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Study of linear phase shift algorithms and application to deflectometry

For a number of optical methods, including deflectometry, information is encoded in fringe patterns. To extract the phase data from intensity values, a number of phase shift algorithms have been designed. In deflectometry, the nonlinearity of the fringe display implies that the displayed fringe pattern presents a harmonic content even if the input pattern is perfectly sinusoidal. The propagation of these harmonics through phase shift algorithms creates parasitic fringe patterns, reminiscent of the initial fringe pattern on the estimated phase. This phenomenon, known as print-through, has been identified as a serious performance limitation.

In this paper, we revisit Surrel's work on harmonic insensitive phase shift algorithms and demonstrate that the class of Discrete Fourier Transform (DFT) phase shift algorithms he defines is very appropriate for the field of deflectometry. We show how to choose the most suitable one depending on the application by performing a complete modeling of the harmonic print-through phenomenon for these DFT algorithms and studying the error propagation for shot noise and temporal perturbations. In a deflectometry context, we demonstrate by means of simulations that carefully chosen DFT algorithms can simultaneously be robust to print-through and perform better with respect to noise than the state of the art nonlinear phase shift algorithms.

Lastly, by comparing experimental mirror shape measurements of the matrix of the secondary mirror of the European Extremely Large Telescope made on the one hand by DFT deflectometry and on the other hand by phase shift interferometry, we demonstrate that the use of DFT algorithms can substantially improve the high spatial frequency measurement capabilities of a deflectometry setup, without the need for a calibration of the display's nonlinearities.

Introduction

The fabrication of an optical part is an iterative process in which shape metrology acts as a feedback. The amplitude and spatial frequencies of the shape defects vary largely during the fabrication of the optical part. To follow the dynamics of the surface, a wide range of metrology processes have been developed, including profilometry, 3D scanning machines, deflectometry, and interferometry [START_REF] Harding | Handbook of optical dimensional metrology[END_REF].

Deflectometry is a non contact, low cost and full field slope measurement process adapted to specular surface. It has been used in optical fabrication as a high spatial frequency measurement tool [START_REF] Huang | X-ray mirror metrology using SCOTS/deflectometry[END_REF][START_REF] Su | SCOTS: A reverse Hartmann test with high dynamic range for Giant Magellan Telescope primary mirror segments[END_REF]. Unlike interferometry, deflectometry measurement does not require a reference wavefront to measure the shape of an optical part, which makes it suited for aspheric or even freeform mirror metrology. In contrast, in interferometry, the reference wavefront is generated by a costly wavefront corrector.

For a number of optical methods, including deflectometry, information is encoded in fringe patterns. To extract the phase data from intensity values, a number of phase shift algorithms have been designed. They rely on several phase shifted fringe patterns and find uses in, for example, phase measuring profilometry [START_REF] Srinivasan | Automated phase-measuring profilometry of 3-D diffuse objects[END_REF], deflectometry [5], and phase shift interferometry (PSI) [START_REF] Johannes | New compensating four-phase algorithm for phase-shift interferometry[END_REF].

In linear phase shift algorithms, phase is calculated as the argument of a complex linear combination of shitfed fringes. Therefore these algorithms allow for a choice of parameters: number of steps, phase steps, coefficients of the linear complex combination. These parameters can be chosen to minimize bias and noise in the estimated phase. The 4-image algorithm has been used in deflectometry setups [START_REF] Zhou | Improved method for rapid shape recovery of large specular surfaces based on phase measuring deflectometry[END_REF][START_REF] Chunfeng | Improved phase-measuring deflectometry for aspheric surfaces test[END_REF][START_REF] Su | Software configurable optical test system: a computerized reverse hartmann test[END_REF], while phase shift interferometry usually uses more images in order to reduce the impact of noise, phase step errors and vibrations [START_REF] Huntley | Suppression of phase errors from vibration in phase-shifting interferometry[END_REF][START_REF] Hibino | Susceptibility of systematic error-compensating algorithms to random noise in phase-shifting interferometry[END_REF][START_REF] De | Derivation of algorithms for phase-shifting interferometry using the concept of a data-sampling window[END_REF].

In deflectometry, as in fringe projection profilometry, the nonlinearity of the fringe display implies that the displayed fringe pattern presents a harmonic content even if the input pattern is perfectly sinusoidal [START_REF] Hack | Measurement uncertainty of linear phase-stepping algorithms[END_REF][START_REF] Servin | Fringe Pattern Analysis for Optical Metrology[END_REF]. The propagation of these harmonics through phase shift algorithms has been identified or defocusing propose to reduce the amplitude of the harmonics before acquisition [START_REF] Peng | Phase error correction for fringe projection profilometry by using constrained cubic spline[END_REF][START_REF] Zeng | Complex surface three-dimensional shape measurement method based on defocused gray code plus phase-shifting[END_REF], but these methods require an extra step in the measurement procedure. To avoid propagation of this print-through while requiring no calibration procedure or defocusing, state of the art algorithm use nonlinear phase shift algorithm with exponential fringes [START_REF] Liu | Gamma model and its analysis for phase measuring profilometry[END_REF][START_REF] Niu | Compensation of nonlinear errors of phase-shifted fringes in phase measuring deflectometry[END_REF][START_REF] Chen | Generic exponential fringe model for alleviating phase error in phase measuring profilometry[END_REF]. This method performs almost as well as the gamma calibrated method with respect to noise and harmonic propagation [START_REF] Babaei | Exponential fringe pattern projection approach to gamma-independent phase computation without calibration for gamma nonlinearity in 3D optical metrology[END_REF].

Another method to limit print-through stands in linear phase shift algorithms designed to be insensitive to a number of harmonics. In particular in this paper, we revisit Surrel's work [START_REF] Surrel | Design of algorithms for phase measurements by the use of phase stepping[END_REF] and demonstrate that the class of Discrete Fourier Transform (DFT) phase shift algorithms he defines is relevant in the field of deflectometry. Using a calculation of the sensitivity of linear Phase Shift algorithms, Surrel details how to design DFT algorithms insensitive to harmonics up to an arbitrary order. To study the specific case of DFT algorithms and demonstrate their relevancy, we offer in this paper a complete modeling of the harmonic print-through phenomenon for DFT algorithms, which includes error propagation for shot noise, temporal perturbations and harmonics.

We then perform with numerical simulations a performance comparison of N-DFT algorithms versus nonlinear phase shift algorithms with respect to noise. Results demonstrate that our above analysis allows us to choose within the family proposed by Surrel the optimal algorithm for a typical deflectometry setup, whose performance is limited by the nonlinear display [START_REF] Jiang | Nonlinear phase error compensation for fringe deflectometry measuring system[END_REF]. We find these algorithms to be superior in terms of phase error residuals to all the state of the art uncalibrated algorithms.

Lastly we apply N-DFT algorithms to experimental deflectometry data and compare them to phase shift interferometry measurements. We demonstrate that choosing the relevant DFT algorithm within the family proposed by Surrel significantly improves the high frequency measurement capacity of our deflectometry setup.

2 Phase Shift algorithm: print-through

Phase Shift algorithm formalism

We define a intensity encoded phase pattern I as a 2π periodic function of a phase φ:

I : R → R φ → I(φ) .
Phase shift algorithms estimate the phase φ from a series of phase shifted intensity patterns I(φ + δ n ) where δ n is the n-th phase shift. These phase steps can be performed through time, but single-shot phase shift methods have also been developed which rely on spatial phase steps [25,[START_REF] Nguyen | Single-shot deflectometry for dynamic 3D surface profile measurement by modified spatial-carrier frequency phase-shifting method[END_REF]. Because it is 2π-periodic, the intensity pattern can be decomposed in a φ dependent Fourier series:

I(φ) = +∞ k=-∞ α k e ikφ . (1) 
Linear Phase Shift algorithms aim to estimate φ as the argument of a complex linear combination of N phase shifted intensity patterns:

φ = arg( N -1 n=0 c n I(φ + δ n )). (2) 
Using the Fourier decomposition of

I(φ + δ n ): φ = arg( N -1 n=0 ∞ k=-∞ c n α k e ik(φ+δn)) , φ = arg( ∞ k=-∞ α k e ikφ [ N -1 n=0
c n e ikδn ]).

Following Surrel [START_REF] Surrel | Design of algorithms for phase measurements by the use of phase stepping[END_REF], we define the characteristic polynomial:

P = N -1 n=0 c n X n . ( 3 
) φ = arg( ∞ k=-∞ α k e ikφ [ N -1 n=0 c n (e ikδ ) n ]), φ = arg( +∞ k=-∞ α k e ikφ [P (e ikδ ]). (4) 
This characteristic polynomial of degree N behaves as a frequency transfer function in the spectral plane. Indeed, each initial Fourier coefficient α k is filtered (multiplied) by P (e ikδ ), which does not depend on φ. This characteristic polynomial is fully defined by our choice of complex coefficients c n , n ∈ [1 : N ]. Additionally, if the phase step is a multiple of 2π N , the characteristic polynomial is N-periodic in the frequency plane:

P (e i(k+N )δ ) = N -1 n=0 c n e i2π n(N +k) N = N -1 n=0 c n e i2π nk N = P (e i(kδ+N ) ).
For the estimator φ to retrieve the correct phase, the necessary and sufficient condition is:

∀φ, e iφ ∝ +∞ k=-∞ α k e ikφ [P (e ikδ ].
The Fourier vectors being a basis, the necessary and sufficient condition can be written:

P (e ikδ ) ∈ R if k = 1 = 0 if k = 1 .
To ensure that our estimator retrieves the correct phase in noiseless conditions, the characteristic polynomial should have an infinite number of roots. Since this polynomial is of degree (N-1), some harmonics can propagate as errors. In fringe projection profilometry as in deflectometry, the nonlinear display of fringe creates an important harmonic content, and design of algorithms insensitive to harmonics is therefore relevant [5,[START_REF] Wu | Phase error analysis and reduction in phase measuring deflectometry[END_REF][START_REF] Liu | Gamma model and its analysis for phase measuring profilometry[END_REF][START_REF] Niu | Compensation of nonlinear errors of phase-shifted fringes in phase measuring deflectometry[END_REF]. An algorithm will be insensitive to the j-th harmonic if:

P (e ikδ ) = 0 if k ∈ -j, j, k = 1.
Using polynomial roots, Surrel demonstrated that phase shift algorithms defined by N phase steps with:

c n = e -i2πn N δ = 2π N (5)
are insensitive to any harmonic up to the (N-2)-th. Surrel names these algorithms the Discrete Fourier Transform algorithms (DFT). Since these algorithms are fully defined by the number of intensity patterns N, and in order to distinguish each DFT algorithm, we will refer to them as N-DFT algorithms.

The characteristic polynomial acting as a Frequency transfer function, we can visualize the sensitivity of any given algorithm to the propagation of each harmonic k [START_REF] Servin | Fringe Pattern Analysis for Optical Metrology[END_REF]. Figure 1 shows the absolute value of frequency transfer function H N (k) = P (e ikδ ) of N-DFT algorithms for different values of N in the range k ∈ [-15, 15], N ∈ [START_REF] Srinivasan | Automated phase-measuring profilometry of 3-D diffuse objects[END_REF][START_REF] Chunfeng | Improved phase-measuring deflectometry for aspheric surfaces test[END_REF][START_REF] De | Derivation of algorithms for phase-shifting interferometry using the concept of a data-sampling window[END_REF][START_REF] Manh The Nguyen | Non linearity response correction in phase-shifting deflectometry[END_REF]. As explained above and illustrated on Figure 1, a N-DFT algorithm is sensitive to harmonic k if its frequency transfer function evaluated at k (k = 1) is not zero. In the range k ∈ [-15, 15], the 4-DFT algorithm is sensitive to harmonics [-15,-11,-7,-3,5,9,13], while the 8-DFT algorithm is sensitive to harmonics [-15,-7,9]. In the same range, the 12-DFT algorithm is sensitive to harmonics [-11,13] and the 12-DFT algorithm is sensitive to harmonic -15 only. Every N-DFT algorithm is insensitive to the first (N-2) harmonics, as stated by Surrel and al. [START_REF] Surrel | Design of algorithms for phase measurements by the use of phase stepping[END_REF].

Analysis of phase shift estimation error: impact of a nonlinear display

While the harmonic sensitivity can be determined by the characteristic polynomial, the resulting phase error remains to be calculated. Using the previous formalism, we are able to calculate the propagation of any harmonic through the N-DFT algorithm to obtain the corresponding phase error, i.e, the manifestation in the reconstructed phase of the harmonic propagation through the reconstruction (See calculation in Appendix A). Assuming a Fourier distribution dominated by the fundamental frequency, we obtain a measured phase φ:

φ = φ + +∞ k=-∞,k =1 ( α (kN +1) α 1 ) sin(kN φ) + +∞ k=-∞,k =1 ( α (kN +1) α 1 ) cos(kN φ). (6) 
Until this point, no assumption was made on the nature of φ: it can be both a temporal or a spatial distribution. For the rest of this paper, we will explicitly apply this calculus for the temporal deflectometry case, in which φ(x, y) is a static spatial distribution and phase steps are performed through time. We underline that all the results in this paper stays valid for any nature of φ and/or any phase step implementations. In this case:

φ(x, y) = φ(x, y) + +∞ k=-∞,k =1 ( α (kN +1) α 1 ) sin(kN φ(x, y)) + +∞ k=-∞,k =1 ( α (kN +1) α 1
) cos(kN φ(x, y)). [START_REF] Zhou | Improved method for rapid shape recovery of large specular surfaces based on phase measuring deflectometry[END_REF] We find that most of the harmonic content is filtered out by the phase shift algorithm, but that some harmonics propagate as print-through of the input phase field on the final phase, as a frequency multiple of N times the fundamental fringes pattern. This print-through occurs always at these specific frequencies, and are characteristic of harmonic propagation in N-DFT algorithms. The amplitude of the print-through does not depend on N, but only on the initial relative amplitude of the harmonic to the fundamental. For example, from Equation ( 6), the 8-algorithm is sensitive to frequencies k such that:

k ≡ 1 (mod 8), k = 1.
In this particular case, frequencies ... -15, -7, 9, 17, ... will propagate as print though on the phase estimation. Since harmonics correspond to a linear combination of a positive and a negative frequency, the 8-algorithm is therefore sensitive to the 7-th and 9-th harmonics. In the general case, a N-DFT algorithm is sensitive to (N+1)-th and (N-1)-th harmonics (modulo N), respectively through the positive and negative frequency. We underline that the frequency of the print-through is dependent on the chosen N-DFT algorithm and on the fundamental frequency, and note that the amplitude of the print-through does not depend on N. For example, the amplitude of the print-through due to the 9-th harmonic would of phase steps.

Analysis of phase shift estimation error: shot noise

Above section has shown that choosing a N-DFT algorithm in the family exhibited by Surrel can limit harmonic print-through propagation. In a deflectometry of profilometry experimental setup, even in the case of a noiseless display, the measured intensity is contaminated by shot noise. In the high flux regime of a typical deflectometry setup, the electronic noises become negligible and shot noise is the dominant noise source, with a standard deviation proportional to the square root of the mean flux (in photo-electrons).

To identify the impact of the N-DFT algorithm choice on noise propagation, we have calculated the variance of phase estimated by the N-DFT algorithm in the Appendix B. Assuming a high signal to noise ratio, sinusoidal fringes and linear display, we obtain a variance of:

V ( φ) = 2 N I 0 , (8) 
where I 0 is the mean intensity value of the fringes per recorded intensity pattern, or frame (in photoelectrons). N the number of frames of the N-DFT algorithm. For a given total integration time, there is different ways to distribute the corresponding photo-electron count N I 0 . For example, one can use a 4-DFT algorithm with 10k photo-electrons in each frame or a 5-DFT algorithm with 8k photo-electrons in each frame. This results underlines that if the total number of photo-electron is constant, the variance of the estimated phase is constant: both choices will perform as well in terms of noise propagation. If the shot noise is dominant, as assumed above, then the choice of the N-DFT algorithm doesn't impact the final variance of the estimated phase.

The variance of the estimated phase does not depend on φ. Thus, for a spatially homogeneous intensity distribution I 0 , the distribution of the estimated phase noise is spatially homogeneous. We underline that the phase noise resulting from the propagation of the shot noise through N-DFT algorithms is a white noise since shot noise is white and neighboring pixels are not involved in the phase computation of any given pixel.

Analysis of phase shift estimation error: temporal phase perturbations

Since the noise variance of the estimated phase does not depend of N for a given total photo-electrons number, increasing N appears a viable option to filter out the maximum number of harmonics. Nevertheless, in the case of phase steps performed through time, vibrations, phase step miscalibrations, or temporal variations of intensity of the display create time dependent phase errors which propagate through the phase shift algorithm [START_REF] Huntley | Suppression of phase errors from vibration in phase-shifting interferometry[END_REF]. Using the formalism developed above, we have calculated the phase estimation error induced by any temporal perturbation.

Let a(t) a temporal phase perturbation. We define A(ν) the continuous Fourier decomposition of a(t):

a(t) = +∞ -∞ A(ν)e i2πνt dν.
Assuming the phase perturbation is small with respect to 1, we obtain (from Appendices C and D):

φ = arg ∞ k=-∞ α k e ikφ P (e ikδ ) + i +∞ -∞ A(ν)P (e i(kδ+2πνk∆ )dν , ( 9 
)
where ∆ is the time step associated to the phase step δ via the sampling frequency ν 0 :

∆ = δ 2πν 0 .
Let us define H(k) the generalized frequency transfer function as:

H(k) = P (e i2πkδ ) + i +∞ -∞ B ν P (e i2π(kδ+νk∆ )dν. ( 10 
) φ(x, y) = arg( k=-∞ α k e x,y [H(k)]). (11) 
Under temporal perturbations, the frequency transfer function is altered and no longer necessarily null. For example, let us calculate the impact of temporal perturbations in the case of perfectly sinusoidal fringes. These fringes corresponds to the γ = 1 case, for which intensity with a temporal phase error is modeled as:

I(φ, t) = I 0 (1 + cos(φ + a(t))).
From appendix D, a N-DFT algorithm would estimate the phase as:

φ(x, y) = φ(x, y) + i × e -i2φ(x,y) +∞ -∞ A(ν)P (e i(-4π N +2πν∆) )dν . ( 12 
)
Since the generalized frequency transfer function is no longer null for k = -1, the k = -1 frequency propagates as print-through as twice the fundamental fringe frequency. The amplitude of this printthrough depends on a scalar product between the characteristic polynomial and the spectrum of the phase perturbation.

In the general case (any given γ), the initial harmonic content is not restricted to the frequencies k ∈ {-1, 0, 1}. Since H(k) is not necessarily null, the print-through can occur through an N-DFT algorithm at all harmonic frequency.

Model: error source identification from phase error structure

Table 1 summarizes the different types of errors and their propagation through the N-DFT algorithm.

Dominant error source

Types of phase error for N-DFT algorithm Shot noise Homogeneous white noise Harmonics

Print-through at N times the fringe frequency Temporal perturbation: γ = 1

Print-through at twice the fringe frequency Temporal perturbation: γ = 1

Print-through at any harmonic of the fringe frequency Table 1: Summary: error source vs phase estimated residual.

Since every source of error produces a characteristic residual, the user can easily discriminate error sources and identify the limiting factor of the experimental setup (shot noise, harmonics, or temporal perturbations). If the phase estimation residual is dominated by print-through at N times the fundamental fringe frequency, previous results show that using an N-DFT algorithm with an increased N will lower the phase error.

3 Simulation: performance comparison

State of the art: nonlinear phase shift algorithm

The insensitivity of N-DFT algorithm to the first (N-2) harmonics suggests N-DFT algorithm are interesting candidates for phase estimators for deflectometry or fringe projection profilometry applications. If the first (N-2) harmonics are filtered, the above Section demonstrated that the higher harmonics unfiltered by the generalized frequency transfer function propagate as print-through of the initial fringes. To ensure minimal harmonics propagation, the intensity pattern on the detector should be as close as possible to sinusoidal fringes. Displays used for deflectometry or fringe projection profilometry are nonlinear and characterized by a γ parameter describing the power law between the displayed intensity I disp and the input I Input :

I disp ∝ I γ
Input , where γ typically varies between 2.2 and 3.5. The nonlinearity of the display induces a harmonic content on the detector even for a perfectly linear photo-detector and for perfectly sinusoidal fringe pattern input.

I(φ) = I 0 (1 + cos(φ)) γ = I 0 +∞ k=0 ( γ n ) cos(φ) n ,
where I 0 is an intensity constant and:

( γ n ) = (γ)(γ -1)...(γ -n) n! .
Because cos(φ) n contains (among others) the n-th harmonic of φ, sinusoidal fringes displayed on a gamma nonlinear screen induce a harmonic content. For this reason, several methods including look up table [START_REF] Maa | Investigation of phase error correction for digital sinusoidal phase-shifting fringe projection profilometry[END_REF] and gamma calibration [START_REF] Babaei | Exponential fringe pattern projection approach to gamma-independent phase computation without calibration for gamma nonlinearity in 3D optical metrology[END_REF] have also been developed to ensure the captured intensity pattern on the detector is sinusoidal. These methods require the display to be carefully calibrated.

To bypass the need for calibration, nonlinear phase shift algorithms have been developed [START_REF] Liu | Gamma model and its analysis for phase measuring profilometry[END_REF][START_REF] Niu | Compensation of nonlinear errors of phase-shifted fringes in phase measuring deflectometry[END_REF][START_REF] Chen | Generic exponential fringe model for alleviating phase error in phase measuring profilometry[END_REF]. Instead of limiting the harmonic content on the detector, these methods display intensity patterns adapted to nonlinear displays, namely exponential fringes:

I(φ) = I 0 (e 1+cos(φ) ) γ = I 0 (e γ+γ cos(φ) ).
The phase is then estimated via a nonlinear phase shift algorithm. In particular, Niu and al. [START_REF] Niu | Compensation of nonlinear errors of phase-shifted fringes in phase measuring deflectometry[END_REF] uses a 4 images nonlinear algorithm where phase is estimated as :

φ = arg(log( (I 4 -I 1 )(I 4 -I 3 ) (I 1 -I 2 )(I 3 -I 2 ) ) + i log( (I 4 -I 1 )(I 1 -I 2 ) (I 4 -I 3 )(I 3 -I 2 ) )), (13) 
where:

I j = I(φ + j π 2 ) = I 0 (e γ+γ cos(φ+j π 2 ) ).
This estimator retrieves the exact phase in noiseless conditions and Babaei and al. [START_REF] Babaei | Exponential fringe pattern projection approach to gamma-independent phase computation without calibration for gamma nonlinearity in 3D optical metrology[END_REF] indicate that it performs almost as well as gamma calibrated methods for fringe projection with respect to display non-linearity and noise, without the need for a calibration.

Simulation: methodology and conditions

In this section, we assess, by means of simulation, the efficacy of N-DFT algorithms in comparison to state of the art nonlinear Phase Shift algorithm (NLPS). Algorithms studied in this simulation have different numbers of frames. To ensure a fair comparison in terms of noise between algorithms, we consider that the total exposure time for each algorithm is the same regardless of the algorithm, therefore the total number of photo-electrons received in a pixel is the same for each algorithm. For example, for a total budget of 10000 photo-electrons per pixel, the 4-DFT algorithm is simulated with 2500 photo-electrons per pixel, while the 5-DFT algorithm is simulated with 2000 photo-electrons per pixel.

Using a power law display model, we have generated phase shifted fringe patterns both for the N-DFT algorithms and for the NLPS algorithm. The static phase field φ(x, y) is defined on a [960, 960] grid, and varying linearly in the horizontal direction from 0 to 11 × 2π. Intensity patterns for the N-DFT algorithms were modeled as:

I j (x, y) = I 0 (1 + cos(φ(x, y) + j 2π N )) γ + n j (x, y), (14) 
where n j (x, y) is an outcome of a shot noise for the j-th frame, approximated as a Gaussian noise of variance equal to the noiseless intensity pattern and I 0 is a constant characterizing the average number of photo-electrons per pixel on the detector. Exponential fringes are modeled as:

I j,exp = I 0,exp (e γ+γ cos(φ(x,y)+j π 2 ) ) + n j (x, y), (15) 
where n j (x, y) is similarly an outcome of a shot noise for j-th frame, approximated as a Gaussian noise of variance equal to the noiseless intensity pattern, and I 0,exp a constant characterizing the average number of photo-electrons per pixel on the detector. These fringe patterns and their noise outcomes unwrapping method needs to be implemented. Phases were unwrapped using the algorithm given in [START_REF] Herraez | Fast two-dimensional phase-unwrapping algorithm based on sorting by reliability following a noncontinuous path[END_REF], based on sorting by reliability. After unwrapping, theoretical phase maps φ(x, y) were subtracted from estimated phases and the root-mean-square (RMS) of the residuals computed.

We have studied different Signal to Noise Ratio (SNR) conditions in our simulation: the photoelectron number ranges from 100 to 10 8 . Because the NLPS algorithm is a 4 image algorithm, the maximum number of photo-electrons in each frame has been adjusted between methods in order to compare algorithms using the same total number of photo-electrons conditions. The photo-electron count in the figure 2 corresponds to the maximum total number of photo-electron for a pixel, with every frame of the algorithm taken into account. To cover different cases of screen calibration, simulation results are presented for both γ values of 2.2 and 3.2. In a range of photo-electrons from 10 3 to 10 5 , the phase errors of N-DFT algorithm decrease in accordance with the analytical model: the logarithm of the phase estimation error decreases with a slope of - 1 2 with respect to the logarithm of photo electron count. N-DFT algorithms are noise limited for N ≥ 5 for both value of γ. As photo electron count increases, the variance of the estimated phase decreases until print-through dominates the residual phase error. Since the print-through amplitude does not depend on the photo-electron count, the phase error remains constant as the photo-electron count rises. The 4-DFT algorithm's print-through error takes over noise for a total number of photo-electrons superior to 10 4 for γ = 2.2. In the γ = 3.2 case, print-trough dominate the 4-DFT algorithm phase error for all the simulated range of photo-electrons.

Simulation: analysis of the results

N-DFT algorithms are insensitive to every harmonic up to the (N-2)-th. As the number of frames of the N-DFT algorithm increases, the total amplitude of the print-through decreases. For γ = 2.2, the 5-DFT algorithm phase error is dominated by print-through for a total number of photo-electron greater than 10 6 . Since the print-through amplitude depends on the initial harmonic content, we expect the 5-DFT algorithm to be noise limited on a shorter range for γ = 3.2. Indeed, the phase error is dominated by print-through for a total number of photo-electron greater than 10 5 in the γ = 3.2 case. For N ≥ 7, N-DFT algorithms are noise limited for all the simulated range, for both γ = 2.2 and γ = 3.2.

The phase error for the NLPS algorithm decreases steadily as photo-electron count increases for both γ values, with a slope close to -1 2 . A linear regression gives: ln(σ) = 0.3914 -0.516 ln(N ph ) for γ = 3.2, R 2 = 0.9998 ln(σ) = 0.312 -0.495 ln(N ph ) for γ = 2.2, R 2 = 0.9996

, ( 16 
)
where σ is the least square residual, R the coefficient of determination and N ph the photo-electron count.

being sensitive to harmonics, we observe that the phase error of the NLPS algorithm slightly depends on gamma through the shot noise propagation. For a total number of photo-electrons of 10 8 , the phase error of the NLPS algorithm is slightly lower for γ = 2.2 (0.19mrad RMS) than for γ = 3.2 (0.22mrad RMS). We now compare the N-algorithm and the NLPS algorithm performances. The NLPS outperforms the 4-DFT algorithm for a photo-electron count greater than 10 5 for γ = 2.2. As the harmonic content increases, we expect the NLPS algorithm to outperform the 4-DFT algorithm for a lower photo-electron count, and indeed, for γ = 3.2, the NLPS algorithm outperforms the 4-DFT algorithm for a photo-electron count greater than 10 3 . The 5-DFT algorithm and the 6-DFT algorithm are quickly outperformed once the print-through dominates the phase error. Because the 8-DFT algorithm and the 12-DFT algorithm are noise limited for a photo-electron count ranging from 100 to 10 8 , they outperforms the NLPS algorithm on all this range for both γ = 2.2 and γ = 3.2. The simulation demonstrates that the NLPS algorithm exhibit a greater phase error than noise limited N-DFT algorithms, for γ = 2.2 and γ = 3.2.

Overall, the simulation demonstrates that noise limited N-DFT algorithms are superior to the NLPS algorithm, and that N-DFT algorithms are noise limited for N ≥ 8 and γ ≤ 3.2 on a range of photoelectron count from 100 to 10 8 .

An additional effect not taken into account in the above simulation is that in a experimental deflectometry setup, the pattern is out of focus2 . The defocus aberration induces a low pass spatial filter of the intensity pattern which improves the performances of the N-DFT algorithm by filtering out harmonics, but deteriorates the performance of the nonlinear algorithm by altering the exponential fringe Fourier decomposition. The nonlinear response of the detector also has a negative effect on the performance of the nonlinear algorithm as it alters the exponential fringe Fourier decomposition. For all these reasons, we find N-DFT algorithm to be superior to the NLPS algorithm with respect to the phase error, for N ≥ 8, for all realistic photo-electron counts and values of γ.

Usage of N-DFT algorithm in deflectometry: application to experimental data

Deflectometry is full field slope measurement adapted to specular surface. In situ capabilities, fast measurements and low cost makes the deflectometry a promising process in the optical fabrication context, in particular in the high spatial frequency range [5, 2, 3]. A deflectometry measurement extracts the shape of a specular surface from the distortion of known displayed patterns. To carry out a deflectometry measurement, a display system and a detector are necessary. Figure 3 illustrates a deflectometry experimental setup. A screen is placed in front of an optical surface. A camera records the reflected displayed pattern. The detector plane is conjugated with the optical surface. The z axis direction is the direction of the optical axis of the surface. The x and y axis are then defined to form a direct system R.

Principles of deflectometry

Let us consider any specular surface defined by height z(x, y) in a reference frame defined in Figure 3.

A three point association is required to measure the local slope of this surface using Snell-Descartes reflection law (the points are defined in Figure 3):

• The source point S = (x s , y s , z s ) emitting the ray, localized on the display;

• The impact point M = (x m , y m , z m ) of the ray on the mirror;

• The impact point C = (x c , y c , z c ) of the reflected ray on the camera.

Once the geometrical position of these three points is known, one can calculate the local slope of the mirror using the Snell-Descartes law of reflection [START_REF] Huang | X-ray mirror metrology using SCOTS/deflectometry[END_REF]:

∇z(x, y) = ∂z ∂x , ∂z ∂y = F (C, M, S), (17) 

Oz Ox

Screen Camera Optical surface To identify which source point emitted the ray associated with the pair (C,M), deflectometry measurements rely on intensity encoded phase patterns and a phase shift algorithm. We underline that despite the fact that the point S is defined by 3 coordinates, adding the constraint that S must be on the surface of the screen allows the point S to be characterized by 2 phase values 4 . Let us consider a screen displaying an intensity encoded phase pattern I(φ). The position of each point S = (x s , y s , z s ) of the display can be characterized by two suitably defined phases φ = (φ x , φ y ). We define f the phase encoding function which associates the phases φ = (φ x , φ y ) to each point S = (x s , y s , z s ) of the display with:

f : R 3 → R 2 S = (x s , y s , z s ) → φ = (φ x , φ y ) f (x s , y s , z s ).
The easiest way to measure these two scalar phases is to successively use two sets of intensity encoded phase patterns. In the following, we consider that the two phases are measured one after the other. We underline that f can be chosen arbitrarily, at the condition that f is a one-to-one mapping. A simple method is to define φ x and φ y as linear functions of the position on the surface of the screen. The input fringes are therefore sinusoidal and have a constant fringe density. We have:

φ x = S,ex,s 2πν f φ y = S,ey,s 2πν f , ( 18 
)
where ν f is the fringes frequency and (e x,s , e y,s ) the two vectors characterizing the screen plane surface system as defined by the axis (Oxs, Oys) in 4.

S = f -1 (φ).

Finally:

∇z = F (C, M, S) = F C, g(C), f -1 (φ) . ( 19 
)
Adding geometrical information (position of the pupil of the camera and position and orientation of the screen), the slopes values can therefore be estimated for every mirror point. Once the gradient of the surface has been measured, an integration algorithm estimates the optical surface height z(x,y) by solving the inverse problem: ∇z(x, y) → z(x, y).

This problem has been studied for wavefront slopes measured by Shack-Hartmann sensors [START_REF] Southwell | Wave-front estimation from wave-front slope measurements[END_REF][START_REF] Rousset | Wave-front sensors[END_REF] and for deflectometry [START_REF] Hongyu Ren | Least-squares method for data reconstruction from gradient data in deflectometry[END_REF]. Integration can rely either on a modal or on a zonal basis [START_REF] Mochi | Modal wavefront reconstruction from its gradient[END_REF][START_REF] Huang | Zonal wavefront reconstruction in quadrilateral geometry for phase measuring deflectometry[END_REF]. In this study, we use the zonal algorithm in the Southwell configuration [START_REF] Southwell | Wave-front estimation from wave-front slope measurements[END_REF].

4.2 Experimental application: measurement of the matrix of the secondary ELT mirror

Methodology

The secondary Extremely Large Telescope mirror (ELT) is a 4 meter diameter class convex mirror manufactured by the European Southern Observatory (ESO) as a part of the ELT project. This mirror is the largest secondary mirror ever employed on a telescope, and the largest convex mirror ever produced. This mirror is currently being polishing at the site of Safran Reosc (St Pierre du Perray, France). Convex mirrors requires a concave wavefront reference to be measured by means of interferometry, for example a Hindle sphere. To measure the shape of the ELT secondary Mirror, a 2 meter highly aspherical concave blank called matrix5 has been manufactured, and is currently polished by Safran Reosc as a reference wavefront. This mirror is composed of Zerodur and was not coated at the time of the measurements.

During the fabrication process of the matrix (high frequency shape error above the specification), three measurement have been carried out: one phase shift interferometry measurement using a computer generated hologram as the aspheric reference wavefront, and two deflectometry measurements, which do not need any wavefront corrector. We underline that at the time of the measurements the matrix was in an early fabrication stage and that the state of the mirror is nowhere near the final shape quality of the mirror.

The above section has demonstrated that the 8-DFT algorithm is an improvement over the 4-DFT algorithm with respect to print-through within any photo-electron count greater than 4.10 4 . To demonstrate experimentally this result, the mirror has been measured by deflectometry with a 4-DFT algorithm and a 8-DFT algorithm. The display used is a 1280x1024, 19 inches Terra MF190D-L03 which has not been calibrated for gamma. The manufacturer indicates a gamma value of 2.2. The camera used is a FLIR: CM3-U3-13S2M-CS: 1.3 MP, 30 FPS, SONY ICX445, MONO. The objective is a 1/1.8 10-40mm varifocal objective from Edmund Optics. The shutter time is set to 500ms. The photo-metric data is a mean of 15 measurements per frame to limit shot noise. The total photo-electron count per pixel is approximately 1.10 5 for the 8-DFT algorithm and 5.10 4 for the 4-DFT algorithm. Phases (φ x , φ y ) have been defined as linear functions of the position on the display in accordance with Equation 16. The fringe frequencies have been set to (ν f,x , ν f,y ) = (28.6, 16.1)m -1 .

Results and analysis

Figure 4 presents the result of (a) the 4-DFT and (b) the 8-DFT phase measurement (φ x , φ y ) (rad) of the matrix of the secondary mirror the ELT. In order to visualize high spatial frequency defects and potential print-through, a phase map filtered out of the first ten Legendre's polynomials (L10) is presented under each phase map in 2b. Fringe patterns can be identified in the (φ x , φ y ) L10 substracted phase maps retrieved by the 4-DFT algorithm. A measure of the fringe pattern frequencies indicates that the pattern frequencies is at 4 times the fundamental fringe frequency. In accordance with the model of the Section 2, we identify these fringes as print-through of the initial fringe patterns. This print-through is absent on the L10 substracted phase maps retrieved by the 8-DFT algorithms. As simulated in the above section, We now compare the performances of N-algorithms and NLPS algorithm with respect to shape estimation. Figure 5 frequencies and print-through. To compare the different shape estimation methods, difference between the 3 shape maps are presented in the second row of the Figure 5. The interferometric shape estimation has been spatially registered with the deflectometry measurements using the SURF algorithm [START_REF] Baya | Speeded-up robust features (SURF)[END_REF]. Registration is based on a similarity transformation. The 8-DFT algorithm leads to a shape reconstruction in good accordance with the phase shift interferometry measurement: the difference has a RMS value of 34 nm for a RMS value of each map higher than 125 nm. Additionally, a careful examination of the difference between the two maps shows that a substantial part of it is due to an imperfect registration of the two maps, and also includes parasitic fringe patterns on the interferometric measurement.

However, the 4-DFT algorithm shape reconstruction is dominated by a grid: 274 nm RMS residuals between the 4-DFT algorithm measurement and the 8-DFT algorithm measurement and 276.7 nm RMS residuals between the 4-DFT algorithm measurement and interferometry measurement. Again, a measure of the grid frequency demonstrates that the grid frequency is at 4 times the fundamental fringe frequency, in accordance with the model of Section 2. Therefore, the grid we observe on the 4-DFT reconstruction is due to the superposition of the φ x and φ y print-through propagating through integration. This grid is absent in the 8-DFT reconstruction, as we can observe in the difference map between the 4-DFT algorithm and the 8-DFT algorithm. This result confirms that by choosing carefully the N-DFT algorithm, high spatial frequencies measurement capacities of a deflectometry setup can be substantially improved.

Conclusion

In this paper, we revisited the work by Surrel [START_REF] Surrel | Design of algorithms for phase measurements by the use of phase stepping[END_REF] on a family of phase shift algorithms robust to harmonics, namely N-DFT algorithms. In particular, we fully modeled the propagation of harmonics due to nonlinearities, shot noise, and temporal perturbations through these algorithms. We demonstrated that temporal perturbations and harmonics propagate through N-DFT algorithms as print-through, a periodical signal whose frequency is a multiple of the initial fringe pattern frequency. This modeling allows users to discriminate error sources and identify the limiting factor(s) of their experimental setup. Additionally, we showed that the print-through frequency can be pushed away to an arbitrary high band of spatial frequencies by a judicious choice of the N-DFT algorithm and of the fringe frequency ν f . In a deflectometry context, we demonstrated by means of simulations that carefully chosen N-DFT algorithms can simultaneously be robust to print-through and perform better with respect to noise than the state of the art nonlinear phase shift algorithm. Lastly, by comparing mirror shape measurements of the matrix of the secondary mirror of the European Extremely Large Telescope made on the one hand by N-DFT deflectometry and on the other hand by phase shift interferometry, we demonstrated that the use of N-DFT algorithms can substantially improve the high spatial frequency measurement capabilities measurements was found to be 34 nm for an initial shape estimated to be greater than 125 nm RMS.

The quality of the deflectometric measurement using tailored N-DFT algorithms suggests the possibility for interferometry-free mirror metrology in the future, as the low spatial frequencies of the mirror could be retrieved by mechanical methods and high spatial frequencies could be retrieved by deflectometry, without the need for the costly and specific reference wavefront required for an interferometric measurement.

The propagation of noise through phase shift algorithms has been calculated in the case of a stationary noise, in particular in [START_REF] Servin | Fringe Pattern Analysis for Optical Metrology[END_REF], where Servin et al. calculate the variance of the estimated phase through the use of the noise's power spectral density (PSD). Yet this calculation is not applicable here, because shot noise is not a stationary noise, and therefore a PSD can not be defined in this case [START_REF] Papoulis | Signal analysis[END_REF]Sect 9.3]. The propagation of shot noise through N-DFT algorithms is calculated below.

Intensity and noise are modeled as:

I(φ) = I 0 (1 + cos(φ)) + n(φ),
where n j (x, y) is an outcome of noise and I 0 is a constant characterizing the average number of photoelectrons per pixel on the detector. This model leads to, using equation 2:

φ = arg( N -1 n=0 c n (I(φ + δ n )) + n(φ + δ n )).
Additionally, from [START_REF] Surrel | Design of algorithms for phase measurements by the use of phase stepping[END_REF], for a N-DFT algorithm c n = e -i2πn N

, which leads to:

N -1 n=0 c n (I(φ + δ n )) = N -1 n=0 e -i2πn N I 0 1 + e i(φ+δn) 2 + e -i(φ+δn) 2 + N -1 n=0 c n n(φ + δ n ).
For N-DFT algorithms, δ n = 2π N , which leads to:

N -1 n=0 c n (I(φ + δ n )) = N -1 n=0 I 0 e -i2πn N + e iφ 2 + e -i(φ+ 4π N ) 2 + N -1 n=0 c n n(φ + 2π N ).
And using the result that the sum of the roots of unity is 0: Hence:

φ = φ + tan -1 N -1 n=0 2 N I0 n(φ + δ n ) sin(-φ -2πn N ) 1 + N -1 n=0 2 N I0 n(φ + δ n ) cos(-φ -2πn N )
.

For a high signal to noise ratio hypothesis, we have:

|n(φ + δ n ))| I(φ + nδ) ≤ 2I 0
Therefore, assuming a high signal to noise ratio, the first term of the Taylor decomposition gives:

φ φ - N -1 n=0 2 N I 0 n(φ + δ n ) sin(φ + 2πn N ).
Assuming that photon noise is the dominant noise source, i.e., that the electronic noises are negligible, the noise variance is given by the mean number of photo-electron per pixel:

V (n(φ)) = I 0 (1 + cos(φ)). Elementary trigonometry calculation simplifies the sum as:

N -1 n=0 1 N cos 2 φ + 2πn N 2 sin 2 φ + 2πn N = 1 4 .
Finally the variance of the estimated phase is:

V ( φ) = 2 N I 0 .
We underline that the variance of the estimated phase does not depend on N under the assumption of a constant photo-electron budget N I 0 , which is the assumption made in this paper.

C Print-through propagation of temporal perturbation in the general case

Any given temporal perturbation on the phase can be described by a continuous Fourier transform:

a(t) = +∞ -∞ A(ν)e i2πνt dν.
Let ∆ the time step associated to the phase step δ and the sampling frequency ν 0 , we obtain:

∆ = δ 2πν 0 .
Then from Equation 4 we obtain: .

φ = arg
Given the phase perturbation is small with respect to 1:

+∞ -∞ | A(ν) | 1,
we obtain at the first order of perturbation: c n e i(knδ+2πνkn∆) dν .

φ = arg
Using the characteristic polynomial: A(ν)P (e i(kδ+2πνk∆ )dν .

φ = arg
For the γ = 1, intensity with a temporal phase error is modeled as: I(φ, t) = I 0 (1 + cos(φ + a(t)) = α k e ik(φ+a(t)) .

Then from Equation 4we obtain:

φ = arg 1 k=-1
α k e ikφ P (e ikδ ) + i +∞ -∞

A(ν)P (e i(kδ+2πνk∆ )dν .

We define the generalized frequency transfer function of the algorithm (which depends on phase error Fourier decomposition) as:

H(k) = P (e ikδ ) + i +∞ -∞
A(ν)P (e i(kδ+2πνk∆ )dν.

In particular: A(ν)P (e -i 4π N +i2πν∆) dν.

H(1) = N e iφ + i
From Appendix A, we apply the formula for the argument of a Fourier serie dominated by the fundamental frequency:

φ = φ + 0 k=-1 ( z k z 1
) sin((k -1)φ) + ( z k z 1 ) cos((k -1)φ).

With z k = α k H(k), we obtain: φ = φ + (H(-1)) sin(-2φ) + (H(-1) cos(-2φ), φ = φ + i × e -i2φ(x,y) +∞ -∞

A(ν)P (e i(-4π N +2πν∆) )dν .

The output of this filter propagates as print-through at 2 times the fundamental fringe frequency.
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 1 Figure 1: Frequency transfer function of N-DFT (N=4, 8, 12, 16) vs harmonic number.

Figure 2

 2 Figure 2 presents the result of the simulations and shows the phase RMS error as a function of photo electron count for various N-DFT algorithms and for the NLPS algorithm, for γ = 2.2 and γ = 3.2. Simulations are average values of 20 noise realizations.
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 2 Figure 2: Phase error (rad RMS) vs photo-electron count for a) γ = 2.2 and b) γ = 3.2
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 33 Figure 3: Deflectometry experimental setup and coordinates definition

Figure 4 :

 4 Figure 4: (φ x , φ y ) (in radians) extracted of the measurement of the matrix of the secondary ELT mirror. Phase shift algorithm used is a) 4-DFT b) 8-DFT. Lower line displays (φ x , φ y ) with the first ten Legendre's polynomials subtracted in order to visualize low amplitude defects and print-through.

  presents the result of (a) the 4-DFT algorithm, (b) the 8-DFT algorithm and (c) phase shift interferometry shape measurement of the matrix of the secondary ELT mirror. The 4-DFT algorithm and 8-DFT algorithm measurement correspond to the processed phases presented in Figure 4. The first 36-th Legendre's polynomials (L36) have been substracted on each measurement to visualize high spatial

Figure 5 :

 5 Figure 5: Shape (in nm) measured of the matrix of the secondary ELT mirror by 4-DFT Deflectometry, 8-DFT Deflectometry, and phase shift interferometry. First 36-th Legendre's Polynomials have been substracted.
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 2121 c n n(φ + δ n ) N I 0 e iφ , φ = arg N I 0 2 e iφ + arg 1 + c n n(φ + δ n ) N I 0 e iφ , φ = φ + arg 1 + 2 + δ n )) N I 0 e iφ .

c

  n e i(knδ+ +∞ -∞ A(ν)e i2πνkn∆ dν)

∞

  k=-∞ α k e ikφ P (e ikδ ) + i ∞ k=-∞ α k e ikφ +∞ -∞A(ν)P (e i(kδ+2πνk∆ dν .Finally:φ = arg ∞ k=-∞ α k e ikφ P (e ikδ ) + i +∞ -∞A(ν)P (e i(kδ+2πνk∆ )dν .Starting from the final equation of the Appendix C:φ = arg ∞ k=-∞α k e ikφ P (e ikδ ) + i +∞ -∞

cos(φ) = 1 is out of the radius of convergence

In fringe projection profilometry, the detector is optically conjugated with the display

Using a calculation based on tangent half-angle formula

For example, for a planar screen model, a display point is characterized by two coordinate positions on the surface of the screen.

One of the most aspheric large mirror ever polished.
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A Print-through propagation of harmonic content

Let z a Fourier series of a periodic function:

If z is dominated by the fundamental Fourier component:

Then:

which leads to:

.

The first term of the Taylor decomposition gives:

The characteristic polynomial acts as a frequency transfer function for the initial intensity pattern, and we have: z k = α k P (e ikδ ). And from [START_REF] Surrel | Design of algorithms for phase measurements by the use of phase stepping[END_REF] we have: