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Alzheimer’s Disease clinical trials keep failing for several reasons, among which :

« The lesson to be derived from these studies is that sponsors
should seek ways of minimizing variability in global trials to

insure greater data homogeneity » Cummings, J. (2017). Lessons

Learned from Alzheimer Disease: Clinical Trials with Negative Outcomes.

Clinical and Translational Science

Our approach — using prediction to target the right patients at trial screening —

is @ way to reduce the needed sample size or conversely to improve the proven effect size.
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Disease course mapping with Leaspy

Application to forecasting at individual level
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A Bayesian mixed-effects model to learn trajectories of changes from repeated manifold-valued observations

Average progression of the biomarkers:

Longitudinal progression of two biomarkers for three patients - Long temporal description
NB: All biomarkers are normalized between 0 and 1 (increasing progression) - Without individual variability
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Fig 1 : Individual parameters of our disease course maps
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Normalized biomarker

Disease course mapping with Leaspy

The model
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A Bayesian mixed-effects model to learn trajectories of changes from repeated manifold-valued observations
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Fig 1 : Individual parameters of our disease course maps
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Disease course mapping with Leaspy Forecasts
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We use past individual data to position a subject on the Disease Course Map,
and we then predict how the subject’s biomarkers will change in the next few years. [4]
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Fig 2 : From average model to individuals predictions and evaluation
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Clinical trial simulation
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In this part we simulate EMERGE/ENGAGE Phase 3 clinical trial using retrospective AD observational data

« Must meet all of the following clinical criteria for MCl due to AD or mild AD and must have:

A Clinical Dementia Rating (CDR)-Global Score of 0.5.
Objective evidence of cognitive impairment at screening
An MMSE score between 24 and 30 (inclusive)

Must have a positive amyloid Positron Emission Tomography (PET) scan »

Our aim is to add a selection criteria based on individual forecast of clinical trial outcome
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Clinical trial simulation
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We first train Disease Course Maps from individual snapshots of AD progression
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Fig 3 : Average progression model learnt on discovery cohort
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Clinical trial simulation
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We then personalize the trained model, to predict outcome
» from individual’s screening biomarkers

> atthe end of the clinical trial
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Fig 5 : Selection of prediction tasks for a run
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®© 000000 00
[wwwwwwwww} We simulate the whole trial with hypothetical
treatment effect to get an idea of how our selections
Inclusion / exclusion improve global effect size.
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We use 5 datasets to get as much patients as possible to simulate the trial

-M Follow-up duration (y) |Delay between visits (m) |Age at baseline (y) m

1599

AIBL 460
469

MEMENTO 1995
PHARMACOG 111

3238

1721
AIBL 6
J-ADNI IEVE:
679
PHARMACOG 454

6.1+2.8
3.7+0.7
5.1+0.8
6.8+1.8
5.1+0.6

906
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5
74
172
83

47+3.0
41+1.0
2.7%+0.5
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Fig 7 : Available datasets for trial simulation
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Fig 8 : Datasets of forecasts for the clinical trial
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Fig 9 : Enrichment results for EMIERGE clinical trial 19
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We simulate the whole trial with hypothetical treatment effect to get an idea of how our selections
improve global effect size.
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Selections enable to reduce the number of patients needed to observe a given treatment effect.
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Fig 12 : Results for EMIERGE clinical trial
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Conclusion
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Take home messages:

- We developed a Disease Course Mapping that can be used to forecast at individual level
- Our predictions enable to select more homogeneous and relevant sub-groups of patients

- Stratifying patients with predictions in AD trials can help improving effect size

Future directions:

- Working on real clinical trial data

- Application to other neurological diseases
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Thank you for your attention

gitlab.com/icm-institute/aramislab/leaspy
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