total
flow rate, the inlet concentration, the total reactor volume, and
the outlet concentration.

Solution without superstructure

For reactor network identification, several studies use sto-
chastic methods (that is, genetic algorithms or simulated an-
nealing) without embedding the set of possible solutions within
a superstructure (Athier et al., 1997; Laquerbe et al., 2001). In
that case, the solving strategy is based on a master problem
(that is, a stochastic method) that proposes network structures
to the slave problem for the optimization of the continuous
variables (such as flow rates and volumes) corresponding to
each cell arrangement (such as by a QP or SQP method). Yet,
this strategy requires a test procedure for detecting the infea-
sibility of some structures proposed by the stochastic method.

Table 1. Comparison Between Experimental and Computed
Reactor Efficiency for an Input Flow Rate of 90 L/h

Experimental

Conversion Experimental Computed
pH Rate Efficiency Efficiency
7.17 0.320 0.220 0.168
7.2 0.344 0.210 0.180
7.5 0.588 0.313 0.308
7.53 0.612 0.299 0.320
7.8 0.783 0.388 0.409

This detection, based on physical concepts, is strongly linked to
the problem under consideration and suffers from a lack of
generalization. Consequently, an alternative approach involv-
ing a superstructure was used in this study.

Solution within a superstructure

Another strategy consists in using a stochastic procedure for
extracting potential solutions from a superstructure. The main
advantage is that the problem size (in terms of numbers of both
variables and constraints) remains constant and all the solutions
proposed by the stochastic method thus become feasible. How-
ever, a superstructure that involves the set of all possible
solutions corresponding to the physical reactor is required. This
approach is not universal, however, because the quality of the
obtained solution depends on the superstructure formulation. If
some particular solutions cannot be generated from the super-
structure, they cannot compete in the optimization procedure.
This point may be crucial for complex problems involving an
important number of elementary models. Given that the pro-
cess to be modeled here (that is, a fluidized bed with recycle
streams at different levels of the bed) is structurally quite
simple, the superstructure approach was finally retained.

Resolution procedure

The goal is to determine the best reactor network, but also
the value of kinetic constant of the associated agglomeration
rate, which depends on the reactor network. As previously
mentioned, the resolution method is a two-step procedure (as
illustrated in Figure 4), where, at the highest level, a simulated
annealing procedure extracts a reactor configuration from the
superstructure and its corresponding operating conditions are
optimized at the lowest level by an SQP method.

Identification procedure for agglomeration rate

Because the proposed kinetic law is of the first order (see Eq.
4), the concentration influence is null. Thus for each value of
both flow rate and pH, the agglomeration rate is obtained by

Table 2. Comparison Between Experimental and Computed
Reactor Efficiency for an Input Flow Rate of 50 L/h

Experimental

Conversion Experimental Computed
pH Rate Efficiency Efficiency
7.23 0.371 0.273 0.275
7.26 0.389 0.280 0.288
7.57 0.641 0.448 0.468
7.78 0.773 0.599 0.573
8.02 0.859 0.710 0.637
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Figure 5. Comparison between experiment and modeling.

minimizing the quadratic deviation between the computed and
experimental rates. The reactor efficiency, deduced from the
agglomeration rate, is equal to 0.523 for an input flow rate of
90 L/h and 0.742 for an input flow rate of 50 L/h. In Tables 1
and 2 and Figure 5, the efficiency computed from the agglom-
eration rate is compared with the experimental values for both
flow rates. The predicted model curve fits the experimental
points quite well; the kinetic law can thus be considered as a
first-order reaction. Furthermore, to reduce the complexity of
the objective function, for the reactor network, the output
concentration computation is based on the agglomeration rate
(1 = myg,) (see the following section).

Superstructure Approach Validation

The considered example is adapted from the model identi-
fication of a wastewater treatment tank. This example was
already treated (Floquet et al., 1989) with a deterministic
MINLP procedure, based on the generalized Benders’s decom-
position. The settling tank is a rectangular tank with two
agitators; the superstructure is shown in Figure 6, where DZ
refers to a dead zone. The reactions occurring in the tank are of
type A—R with a first-order reaction rate r, = KCj,.

The goal is to obtain simultaneously the most appropriate
model with respect to a given experimental output concentra-
tion, but also the simplest model, that is, the model involving
the smallest possible number of elementary units. Thus, an

- -

A
Fo

- -

Plug Flow Reactor

Co
Fo

Plug Flow Reactor

Figure 6. Problem superstructure for the settling tank.

outer penalty quadratic function, representing the number of
elementary units, is added to the initial objective function
representing the quadratic deviation between the modeled
Ctn0q and experimental output Cy,,,,; so the objective function
becomes

F= (Cfmad - C‘fexp)2 + p E y(l)2 (9)

i

where p is a penalty coefficient and y is the vector of binary
variables y(i) representing the presence or absence of units in
the superstructure.

The problem data are the following:

F, = 36 m*h

Cyo=1 mol/m? (inlet concentration)

C, = 0.18 mol/m® (outlet concentration)
V, = 300 m> (total volume of the tank)
K=036h""

The problem involves 13 continuous variables, nine binary
variables, and only one linear constraint. The penalty coeffi-
cient value has been adjusted, so that both terms (Cy,,,q —
waq,)2 and p =, y(i)* have the same order of magnitude. A
value of 10~? was chosen for the penalty coefficient.

Because the problem combinatorics have been reduced (2°
= 512 possible structures), all the solutions have been enumer-
ated exhaustively and the best solution is reported in Figure 7.
If the output concentration Cy,,, is increased to 0.58, the new
best solution is given in Figure 8, where it can be observed that
the reaction volume is strongly reduced. Note that Figures 7

Co
Fo

V=0.5
—bl Plug Flow Reactor

Figure 7. Best solution for C, = 0.18.
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Figure 8. Best solution for C, = 0.58.

and 8 refer to reduced volumes. Of course, it must be empha-
sized that the same results as those obtained in the previous
study (Floquet et al., 1989) were found. Yet, the classical
MINLP procedure rapidly showed its limit for the treatment of
large-size problems, which is typically the case in the problem
involved in this study.

Fluidized-Bed Modeling
Proposed superstructure

A preliminary study showed that the superstructure proposed
for the settling tank problem was inadequate to represent the
pellet reactor model with a sufficient degree of precision. This
explains why a variant of this superstructure was proposed:
each plug flow reactor of the previous superstructure was
replaced by a series of four well-stirred tank reactors and
additional flows were added, as shown in Figure 9. The final
superstructure now involves 15 elements, thus leading to a
higher combinatorial problem (2'° = 32,768 possible solu-
tions). The first volume V, corresponds to a dead zone.

The problem formulation implies the following equations
(where V,, F,, and C,; represent, respectively, the reactor vol-
umes, the total flow rates, and the molar concentrations in
fines), whereas the term y(i) is related to the presence or
absence of element i.

Volume Constraint

13

2 Vi= Vi (10)

i=1

Input Node Constraints
Fo+Foy+F,+Fs;=F +F,+Fy, (11a)

COFO + C9F10 + C17F12 + CfFB = (Fl + Fll + Fl4)C1
(11b)
Output Node Constraints
Fs+FytFyu=Fs+Fp+FitF, (12a)

CsFs + C3Fyy + CiFyy = C_/(Fs"‘ Fi,+ F3+ Fy)
(12b)

Balances on Reactors. These equations have the following
form (example for reactor 7)

C\F\+ CsFy= C,F, + CoF ) + kV,C, (13a)
F1+Y(7)F9:F2+y(7)F10
[1 - y(7)]F9 = [1 - }’(7)]F10 (13b)

That is, four total balance equations and 12 partial balance
equations, given that total balance equations for reactors with-
out recirculation streams cannot be written.

FI13 G @

Cl7 CIG ClS Cl4 Cf
< V2 g V3 le \Z VS le—
ONIORIOERION -
G G, N & o Cy o Cs N
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Figure 9. Superstructure for the fluidized bed reactor.
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Bilinear Constraints

e 2 partial balance equations on nodes

e 12 partial balance equations on the reactors
Bounded Variables

Slave problem Linear system

Level 3

Concentration Equations

Co=y(7)C, + [1 = y(7)]Cs (14a) e 13 volumes
® 14 flow rates
Cs=y(8)C3 + [1 — y(8)]C, (14b) The objective function to be optimized (by using a QP
procedure from IMSL library) for each proposed structure can
C;=y(9)C, +[1 - y(9)]Cs (14¢) be written as follows
C6 = y(lo)ci + [1 - y(7)]cf (14d) mln(F) = A(Cfmnd - Cfexp)z + (1 - A)(Cfmml - Cfexp)z (16)
. 032 [ 01 026 026
- e
L e 097'—1 097 %
> > Perfect mixed
0.20 0.20 flow reduced 0.29
" volume
B 0.40 0.36 L Reduced Dead Zone
X N flowrate "4 |
N L — 024 o 076 |
136 [ 060
.| 0.57 ! R
3 183 0 |—» (b)
M 043 7
1.83 0
1.33 2.74 1.33
_4:’ 0.5 » 0.5 =l
0.33 1.74 0.33

Figure 11. (a) Good solutions for case 1 (A = 1); (b) good solutions for case 2 (A = 0).



Table 3. Design of Experiments

Experiment X1 X2 X3 X1X2 X1X3 X2X3 X1X2X3 I
1 - - - + + + - +
2 + - - - - + + +
3 - + - - + - + +
4 + + - + - - - +
5 - - + + - - + +
6 + - + - + - - +
7 - + + - - + - +
8 + + + + + + + +

The problem involves 29 constraints and 45 variables. The
parameter A is related to the studied case:

Case 1. A =1 high input flow rate
Case 2. A = 0 low input flow rate
Case 3. 0 < A < 1. Find a unique structure for both cases.

Solution strategy

Insofar as the problem involves linear and bilinear con-
straints, it can be solved by means of an SQP package. The
major drawback of such a procedure lies in the initialization of
variables. Another strategy was therefore implemented in this
study, where the variables are divided into two sets: the vol-
umes and flow rates constitute the first set and the second set
involves the concentrations. Once volumes and flow rates are
known, the concentrations can be computed by solving a linear
system. Because the remaining constraints are all linear, a QP
procedure can be used instead of an SQP one. The solution
strategy is represented in Figure 10.

Because the total number of possible solutions is only of
32,768, and the CPU times are very short, an exhaustive
enumeration of all the solutions is possible for the first two
cases (A = 1 or A = 0); the CPU times (in seconds) for
enumerating all the possible solutions have an order of mag-
nitude of 10,800 and 32,000 s for A = 1 and A = 0, respec-
tively. The best solutions can be deduced from this enumera-
tion and will be used in the following to fine-tune the
parameters (stop criterion, length of cooling, reducing factor
for the temperature) of the implemented simulating annealing
procedure. The CPU time for case 3 (0 < A < 1) is more much
important, given that the number of equations and constraints
was practically multiplied by a factor 2 to embed both cases.

Solution for cases 1 and 2

Recall that the function to be minimized is

F= (Cfmod - Cfexp)z + Y Zy(l)z (17)

i

Table 4. Results of the Design of Experiments:

Casel1 (A =1)
Experiment Success (%) Failure (%) CPU Time (s)
1 0 85 10.62
2 0 100 28.4
3 30 15 100.5
4 60 0 421.9
5 5 90 10.2
6 0 100 28.4
7 35 20 367.8
8 40 0 1211.3

The term p X, y(i)? represents the quadratic sum of elemen-
tary units involved in the current structure. The penalty coef-
ficient value has been adjusted, so that both terms (Cy,,,,y —
Cfexp)2 and p 3, y(i)* have the same order of magnitude.
Because the precision on concentrations has an order of mag-
nitude of 1073, a value of 10~® was chosen for the penalty
coefficient. A good solution is assumed to be obtained when
the quadratic deviation between the predicted and experimental
concentrations (first part of the objective function F) is less
than 102°. For both cases, several solutions can be identified,
as reported in Figure 11a and 11b. The significant structural
differences between the solutions found in both cases show the
difficulty of solving the problem when the two flow rates are
simultaneously considered.

Master Problem Solution via Simulated Annealing
Simulated annealing procedure

At the upper level of the procedure, a simulated annealing
(SA) algorithm is now implemented for extracting particular
fluidized bed structures from the superstructure, by modifying
the values of some integer variables.

The simulated annealing procedure mimics the physical an-
nealing of solids, that is, the slow cooling of a molten sub-
stance, which redistributes the arrangement of the crystals
(Kirkpatrick et al., 1983). In a rapid cooling or quenching, the
final result would be a metastable structure with higher internal
energy. The rearrangements of crystals follow probabilistic
rules. In the annealing of solids, the goal is to reach given
atomic configurations that minimize internal energy. In SA, the
aim is to generate feasible and “good” solutions of an optimi-
zation problem with a given objective function. Because care-
ful annealing leads to the lowest internal energy state, the SA
procedure can lead to the global minimum. Given that a rapid
cooling generates a higher energy metastable state, the SA
procedure may avoid being trapped on a local minimum. How-

Table 5. Values of the Effects: Case 1 (A = 1)

Effect of On Success On Failure

I 25 51.25
X1 2.5 1.25
X2 23.75 —42.5
X3 7.5 -0.25
X1X2 1.25 0
X1X3 0 —-1.25
X2X3 8.75 =75
X1X2X3 1.25 0
Standard deviation 8.65 5.35
Interval size B (at

95%) 19.5 12.15




Table 6. Results of the Design of Experiments:

Case2 (A =0)
Experiment Success (%) Failure (%) CPU Time (s)
1 10 90 38.9
2 0 100 105.1
3 20 50 490.0
4 50 0 1876.7
5 0 100 36.5
6 0 100 107.2
7 0 50 1646.6
8 30 10 6065.4

ever, unlike classical deterministic optimization methods, a
formal proof of the convergence of an SA algorithm toward a
minimum does not exist.

Each structure S generated by the SA is coded on bits (15
bits for the previous example). For generating a neighboring
solution S’ of a given solution S, a portion of S randomly
chosen, is replaced by its binary complement.

The SA parameters to be fixed are the length of the cooling
stage (Nsa), the initial structure, the stop criterion, the initial
temperature, and the reducing factor () for the temperature. In
the SA implemented here, the geometric scheme T;,;, = aT; of
Kirkpatrick et al. (1982) is used. The probability of acceptance
of the current solution is computed from the method proposed
by Metropolis et al. (1953). The SA is stopped if the best
solution is not changed during a given number of consecutive
cooling stages. Like many stochastic procedures, it is recom-
mended that the SA be executed several times on the same
problem, with different initial solutions randomly generated, to
reach very good solutions. A previous study (Athier et al.,
1997) has shown that a good value for the initial temperature
must have an order of magnitude of a fraction (1/2, 1/3) of the
objective function value for the initial solution; thus, in the
following examples, the initial temperature is fixed at a third of
the initial objective function value.

The values of the other parameters (number of consecutive
cooling stages for the stop criterion, reducing factor of the
temperature, length of cooling stage) are investigated in the
following section with a design of experiment procedure.

Parametric study

The design of experiments in R* is based on an Hadamard’s
matrix, as shown in Table 3, where X1 € [1, 5] represents the
number of cooling stages for the stopping criterion; X2 € [0.7,
0.95], the reducing factor for the temperature; and X3 € [2, 6],
the length of cooling stage expressed in terms of length of

Table 7. Values of the Effects: Case 2 (A = 0)

Effect of On Success On Failure

1 13.75 62.5
X1 —6.25 2.5
X2 11.25 —-35.0
X3 6.25 —-10.0
X1X2 —=3.75 0

X1X3 1.25 0

X2X3 8.75 —12.5
X1X2X3 —-1.25 2.5
Standard deviation 8.90 5.5

Interval size 3 (at
95%) 24.8 15.2

Table 8. Influence of the Kinetic Constant: Case 1 (A = 1)

Number of Solutions
with the Same

Kinetic Number of Units Objective Function
Constant Value in the Solution Value
35 2 22
4 2 32
4.5 2 64
5 2 64
55 2 64
6 2 64

structure coding (X3 = 2 means that the length of the cooling
stage is 2 X length of structure coding, that is, 30 for the
previous example). For each experiment reported in Table 3,
the SA was run 20 times with random initializations.

Two responses are studied through this design of experi-
ments: the success rate and the failure rate. A success is
assumed to occur when one of the good solutions given in
Figure 11a (or Figure 11b) is obtained by the SA; a failure
corresponds to a solution found by the SA, which involves at
least two supplementary units than a good one.

For analyzing the design of experiments, the significance
effects based on the estimation of the confidence interval are
computed. It is classically assumed that the standard deviation
remains constant on each experiment and, consequently, the
estimation is carried out only on the median point, that is, for
X1 = 3, X2 = 0.825, and X3 = 4. As for other experiments,
the SA was run 20 times on the median point. The confidence
interval is of the form [v — 3, v + B], where v is the value of
the concerned parameter and (3 is the size interval computed vs.
the number of SA runs on each experiment from the Student’s
law. Recall that a parameter has a significant effect if the
associated confidence interval does contain the value 0.

For case 1, the results of the design of experiments are given
in Table 4 and the parameter effects are reported in Table 5,
where it can be noted that only X2 has a positive significant
effect on the success (respectively, negative significant effect
on the failure). However, the numerical efficiency of a set of
parameters on the SA convergence can obviously be observed
through the success and failure rates, but also through the CPU
time. In this framework, a positive effect for X2 corresponds to
experiments 3, 4, 7, and 8, but for experiments 3 and 7 the
failure rate is quite important and for experiment 8, the CPU
time is high compared to that of experiment 4. Thus, in terms
of global numerical efficiency, experiment 4 (that is, X1 = 5,
X2 = 0.95, and X3 = 2) is the best one.

The same study was carried out for the low input flow rate
(case 2) and the results are reported in Tables 6 and 7. The
conclusion is the same as in the previous case, in which the best
parameter set is always X1 = 5, X2 = 0.95, and X3 = 2.

Table 9. Influence of the Kinetic Constant: Case 2 (A = 0)

Number of Solutions
with the Same

Kinetic Number of Units Objective Function
Constant Value in the Solution Value
4.5 2 16
5 2 15
5.5 2 16
6 2 16




Table 10. Results for Case 3 (A = 0.5)

Influence of the kinetic constant K (cases 1 and 2)

(a)

(b)

(¢

Number Number of In the previous studies, the kinetic constant K was arbitrarily fixed
of SA Quadratic Deviation Elements CPU Time (s) at 5. Its influence is now studied on cases 1 and 2. The SA was
1 77X 1074 9 6707 implemented with the optimal values of parameters X1, X2, and X3.
2 7.7 X 10:: 9 4119 The results of this study, reported in Tables 8 and 9, show that the
3 77X 10" 8 4220 kinetic constant value does not affect the problem solution.
4 7.7 %X 10 9 3646
5 7.7 x107* 9 4508 .
6 77 % 10~ 9 7744 Study of case 3 (A = 0.5): find a unique structure for
7 77 %104 10 4515 high and low input flow rates
—4 . . .
8 77X 10 8 3905 Because the value 5 was assigned to the kinetic constant and
9 7.7 X 10 8 4592 o ©
10 77 % 10-* 3 3855 the SA parameters were fixed at their optimal values (X1 = 5,
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Figure 12. (a) Best solution for the two flow rates (hnumber of SA = 8); (b) best solution for the two flow rates (humber

of SA = 9); (c) best solution for the two flow rates (humber of SA = 10).
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Figure 13. Solution deduced from the three solutions shown on Figure 12a-c.

X2 = 0.95, and X3 = 2), the case 3 study was carried out with
10 SA runs, results of which are shown in Table 10.

The quadratic deviation between the predicted and experi-
mental concentrations (first part of the objective function F) is
always 7.7 X 10~%; for the high (respectively, low) input flow
rate, the computed reactor efficiency is 0.550 (0.714), whereas
the experimental value is 0.523 (0.742). The three best solu-
tions, involving only eight elements, are shown in Figure 12a,
12b, and 12c, respectively. However, the numerical results are
clearly worse than those obtained when both flow rates are
considered separately.

When taking into account the flow rate values of the streams
of the three solutions involving eight elements, these solutions
can be simplified into a unique structure with only seven
elements, as shown in Figure 13. For fluidized-bed modeling,
this new structure is then optimized by using the QP procedure
to determine the various volumes and flow rates.

The results obtained (see Figure 14) for the flow rates and
volumes are nearly the same as those obtained for the three
above solutions. Furthermore, because the flow rates between
the two reactors located on the upper part of the process are
null, the fluidized bed can be represented by a series of well-
stirred tank reactors, where the most important part (90%) of
the reaction occurs. The concentrations related to cases 1 and 2
are also reported in Figure 14. The model involves a dead zone
corresponding to 40% of the total volume, so the height of the
bed can be decreased without loss of efficiency. For case 1 or
case 2, the error between the predicted and experimental output
concentrations has an order of magnitude of 5%, so this model
can be used for predicting the pellet reactor efficiency within
the flow rate range considered.

Conclusions

In this article, a hybrid optimization technique that combines
a simulated annealing (SA) procedure and a quadratic program-

ming (QP) method is developed and a pellet reactor model for
phosphorus recovery from wastewater is identified as a reactor
network of stirred tanks or plug flow reactors.

For solving the induced mixed integer quadratic program-
ming (MIQP) problem, an SA generates and tests at upper-
level reactor network structures, represented by binary vari-
ables related to the presence or absence of various elementary
units. For each structure proposed by the SA, a QP is carried
out at a lower level; the objective function to be minimized is
the quadratic deviation between experimental and computed
agglomeration rates, augmented with an outer quadratic func-
tion representing the number of elementary units. The goal is to
find simultaneously the most appropriate model with respect to
the experimental output, but also the simplest model in terms of
the smallest possible number of elementary units.

For high and low input flow rates, as well as for flow rates
bounded by these extreme values, the results obtained show
that satisfactory reactor networks can be constructed that give
good comparisons to the experimental efficiency. A major asset
of this systemic approach is that the reactor efficiency can be
easily deduced, without any precise knowledge of some key
parameters such as the density and thickness of the calcium
phosphate layer. This methodology can, of course, serve to
determine the new agglomeration fluidization conditions.

Finally, from a more theoretical perspective, a methodology
able to treat large-size problems for model identification was
proposed and, for this purpose, simulated annealing was con-
firmed to be performing for the treatment of combinatorial
problems, even if the optimality of the obtained solution is not
demonstrated mathematically.

Notation

ACP = amorphous calcium phosphate
C = concentration, mg/m3 or mol/m?®
DCPD = dicalcium phosphate dihydrate
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Figure 14. Solution proposed for the two flow rates.



= flow rate, m/h
= Kinetic constant, m* s~
MINLP = mixed integer nonlinear programming
MIQP = mixed integer quadratic programming
= particle concentration, m—?
Nsa = length of the cooling stage
= phosphate
= flow rate, L/h
QP = quadratic programming
SA = simulated annealing
SQP = successive quadratic programming
= temperature, °C
t= time, s
= volume, L or m*
= conversion of phosphate from liquid to solid phase
y = vector of integer variables y;

Greek letters

o = reducing temperature factor

& = bed porosity

m = phosphate removal efficiency
Naee = agglomeration rate

p = penalty coefficient

Subscripts
i = fines
Jj = grains
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