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INTRODUCTION

Factors that contribute to the biodiversity in the
pelagic realm are numerous and concern a large range
of temporal and spatial scales (Mann & Lazier 1996,
Angel 1997, Haury & McGowan 1998). Geological
events that have modified the distribution of conti-
nents, opening or closure of seaways and changes in
the general thermohaline circulation have led to speci-
ation. Climatic oscillations have involved modifications
in the geographic distribution of species (Gee 1991,
Crame 1993, Molfino 1994) and in sea levels, which

have been shown to contribute to evolution in certain
circumstances (Fleminger 1986, Cronin & Schneider
1990). At a smaller scale, ecological factors influence
the physiology of species and can contribute to the
spatial-temporal regulation of diversity. All these
factors have contributed synergistically to speciation
and the shape of present day patterns of pelagic biodi-
versity.

Recently, a map of the pelagic diversity of calanoid
copepods has been produced for the North Atlantic
and the North Sea based on data historically collected
by the Continuous Plankton Recorder (CPR) survey
(Beaugrand et al. 2000a). Based on a large amount of
data (about 18 million data points), this map shows an
east-west asymmetry in plankton diversity throughout
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the northern North Atlantic Ocean and adjacent seas
with pronounced local variability. Multivariate analy-
ses and a diversity index were used at both diel and
seasonal scales to distinguish major biological regions
with a relatively small spatial resolution (Beaugrand et
al. 2001). Currents were clearly shown to play an
important role in the regulation of pelagic biodiversity
at both meso- and macroscales. The warm North
Atlantic Current and the European shelf edge current
and undercurrent have emerged as important parame-
ters for the maintenance and regulation of biodiversity
in the Bay of Biscay and west of the British Isles (Beau-
grand et al. 2001).

However, in these recent studies, information on
taxa or assemblages that contributed to the diversity in
a region of the survey area was not investigated. This
represents a major gap in our understanding of the fac-
tors that maintain diversity at an ocean basin scale.
Individual distributional ranges of many pelagic
organisms has been determined, especially in the
northern North Atlantic and the North Sea (Edinburgh
Oceanographic Laboratory 1973). A number of aspects
limit the application of this atlas. Firstly, it was only
based on samples collected during the period from
1958 to 1968, with a restricted number of samples
(about 45 000 in contrast to about 170 000 at present).
Secondly, only the common species were divided into 3
categories of abundance; less common species were
indicated as present. Thirdly, the presentation used a
Mercator plane projection, which highly distorts the
spatial pattern with changing latitude (Planque 1996,
Planque et al. 1997).

Basing the partition of a region on the distribution of
individual species or monitoring changes in ecosys-
tems from a single species may be quite arbitrary as
variable features related to factors such as aggregation
or dispersal as well as mortality or survival may influ-
ence the distribution of a pelagic organism (Colebrook
et al. 1961). These latter authors stressed that the use

of indicator associations may reduce such uncertain-
ties. However, despite attempts realised by Colebrook
et al. (1961) and Colebrook (1964) around the British
Isles, research on species associations has not been
undertaken on the CPR dataset at this scale.

The purpose of this study was to decompose diversity
of calanoid copepods into species associations. The
abundance of about 100 species of calanoid copepod was
first regularised on a regular spatial grid and homo-
geneous time period at both diel and seasonal scales.
Then, the recently proposed ‘indicator value method’
(Dufrêne & Legendre 1997) and multivariate analyses
were applied to identify indicator species and associa-
tions. The detected associations are fully described and
are then used, (1) to refine the recent partition proposed
by Longhurst (1998) and Beaugrand et al. (2001), and (2)
to improve understanding of factors implied in the reg-
ulation of diversity at this scale. Finally, it is argued that
these associations represent a valuable tool to record en-
vironmental change and to evaluate the effects of cli-
mate change and increasing human-induced influences
on marine eco-systems.

MATERIALS AND METHODS

Sampling. Data used in this study come from the
Continuous Plankton Recorder (CPR) survey. This
monitoring programme has sampled plankton monthly
over the North Atlantic and the North Sea since 1948.
Samples are collected by a high speed recorder (about
20 km h–1) towed behind voluntary merchant ships at a
standard depth of about 6.5 m (Hays 1994). Plankton is
retained by a continuously moving band of silk, which
has an average mesh size of 270 µm, corresponding to
about 3 m3 of seawater filtered (Hays 1994, Beaugrand
et al. 2000b). On return of the CPRs to the laboratory,
silks are unwound and plankton is counted according
to a methodology described by Colebrook (1960, 1975)
and Warner & Hays (1994). For this study, information
on the abundance of calanoid copepods (108 taxa) was
extracted from the CPR database for the period from
1958 to 1997. The investigated area is indicated in
Fig. 1. Calanoid copepods were used because the CPR
sampling and identification is optimal with this taxa.
Indeed, in most cases (92.5%) identification is carried
out to species level, except for small species which may
be identified to genus and the group Para-Pseudo-
calanus which amalgamates the genera Paracalanus
and Pseudocalanus (Beaugrand et al. 2001).

Pre-processing and analyses. Fig. 2 summarises the
different steps that led to the identification of indicator
species assemblages. 

Step 1. Calculation of taxonomic richness: Taxo-
nomic richness, which corresponds here to the number
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Fig. 1. Main area (in grey) sampled by the Continuous Plank-
ton Recorder survey from 1958 to 1997
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of taxa per CPR sample, was calculated from the origi-
nal matrix. This index was selected in this case instead
of more robust estimators such as the Simpson or Shan-
non index because the original matrix also integrated
presence/absence data for many taxa.

Step 2. Spatial interpolation of taxonomic richness:
Before performing numerical analyses, it was neces-
sary to take into account that the CPR survey does not
follow a grid sampling system. In addition, samples are
collected at different times of the day and the geo-
graphical location of samples varies from one month to
another. Thus, the primary procedure was to rearrange
the data in time and space and to generate 2 different
data tables following a procedure described in Beau-
grand et al. (2001). 

The following procedure allows diel vertical migra-
tion and seasonal variations of many calanoid taxa to
be taken into account. From 168 162 CPR samples,
data were clustered by 2 h periods from 00:00 to
24:00 h, for each month, integrating 40 years of sam-
pling. For each subgroup (12 mo × twelve 2 h periods
= 144 subgroups), taxonomic richness was re-esti-
mated on a regular grid of 50 × 50 nautical miles
(n mile), using the inverse squared distance method
(Lam 1983). As taxonomic richness is an index that is
very sensitive to sampling size, a similar number of
neighbours, fixed to 10, was used to realise spatial
interpolations. The search radius corresponded to
250 n mile.

Step 3. Construction of general diversity table
(GDT ): Then, data for each subgroup were combined
to generate a GDT (3519 pixels × 144 seasonal and diel
periods) with estimated values for each pixel in row
and time period in column. To give an example, rows
of column 8 contained an estimation of diversity for the
month of January and the period 14:00 to 16:00 h. This
matrix corresponds to that analysed by principal com-
ponent analysis in Beaugrand et al. (2001).

Step 4. Spatio-temporal regularisation of abun-
dance of taxa: A similar protocol was used to estimate
the average abundance of each calanoid taxon. Spatial
regulations were performed for each taxa for 2 mo and
4 h periods in order to limit the number of spatial inter-
polations needed to integrate 40 years of CPR sam-
pling (six 2 mo × six 4 h periods × 93 taxa = 3348 spatial
interpolations).

Step 5. Construction of general taxa table (GTT):
Then, an average of the 36 estimations (six 2 mo × six
4 h periods = 36) of the abundance was calculated for
each taxon and data were combined to build the GTT
(3519 pixels × 93 taxa), which thus contained the
average abundance of each taxa (in column) for each
pixel (in row). Six very rare species (e.g. Labidocera
aestiva, Candacia tenuimana), for which the interpo-
lation method did not work, were removed from this

matrix and were not considered further in the analy-
ses (3519 pixels × 87 taxa). No missing data were per-
mitted in the calculation of the average abundance
value of each taxa to induce no difference related to
the weakness of the sampling in an area.

Step 6. Identification of regions by cluster analysis:
From the general diversity table, a matrix of distances
between pixels was calculated using the Bray & Curtis
coefficient (Bray & Curtis 1957). This coefficient was
used because (1) it is robust and (2) its properties have
become well known due to its extensive use in ecology
(Clarke 1993). Then, a hierarchical complete linkage
clustering method was applied to distinguish regions
that show different seasonal and diel patterns. The
complete linkage was chosen because it is more diffi-
cult to add an element to a group when it grows in size
(Legendre & Legendre 1998). This property tends to
reduce the effects of spatial autocorrelation involved in
the use of spatial interpolation. To take into account
the hierarchy of the method, several cut-off levels were
retained by examining associated indicator values (see
below). This constitutes a necessary step in the appli-
cation of the indicator value method (Dufrêne &
Legendre 1997).

Step 7. Calculation of indicator values: The indica-
tor value method (Dufrêne & Legendre 1997) enables
the species characterising a region to be identified. It is
calculated by combining a measure of specificity and
of fidelity. The former, Aij (specificity) computes the
ratio of the average abundance of species i in the pix-
els of group j (N individualsij) to the sum of the mean
abundance of the species i in all groups:

(1)

The latter, Bij (fidelity) is the ratio of the number
of pixels where the species i in the group j is present
(Nsitesij) to the total number of pixels in this group: 

(2)

Finally, the indicator value (INDVALij) is reached
by multiplying the specificity and fidelity indices as
the 2 quantities represent independent information
(Dufrêne & Legendre 1997).

(3)

Indicator values for each taxa (see GTT) were calcu-
lated for the first 8 cut-off levels of the pixel dendro-
gram (see step 4), which encompassed a total of 44
groups. For example, 2 regions were identified at the
first cut-off level of the dendrogram while 8 regions
were detected at the 7th level of the dendrogram.
Then, indicator value results were combined in a sin-
gle data table (87 taxa × 44 groups) with the species or
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taxa in rows and the indicator values in
columns. Dufrêne & Legendre (1997) proposed
to retain the maximum indicator value for each
species among all groups.

(4)

Step 8. Detection of indicator associations:
Instead of only considering maximum values
(see Step 5), the matrix of indicator values (87 ×
44) was also transformed into a distance
between-species matrix using the Bray & Cur-
tis coefficient. Then, the ‘hierarchical flexible
clustering method’ (Lance & Williams 1967)
was used to detect taxa indicator assemblages.
The resulting dendrogram was analysed con-
sidering the distance cut-off levels 1.152 and
0.530. These 2 levels were selected because
they represented the best compromise be-
tween high distance levels in the dendrogram
where groups still included heterogeneous
taxa and low distance levels for which the dif-
ferences between groups were due to minor
change in the geographical distribution of spe-
cies. In contrast to Step 5, where the goal was
to identify indicator taxa or species, the objec-
tive of this step was to detect indicator species
groups.

Step 9. Representation of presence/absence
species: The above analyses could not be per-
formed on 21 taxa either because only pres-
ence/absence data were available (15 taxa) or
because of the low abundance (6 taxa). Plots of
the occurrence of these rarer taxa were pro-
duced.

RESULTS

Identification of regions

Differing regional breakdown in the temporal
changes of calanoid diversity were distinguished using
the first 8 cut-off levels of the dendrogram (Fig. 3). The
Atlantic Arctic biome and the Atlantic Westerly Winds
Biome (Longhurst 1998) are separated in the first map
(Fig. 3). A transitional region was detected at the next
level. The level of 0.40 splits shallower from deeper
regions with the exception of the Grand Banks of New-
foundland which were identified at level 0.38. The
next level divided the transitional region into a west-
ern and eastern component. The level 0.36 splits the
southern oceanic region of the survey area at the mid-
Atlantic ridge. At level 0.35, the Atlantic Arctic Biome
was separated into 2, one region influenced by subarc-
tic water and another influenced by the path of the

North Atlantic Current. The last level identified 10 dif-
ferent clusters, one of which was ignored as it only
comprised one pixel. This level splits the western
oceanic part into 2, the Gulf Stream extension and
another to the east. Thus, a total of 44 groups (regions)
were identifiable at the 8th cut-off level of the dendro-
gram.

Indicator values were calculated for all species or
taxa and for all 44 regions detected above (see Fig. 3),
giving a total of 87 × 44 = 3828 values. Only indicator
values ≥25% should be considered. Dufrêne &
Legendre (1997) arbitrarily used this level, which
means that a taxa occurs in at least 50% of the pixels in
a region and that its relative abundance reaches at least
50%. We used the number of significant (indicator val-
ues (25%) maximal indicator values (see Step 5 in Fig. 2
and Eq. 4 in ‘Materials and methods’) detected in the
1st cut-off levels in the dendrogram as a criteria to

  INDVAL INDVALi ij= max[ ]

183

Fig. 3. Mapping of geographic clusters (regions) for the first 8 levels of
the dendrogram of pixel (not shown). Roman numerals denote the
number of the cut-off level of the dendrogram and normal numerals 

identify groups for a partition level
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select the different partition levels in the dendrogram.
Fig. 4 shows the number of significant indicator values
for the first 8 cut-off levels. For example, the last parti-
tion level of the dendrogram (0.34 in Fig. 3) was impor-
tant to take into account, as it allowed 21 indicator spe-
cies to be detected. Only the first 8 levels were chosen,
as lower cut-off levels (0.33 to 0.30), which included 60
other groups, did not increase the number of indicator
values and interpretation of the geographical regions
was difficult. Intermediate levels (5 and 7, Fig. 4) for
which no maximal indicator values were found were
retained, as many of these values were still >25%.

Indicator value of species or taxa

Maximal indicator values found for each taxa in a
specific pixel cluster and each cut-off level of the den-
drogram of pixels are displayed in Fig. 5. In the analy-
sis, 71.26% (62) of 87 taxa had an indicator value
higher than the threshold of 25%. This also includes
Ctenocalanus vanus, which has a value of 24.71.

A striking contrast exists between the diversity of the
Atlantic Arctic biome, which only has 4 indicator spe-
cies (e.g. Euchaeta norvegica), and the Atlantic West-
erly Winds and Coastal Biomes with 58 taxa (Fig. 5).
Taxa with the maximal indicator value for Region I.1
(see Fig. 3) are eurytopic (e.g. Pseudocalanus spp.,
Calanus helgolandicus) and can be found in neritic
and temperate oceanic water. Some species such as
Candacia armata and Centropages typicus occur pref-
erentially above the continental shelf break. Neritic
regions (Region III.2 in Fig. 5) only have few (4) indica-
tor taxa such as Temora longicornis and Centropages
hamatus. This contrasts with the many taxa found in
the southern oceanic and Gulf Stream Extension re-

gions (Regions IV.1, VI.1 and VIII.4 in Fig. 5). Calan-
oides carinatus and Euchaeta hebes are characteristic
of the Bay of Biscay region and the southern part of the
European shelf break (Region VI.2).

Detection of indicator species or taxa assemblages

Two cut-off levels in the taxa dendrogram (Step 8 in
‘Materials and methods’) were used to interpret spe-
cies clusters. At a threshold of 1.152, 10 clusters were
detected (Fig. 6). A cut-off level at 0.53 allowed a finer
breakdown of some clusters. Each subgroup is identi-
fied by the letters A, B, C and a number corresponding
to the group to which it belongs. For some species clus-
ters (1 to 2, 6 to 10), the division into subgroups did not
show significant variations in the geographic distribu-
tion but rather a gradient. For these subgroups, figures
will not be presented.

Fig. 7 shows the spatial distribution of the species
groups at a partition level of 1.152 on the dendrogram
of taxa (Fig. 6). To produce this figure, the mean abun-
dance table of each species (see Step 2 in ‘Materials
and methods’) for each group was converted into 0
(absence) and 1 (presence). Then, the different tables
were added and the percentage of species present in
each group was computed for all pixels.

Cluster 1 gathers together 16 warm-temperate
oceanic taxa, which have a high average indicator
value (64.03) and encompasses most of the indicator
taxa of the Southern Oceanic region such as Pleuro-
mamma xiphias and the 2 genera Calocalanus and
Clausocalanus (Fig. 5). The boundary of this associa-
tion is sharp and their geographic range is restricted to
a depth >200 m (Fig. 7). The influence of the Oceanic
Polar Front (Dietrich 1964; 52 to 53° N) on the latitudi-
nal distribution of this association is strong between
the Northwest Corner (51° N, 44° W; Worthington
1976) and the mid-Atlantic ridge. Then, this latitudinal
front becomes meridional and the association extends
to the north until about 58° N south of Iceland and
55° N west of Ireland. Examination of individual charts
(not shown here) indicate that species belonging to
Subgroup 1A (Fig. 7) such as Pleuromamma borealis,
P. gracilis and P. abdominalis may extend further to the
north in autumn.

Cluster 2 comprises pseudo-oceanic taxa that are
mostly found over the southern part of the European
continental shelf break and in the Bay of Biscay region
(Fig. 7, see also indicator taxa of the region VI.2 in
Fig. 5). Its average indicator value is high (52.19).
Euchaeta hebes appears to spread further north than
any of the other species in this group.

Cluster 3, which has an average indicator value of
71.85, encompasses taxa that have maximum indicator
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All habitats

Atlantic Subarctic biome (4 taxa)
Euchaeta norvegica (77.37)

Calanus finmarchicus (69.30)
Scolecithricella spp. (49.28)

Heterorhabdus norvegicus (43.79)

2

Pseudocalanus adult (95.49), Para-Pseudocalanus spp. (91.54), 
Centropages typicus (89.73), Calanus helgolandicus (81.76), 

Candacia armata (78.53), Metridia lucens (76.01), 
 Acartia spp. (64.81), Pleuromamma borealis (61.84),

Pleuromamma robusta (54.87), Rhincalanus nasutus (51.27), 
Mesocalanus tenuicornis (45.49), Eucalanus crassus (35.18) 

Atlantic Westerly Winds  and Coastal biomes (12 taxa)

1

I

Calanus hyperboreus (36.35)

II2

1

Transitional region between
 the Atlantic Arctic and 
Westerly Winds Biomes

(1 taxa)
Nannocalanus minor (68.85)

Acartia longiremis (9.57)

Southern oceanic  region
and the Grand Banks (2 taxa)

III

Southern oceanic and neritic regions
(1 taxa)

neritic  region (4 taxa)

2

Mecynocera clausi (46.77)
Centropages bradyi (46.65)

Temora longicornis (60.12),  Centropages hamatus (63.03),
Labidocera wollastoni (28.63), Anomalocera patersoni (25.21), 

Isias clavipes (18.88), Parapontella brevicornis (6.81), 
Haloptilus longicornis (3.81), Diaixis hibernica (0.52)

VI

Pleuromamma piseki  (79.30), Pleuromamma xiphias (63.42), 
Euchaeta gracilis (36.51), Candacia curta (11.48)

Southern oceanic  region (9 taxa)

1

2

The Grand Banks of Newfoundland (2 taxa)
Calanus glacialis (65.96)

Metridia longa (58.23) 
Candacia bipinnata (11.26) 
 Euchaeta spinosa (11.05)

Southern central  oceanic and 
Gulf Stream Extension  region (3 taxa)

Euchaeta acuta (81.42),Clausocalanus spp. (78.71), 
Euchirella rostrata (75.25), Undeuchaeta plumosa (73.56),

Neocalanus gracilis (71.52), Pleuromamma gracilis (64.64), 
Pleuromamma abdominalis (61.14), Heterorhabdus papilliger (58.26), 

Calocalanus spp. (47.72), Uudeuchaeta major (19.35), 
Scaphocalanus echinatus (13.11), Euchirella curticauda (7.83)

1
2

Calanoides carinatus (77.38),  Euchaeta hebes (70.19),
Ctenocalanus vanus (24.71), Phaenna spinifera (10.03), 

Diaixis pygmoea (5.29), Temora turbinata (2.62), 
Heterorhabdus clausii (1.76), Neocalanus robustior (1.18)

VII
1

Atlantic Subarctic biome
without area influenced by 

the Irminger Current 
Euchaeta glacialis (4.75)
Pseudochirella spp. (1.09)

IV

VIII
3

Southern central  oceanic  region

Scolecithrix bradyi  (11.28)

4

Gulf Stream Extension region (21 taxa)
Euchaeta marina (89.08), Euchaeta pubera (73.54), Eucalanus attenuatus (73.49), 

Temora stylifera (71.58),  Candacia ethiopica (71.57), Candacia pachydactyla (67.19), 
Scolecithrix danae (65.25), Rhincalanus cornutus (54.44), Eucalanus elongatus (48.52), 

Eucalanus monachus (47.56), Acartia danae (41.84), Euchaeta media (41.65), 
Centropages violaceus (38.24), Lucicutia spp. (36.89), Xanthocalanus spp. (36.36), 

Paracandacia bispinosa (35.13), Eucalanus pileatus (31.82),  Candacia norvegica (29.96), 
Aetideus armatus (26.61), Pontellina plumata (26.08), Heterorhabdus abyssalis (26.04), 

Candacia longimana (23.17), Microcalanus spp. (16.19), Euchirella pulchra (13.81), 
Euchirella messinensis (11.76)

V

Euchaeta tonsa (10.23)

Scottocalanus persecans (7.25)
Southern transitional region

Northern transitional region

1

2

1

Bay of Biscay and southern European
 shelf edge regions (3 taxa)
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values over the Atlantic Westerly Winds and Coastal
Biomes (see regions I.1, III.2 in Fig. 5). At a weaker
level (0.53), this cluster is divided into 2 subgroups
(Fig. 8). The first one (Subgroup 3A) includes taxa or
species such as Candacia armata and Centropages
typicus. It is composed of eurytopic taxa that can be
found everywhere south or east of the Oceanic Polar
Front but are mainly present over the shelf edge. They
can be detected in both neritic and oceanic regions
(Fig. 8). The second one (Subgroup 3B) is made up of
neritic species such as Temora longicornis and Cen-
tropages hamatus which occur in the southern part of
the North Sea, off Nova Scotia and over the Grand
Banks of Newfoundland.

Cluster 4 brings cold-temperate, subarctic and arctic
taxa together. Its average indicator value is high
(56.59). Taxa are mostly present along the American
shelf break, in the Labrador Sea and the North Atlantic
Drift, Arctic and Subarctic provinces (Longhurst 1998).
This cluster is divided into 3 subgroups at a level of
0.530. Fig. 9 indicates that the first 2 subgroups (4A
and 4B) are broadly distributed; the first one is centred
over the northern and eastern part of the North
Atlantic Drift Province while the second mainly occurs
along the American shelf break, the Labrador Sea and

the Atlantic Arctic province (Fig. 9). Subgroup 4C is
centred around the Labrador Sea, the northern Cana-
dian part of the continental shelf break and the New-
foundland region. Some taxa are also found in the
Atlantic Subarctic Province (Longhurst 1998). These 2
last subgroups (4.B, 4.C) coexist over the Labrador
basin.

Cluster 5 comprises species with a patchy spatial dis-
tribution over the Atlantic Westerly Winds and Coastal
Biomes (Fig. 6). This cluster has a low indicator value
(14.40). At a level of 0.53, a small association was
detected (Cluster 5.A), which mainly occurs in the
southern North Sea. It has a higher indicator value
(24.24) and includes species such as Isias clavipes and
Labidocera wollastoni with significant indicator values
in the shallow region of the North Sea (see Region III.2
in Fig. 5). At the same level, a second small species
cluster (5.B) is made up of the species Parapontella
brevicornis and Haloptilus longicornis, mostly col-
lected over the European continental shelf. Subgroup
5.C occurs in the Atlantic Westerly Winds and Coastal
Biomes. The species within Clusters 5.B and 5.C are
rare or have restricted distributions.

Clusters 6 to 8 gather taxa having no significant indi-
cator value for the survey area. Taxa in the 6th cluster
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are mostly present to the north of the survey although
the 7th and 8th cluster is mainly composed of warm-
temperate or subtropical oceanic taxa.

Cluster 9 includes mostly subtropical oceanic or
pseudo-oceanic taxa such as Euchaeta marina, Centro-
pages violaceus and Candacia ethiopica. Its average
indicator value is high (56.39). This cluster has a major
centre of distribution in the Gulf Stream extension east
of the 4000 m isobath and can spread northwards as
far as Flemish Cap. Some species can also reach
Worthington’s Northwest Corner but are not able to go
further to the northeast or to cross the Oceanic Polar
Front. Cluster 10 comprises taxa mainly present in the
Gulf Stream Extension but its average indicator value
is far lower than the previous one.

Most of the remaining 21 taxa were only found on
single records (total 33 records) during the period from
1958 to 1997. The majority were found along continen-
tal shelf breaks and from the American continental
shelf to the Mid-Atlantic Ridge at about 40° N.

DISCUSSION

In the pelagic ocean, investigation of factors that
maintain diversity is challenging (Angel 1993, Krause
& Angel 1994, van der Spoel 1994b). Three factors
have limited our understanding of the processes that
regulate diversity. The first is a lack of strict physical
barriers to the horizontal spread of marine organisms.
Thus, the spatial distribution of species overlaps in
often large transitional areas (Angel 1998, Boltovskoy
1998) and it is difficult to identify centres of distribution
of organisms. This problem is emphasised by the 3-
dimensional nature of the pelagic realm. Beaugrand et
al. (2001) have shown the importance of considering
diel and ontogenic seasonal vertical migration of
calanoid copepods in the examination of spatial distri-
butions of diversity. The third feature, probably the
most important, is the problem of scales of variability
(e.g. Levin 1992, Mann & Lazier 1996, Haury &
McGowan 1998). All these features are often inter-
woven and it was crucial in this study to take them into
consideration. This has been done by using a regular
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spatial grid for each taxa, based exactly on the same
number of CPR samples and taking into consideration
both diel and seasonal scales, which represent a very
high source of variability (van der Spoel 1994c, Piont-
kovski et al. 1999). Until now, most studies at an
oceanic basin scale have been conducted at a coarse
spatial resolution, which has implied large uncertainty
in the identification of oceanic boundaries, ecosystems
or ecotones (van der Spoel 1994c). The large database
used in this study allowed us to examine mesoscale
spatial resolution. Furthermore, the indicator value
method (Dufrêne & Legendre 1997) has proved to be
robust to the phenomenon of expatriation in the
pelagic realm. A cluster analysis, which considers all
indicator values, enabled biological associations to be
detected. The use of a different code to represent spe-
cies groups allowed the centre of distribution of certain
associations to be clarified (see Fig. 8).

Species association: composition, distributional
range and boundary

A total of 9 major species associations are proposed
(Table 1). Their spatial distribution and boundaries are
summarised by Fig. 10. With the exception of the sub-
group 5A (southern North Sea), taxa belonging to
Groups 5 to 8 did not show spatial aggregation but
rather a patchy distribution and, therefore, do not rep-
resent species associations. This can be mainly ex-
plained by 3 factors. Firstly, most of these species are
mesopelagic (e.g. species of the genus Pseudochirella,
Haloptilus longicornis), bathypelagic (e.g. species of
the genus Scottocalanus in groups 6 and 7) or bentho-
pelagic (e.g. Diaxis hibernica in group 6, Boltovskoy
1999) and thus not normally sampled by the subsurface
CPR sampling. Secondly, some calanoid species (e.g.
Diaxis pygmoea) are very small and may have been
undersampled. Lastly, subtropical species (e.g. Canda-
cia bipinnata) were only occasionally found in the sur-
vey area.

Biodiversity region of the northern North Atlantic
Ocean and adjacent seas

Based on the centre of distribution of organisms
(Fig. 10), the recent partition of the northern North
Atlantic Ocean outlined by Longhurst (1998) and
Beaugrand et al. (2001) can be refined. The former
mainly used ecological factors such as parameters of
the Sverdrup model to identify biogeochemical biomes
and provinces across the world ocean while the latter
was based on changes in the diversity of calanoid
copepods at seasonal and diel scales.

According to van der Spoel (1994a), an ecosystem or
an ecotone is composed of: (1) a stable biotope compo-
nent (geographically stable) in which a primary related
community lives; and (2) a substrate biotope compo-
nent (depending on the water mass) characterised by a
secondary related community (mixed primary commu-
nity, Beklemishev 1961). A pelagic ecosystem is mainly
characterised by a primary related community linked
to a stable biotope component although an ecotone is
more distinguished by a secondary related community
depending on water masses. Some authors also argue
that an ecotone can also be characterised by its own
biological composition (Frontier & Pichot-Viale 1993,
Ramade 1994). These terms will be used in the subdi-
vision of the studied area (Fig. 10, Table 2). As infor-
mation contained in Fig. 10 and Table 2 is self-
explanatory, this will not be commented on here. This
closely corresponds to the recent partition proposed
and fully discussed by Beaugrand et al. (2001). Bound-
aries are voluntarily not indicated as they can change
seasonally, especially west of the European continental
shelf. The position of the regions indicated by numbers
in Fig. 10 should be understood as reflecting the posi-
tion of the nodal points-of-stress (centre of ecosystems)
and nodal points-of-flux (centre of ecotones) (van der
Spoel 1994a).

Towards a better understanding of factors that
contribute to the regulation of pelagic diversity

The effects of the polar tropical difference in diver-
sity (Ruddiman 1969, Pierrot-Bults 1997) have been
clearly detected even if our area is comprised between
40 and 60° N. The subtropical association (24 species if
Groups 9 and 10 are gathered together) is more
diverse than the warm-temperate (16 species), the
cold-temperate (4 species), the subpolar (4 species)
and polar associations (3 species) (Figs. 5 & 6). Numer-
ous hypotheses have been proposed to explain this
feature, e.g. the species-energy hypothesis (Currie
1991) Rapoport’s rule (Stevens 1989) the species-area’s
hypothesis (Rosenzweig 1995) and the mid-domain
effect (Colwell & Lees 2000). This has been set up at an
evolutionary scale and it is not the purpose of this
study to attempt an explanation of this feature that
probably explains a large part of the difference in
diversity detected between Ecosystems II and IX
(Fig. 10). Instead, emphasis is given to ecological fac-
tors or mechanisms that are responsible for the pro-
nounced local spatial variation in diversity as well as
the East-West asymmetry recently detected in this
region (Beaugrand et al. 2000a). In the surveyed area,
the main factor that may regulate or maintain pelagic
diversity of calanoids could be related to the rate and
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the frequency of energy supply. This energy is sup-
plied by a stable biotope (e.g. solar radiation) and sub-
strate biotope components (warm current and under-
currents). Temperature, hydrodynamics, stratification,
and seasonal variability of the environment are crucial
variables that control pelagic diversity. These factors
are often interwoven, also act at different scales and
their contribution geographically varies (Fig. 10,
Table 2). Other more secondary factors are also indi-
cated in Table 2.

The North Atlantic Current, the Intermediate Shelf
Edge and Mediterranean Intermediate Currents,
which all transport heat towards Europe (e.g. Bigg
2000, Hansen & Osterhus 2000) are important in main-
taining pelagic diversity. Ruddiman (1969) in the North
Atlantic Ocean also detected an influence of currents
on diversity. He even stressed that these currents (Sub-
tropical North Atlantic Gyre in his case) could elimi-
nate the effect of the polar tropical gradient in diver-

sity. Here, warm currents are enable many species of
the warm-temperate association to be present east of
the mid-Atlantic ridge and north to 52° N (Figs. 7 & 10)
which could explain the west-east asymmetry clearly
found by Beaugrand et al. (2000a). This factor might
also play a role in the high diversity detected in the
Celtic Sea, the western part of the English Channel
and the southern part of the North Sea (Beaugrand et
al. 2000a).

Superimposed on the effects of heat transported by
the Gulf Stream extension, hydrodynamics also acts as
a regulator of diversity east of the Canadian Shelf
Edge. Hydrodynamics is important in this area (Dengg
et al. 1996, Stammer & Böning 1996, Ducet et al. 2000).
Restriction of the highly diverse subtropical association
(Table 1) south of Flemish Cap (Fig. 10) tends to con-
firm mechanisms advanced by Beaugrand et al. (2001).
Indeed, they attributed this feature to the presence of
high pressure cells that may lead to the opening of

191

Fig. 10. Scheme of the geographical position of centres of distribution of the associations, ecosystems and ecotones. A number
corresponding to those displayed in Table 1 identifies each association. In some areas such as in the Bay of Biscay, several asso-
ciations overlap. The black cross symbol indicates the position of Species Association 9 (Gulf Stream Extension), which is super-
imposed on species association 2 (southern oceanic association). Single hatched line locates the centre of distribution of Species
Association 4 (along shelf edges) and double hatched line locates Species Association 3 (Bay of Biscay). Dotted double hatched
lines indicate the centre of distribution of Species Association 6 (southern North Sea), which also corresponds to a part of the geo-
graphical position of species association 5 (neritic association). Grey horizontal rectangles indicate the overlapping of species
association 7 with other associations. Grey vertical bars denote the overlapping of Species Associations 2, 8 and 9. The asterisk
indicates the location where very rare species were found during the 40 years CPR sampling. Grey arrows (west of Great Britain)
denote the seasonal change in the northern position of Species Association 2. Black arrows (above the Canadian shelf) indicate
that extrusion of water related to the high hydrodynamic activity of this region occurs and leads to expatriation of species belong-
ing to Species Associations 4, 5, 8 and 9 towards the Gulf Stream Extension region. The thick black dotted line indicates the posi-
tion of the Oceanic Polar Front. Numbers in brackets indicate the possibility of finding species belonging to adjacent species asso-
ciation. OPF: Oceanic Polar Front; FC: Flemish Cap; NC: Worthingtonís Northern Corner. Species Associations 4 and 7 seasonally
progress northwards with a high aggregation of species in the south in spring and in the north in autumn. Roman numbers denote 

the different centres of ecosystems or ecotones identified and commented in the ‘Discussion’ and Table 2
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paths for the North Atlantic Current near Flemish Cap
and imply significant return flow of water towards the
Azores current (Käse & Krauss 1996). This mechanism,
probably in conjunction with life history of organisms,
is believed to reduce dispersal northwards (Beaugrand
et al. 2001). However, the presence of cold water
species Candacia norvegica, the genus Microcalanus
(mostly M. pygmaeus and M. pusillus) and species of
arctic and subarctic associations (associations 8 to 9)
indicate that extrusion of Newfoundland and Labrador
Sea water toward the Gulf Stream extension occurs,
due to the high eddy activity in this region (Krauss
1986), also contributes to increase diversity (Fig. 10).
Organisms such as species belonging to pseudo-
oceanic and temperate associations (Table 1) can also
be found augmenting the complexity of the area.

The Oceanic Polar Front (Dietrich 1964) also illus-
trates well the importance of hydrodynamics for the
spatial regulation of diversity. However, its role differs
in function of the considered associations, a feature
that has been also observed by some authors (e.g.
Brandt & Wadley 1981, Sournia et al. 1990, Sournia
1994). It acts as a sharp boundary for subtropical, shelf
edge and warm-temperate species associations (Asso-
ciations 2, 4 and 9; see Figs. 7, 8 & 9) limiting dispersal
northwards. In contrast, colder species belonging to
subarctic and cold-temperate associations are not so
restricted to the north of this front and can often be
detected in the south (see Fig. 9). This front also acts as
a concentration site for some species such as Metridia
lucens belonging to association 7 which was clearly
detected along this front (Fig. 9).

Superimposed on the effect of temperature, stratifi-
cation may also be important in the regulation of diver-
sity. This has been recently recognised as an important
factor that may explain the global polar tropical differ-
ence in diversity of foraminifers (Rutherford et al.
1999). Following the relationship between the number
of vegetation levels and species richness of birds in a
forest (MacArthur & MacArthur 1961), Rutherford et
al. (1999) suggested that thermal structure, by its effect
on vertical niche availability, could explain that tropics
are richer in species than poles. Temperature and its
vertical structure may account for the contrast between
Ecosystems II (higher stratification) and IX (lesser
stratification). However, it is likely that this factor
might also play a role at a regional scale (Table 2).

Warm currents allow Species Association 2 to spread
to the North West of the British Isles. However, the
environment, which becomes very variable on a sea-
sonal basis (Angel 1997), limits dispersal of this associ-
ation northwards. This was clearly detected in the
recent study of diversity of calanoids by Beaugrand et
al. (2001, and see Figs. 4 & 6). Indeed, the centre of
Ecotone V represents the transitional area between the

south oceanic part of the survey area characterised by
a higher diel and lower seasonal variations in diversity,
and the northern oceanic part where seasonal varia-
tion becomes stronger and diel variation weaker.

CONCLUSION

For the first time at an oceanic basin scale and at a
spatial resolution approaching the mesoscale, species
associations of calanoid copepods have been identi-
fied. This result has been based on 40 yr of monthly
CPR sampling, considering also diel and seasonal vari-
ations. The clear spatial centre of distributions of all
these associations have allowed biogeochemical and
biological partitions outlined by Longhurst (1998) and
Beaugrand et al. (2001) to be refined. Examination of
the zoocoenoses of the North Atlantic Drift Province
has shown that this province can not be considered as
an homogeneous system but rather as a central ecosys-
tem south of the Oceanic Polar Front over the mid-
Atlantic ridge, bounded by 5 ecotones. Moreover, spe-
cies associations have allowed a better understanding
of species that contribute to the diversity in this area
and an improvement of factors and processes that reg-
ulate pelagic biodiversity. Factors linked to the rate
and the frequency to which energy is supplied appear
to be important in the ecological regulation of pelagic
diversity in the investigated region. These factors
depend on both stable and substrate biotope compo-
nents. The pronounced local spatial variability as well
as the east-west asymmetry found by Beaugrand et al.
(2000a) are highly affected by the latter while the polar
tropical difference in diversity is more influenced by
the former.

Beaugrand et al. (2001) and this present study have
clearly detected the influence of the warm currents on
diversity and thus functional characteristics of eco-
tones west of Europe and over the Gulf Stream exten-
sion. Relationships between species associations and
water masses or currents are strong. These associa-
tions, therefore, represent an important tool as an envi-
ronmental indicator to monitor marine ecosystems and
to evaluate the impact of climate change and other
increasing human-induced influences. For example,
species of the warm-temperate association (association
2) could be used as a proxy to evaluate the strength of
the North Atlantic Current east of the Oceanic Polar
Front, which is of high importance in the rate of heat
transfer to Europe and its climate (e.g. Lehman & Keig-
win 1992, Bigg 2000, Ganopolski & Rahmstorf 2001,
Paillard 2001). A long-term decrease in the diversity of
this association west of Europe could mean a change in
the trajectory or strength of the North Atlantic Current.
The oceanic warm-temperate association could also be
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used to test oceanic advection over the Celtic Sea to
the English Channel (Russell 1939, 1973). These topics
are currently being investigated.
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