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Abstract 

The flaw strength data are determined using tensile tests on various fiber tow types including, 

SiC, carbon, glass, basalt and alumina. The plots of p-quintile vs. flaw strength data derived 

from experimental force-strain curves exhibit linearity. This indicates unambiguously that 

flaw strength is a Gaussian variate. The statistical distribution of data was also calculated 

using the Weibull distribution function. Normal and Weibull cumulative distributions of flaw 

strengths are found to compare fairly well. The significance of normal distribution function 

and of the p-quintile vs. flaw strength relation for the characterisation of fibre flaw strength 

 is discussed. The p-quintile vs. flaw strength relation is shown to provide theoretically a 

material characteristic. The normal distribution function is used to construct reference 

empirical distributions of flaw strengths that allow the evaluation of Weibull plot and 

Maximum Likelihood Estimation methods as functions of sample size and composition. 

1/ Introduction 

Fibers control the ultimate failure of composite materials. For this reason, features of fiber 

fracture warrant much consideration. Like most brittle materials, ceramic fibers contain 

populations of microstructural flaws that act as stress concentrators. The flaws are generally 

distributed randomly, and they exhibit wide variability in severity, as a result of variability in 

shape, nature, size and location with respect to the stress-state. As a consequence, stress-

induced fracture is a stochastic event, and fracture stress is a random variable. 

Various stochastic approaches to fracture are proposed for ceramics [1-10]. The fundamental 

approaches recognize the flaws as physical entities [4-10] while the severity of fracture-
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inducing flaws is measured either using flaw size or flaw strength. Elemental strength and 

flaw size are related by fracture toughness expression. In the so-called elemental strength 

approach, flaw strength is defined using an elemental strength that is the critical local stress 

that causes extension of a flaw. A general equation of failure probability-flaw strength 

relation is [5, 7-10]. 

     (1) 

where g(S) is the flaw density function and S is the elemental strength.  

In a fiber that contains a population of randomly distributed flaws, the weakest flaw of the 

population, induces fracture according to the weakest-link theory.  Under uniform uniaxial 

tension, the elemental strength of the weakest flaw coincides with the applied stress on fiber 

at failure in the direction parallel to fiber axis.  

The distribution of flaw strengths is a key issue for fracture analysis and characterization of 

brittle materials. The power law distribution of extreme values (often referred to as the 

Weibull distribution) is a versatile distribution that is very sensitive to the statistical 

parameters. The estimated parameters of power law generally exhibit variation.  Much 

attention was put on this issue by researchers [11-18]. Furthermore, authors raised questions 

about the validity of the Weibull distribution function for ceramic strength. It is difficult to 

decide on the basis of small sample sizes whether the data follow a Weibull distribution or not 

[19, 20]. It was also observed on limited sets of flexural failure stresses (15 data) that the 

fitted Weibull and Normal distributions behave quite similarly [20]. A few authors considered 

the normal distribution function for the failure of fibers: cotton or polyester [21-23], glass 

[24], SiC [25] and flax [26].  

The rigourous and unambiguous method of evaluation of the pertinence of a distribution 

function requires the fit of the expected cumulative distribution function to the empirical 
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distribution of strength data. Construction of the empirical distribution is an issue since an 

unbiased estimator of probability is required. This difficulty has been questioned in the 

literature [11-18, 25, 26]. The present paper proposes a solution based on plot of p-quintile vs. 

strength. Linearity of this plot demonstrates that normal distribution function characterizes 

flaw strengths. This approach is close to the quintile-quintile method applied to normal 

distributions. Then, normal strength distribution function can afford a reference distribution to 

evaluate the pertinence of Weibull distribution.  

The objective of the present paper is to investigate the flaw strength distributions of various 

fiber types along these lines. Various types of fiber tows reinforcing ceramic matrix 

composites were tested: SiC, glass, carbon, basalt, alumina. Emphasis was placed on Nicalon 

SiC fiber to exemplify some significant results.  

2/ Approach  

2.1/ Generation of flaw strength data. 

Flaw strength for a filament under tension parallel to axis is the stress at failure. Fiber tows 

may contain more than thousand filaments, so that tensile tests on fiber tows generate 

substantial sets of filament failure data. A fiber tow is regarded as a population of parallel, 

independent and identical single filaments (radius Rf, length �), which exhibit brittle fracture 

and statistical distribution of strengths. In the following, filament designates a single filament. 

When filaments are broken, the surviving filaments carry equally the applied load, so that the 

tensile force on tow is:  

F  = σ Sf (Nt-Ni)       (2) 

Where σ is the stress on surviving filaments. Sf is filament cross-sectional area, Nt is the initial 

number of filaments carrying the load, Ni is the number of broken filaments.  

Under monotonous loading at constant strain rate, the filaments break according to ascending 

order of strengths, one after one when the stress increment is such that σ�reaches a filament 
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strength (σ = σf). The force increases to a maximum, and then, decreases gradually to 0 as Ni 

approaches Nt  [25 - 30]. This failure mode is observed when filaments share the load equally, 

when the filaments are independent, and when the strain rate is sufficiently slow so that stress 

increase does not make several filaments break. The force-strain relation is convenient to 

characterize the tensile behavior of a tow [25 - 30]. It is derived from equation (2):  

F(ε�) =Ef ε� Sf (Nt-Ni)      (3) 

Where ε��= σ/Ef is the strain, Ef is filament Young’s modulus.  

The ratio Ni/Nt is the fraction of filaments failed at strain εi. It represents the probability of 

failure (denoted P(εi)) for the filament having rank Ni and strength σ
fi

= σ
i
= E

f
ε

i
. 

The force-strain relation is derived from equation (3) as: 

  

   F(ε) = Nt Sf Ef ε [1-P(ε)]     (4) 

Equation (4) reduces to: 

   F(ε) = k0 ε [1-P(ε)]      (5) 

where k0 is the initial tow stiffness, given by the slope of the initial elastic domain of the force 

– strain curve. In the elastic domain when filaments do not fail, P(ε)=0, and F(ε)=k0 ε.  

When the filaments have an identical section Sf , k
0

= N
t
S

f
E

f
. When they have different 

sections k
0

= S
fi

i=1

i=N
t

∑ E
f

= N
t
S

f
E

f
.  

Where S  is the average filament diameter. Values of failure probability P(ε) are estimated 

from F and ε independently of the number of data [31, 34], according to equation (6) derived  

from equation (5): 

   P(ε) =1− F (ε)

k
0
ε

      (6) 
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It is worth pointing out that this is superiority over the method of construction of Weibull plot 

using a probability estimator [10 -17] depending on sample size.  

Flaw strength is characterized by both filament tensile failure stress and strain. In this paper, 

flaw strength and failure strain are employed indifferently to designate flaw strength.  

2.2/ Analysis of flaw strengths using the normal distribution 

The method that is proposed to demonstrate that filament flaw strength is a Gaussian variable 

is derived from the Henry’s diagram and the quintile-quintile diagram applied to normal 

distribution. The Henry’s diagram is a graphical method for comparing a Gaussian 

distribution to a set of data.  When X is a Gaussian variable, with µ = mean and s = standard 

deviation, and N is a variable of the standard normal distribution, it comes: 

P X < x( ) = P
X − µ

s
< x − µ

s









= P(N < z) = Φ(z)         (7) 

Where  P(.) is probability, z = x − µ
s

 (8), Φ is the cumulative standard normal distribution 

of variable z . 
The cumulative distribution function of the standard normal distribution is given by the 

equation: 

Φ(z) = 1

2π
exp(− t

2

2−∞

z

∫ )dt               (9) 

When linearity of relation z(x) (equation (8)) is observed for a set of xi data, one may assume 

that the xi data are occurrences of the same Gaussian variable.  Then, the plot of p-quintile zp 

vs. xp  indicates whether X is a Gaussian variable.  p is the value of cumulative probability: 

       (10)  

The diagram is constructed as follows:  

The p-quintile zp is derived from the cumulative standard normal distribution function Φ��� 

z
p

= Φ−1
p( )           (11)  

The equation of the p-quintile zp diagram is: 

P(X < x
i
) = p
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z
p

= Φ−1
p( ) =

x
p

− µ
s

         (12) 

Note that xp = xi. zp can be extracted easily from Φ using a computer or tables that are 

available in text books. For a set of failure strain data, x is denoted ε.�The relation to be 

satisfied by strength data is: 

z
p

=
ε

p
− µ
s

      (13) 

In the present paper, p was taken to be the P(ε) value derived from the force – strain curve 

using equation (6).  As indicated above, this value is independent of sample size. 

The equation for the normal distribution PN (Ε < ε) of positive strain values is:   

 

      for ε > 0  (14)  

(15) 

   

f(ε) and PN = 0 when ε ≤ 0, as the flaws cannot grow under compression. f(ε) is the density 

of probability, Ε and ε are failure strains, µ is the mean and s is the standard deviation. 

Estimates of µ and s are obtained from the slope 1/s and the intercept µ/s of p-quintile vs 

failure strain diagram (equation (13)).  

2.3/ Analysis of flaw strengths using the Weibull model 

Similarly, the expression of the Weibull distribution is defined for ε > 0:  

   P
w
(E < ε) = 1− exp − ε

ε
l











m












     (16) 

where m is the shape parameter (or Weibull modulus) and εl is the scale factor. 

f (ε ) =
1

S 2π
exp −

(ε − µ) 2

2S
2

 

 
 

 

 
 

∫=≤
ε

εεε
0

)()( dfEPN
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An expression identical to (16) in terms of strengths is obtained by replacing ε by σ. The 

corresponding scale factor is σl = Ef εl.  

The statistical parameters were estimated using the mean and variance expressions derived 

from the first moment of the Weibull distribution:  

  
s

µ
=

Γ 1+ 2
m( )

Γ2 1+ 1
m( )

−1

















≅ 1.2

m
     (17) 

ε
l
= µ

Γ(1+ 1

m
)

       (18) 

Where Γ(.) is the Gamma function. 

For comparison purposes, two alternative methods were used for the Nicalon fiber: the MLE 

method (Maximum Likelihood Estimation) and the linear regression analysis of Weibull plot. 

The parameters estimated using the MLE method are claimed to statistically approach the true 

values of the population more efficiently than other parameter estimation techniques as the 

size of the sample increases. They are derived from equations (19) and (20) 

   

(σ
R

j
)

m
Lnσ

R

j

j=1

n

∑

(σ
R

j
)

m

j=1

n

∑
− 1

n
Lnσ

R

j

j=1

j

∑ − 1

m
= 0                   (19)

  

 σ
0

= 1

n
σ

R

j( )m

j−1

n

∑












1

m

       (20) 

where σj
R is the jth strength in the set of data, n is the number of data.  

 

Construction of Weibull plot requires values of probability P that are associated to strength 

data. For this purpose, the strength data are ranked in ascending order. Then, the values of 

probability are calculated using a probability estimator. Various estimators have been devised 

in the literature [11–18, 25]. The estimator Pj = (j − 0.5)/n is recommended for limited sample 

sizes (j is the rank of filament strain to failure). Linear regression was applied to the plot of 
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experimental data in terms of Ln(-Ln(1-P)) vs. Lnσ owing to the linearized equation of 

Weibull distribution function (Weibull plot). Statistical parameters are derived from the slope 

and the intercept. As mentioned in the introduction, this method is questionable [11-18, 25, 

26].  

2.4/ Experimental 

The bundle test specimens contained more than 1000 filaments. An estimate of the number of 

filaments was determined from the initial slope of the force-strain curve, assuming a constant 

filament section. The main filament characteristics are summarized in table 1. Test specimens 

were prepared according to the protocol described in previous papers [26, 28, 30, 31].  Care 

was taken during specimen preparation and tests to avoid specific draw-backs, such as fiber 

slack [32] and friction [33]. An example of fiber tow specimen is shown on figure 1. 

     

Figure 1: Example of tow specimen with ends stuck in tubes for gripping in the testing 

machine jaws and thermoretractable clamping rings.  

The tensile tests were carried out at room temperature under monotonous loading 

(displacement rate = 2 μm/s) on a servo-pneumatic testing machine. Test specimen elongation 

was measured using a contact extensometer (with a ± 2.5 mm elongation displacement 

transducer) that was clamped to the specimen using two 4-mm-long thermoretractable rings. 

Thus strain measurement was direct and unpolluted by load train deformations. The rings 

were located close to the grips in order to avoid possible bending introduced by the 
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extensometer. The inner distance between the rings defined the gauge length.  

The samples were first loaded up to 5% of the ultimate load, and then the extensometer was 

placed and adjusted. Lubricant oil was sprayed on filaments to avoid friction. 

Acoustic emission was monitored during the test on SiC fiber tow in order to detect fibre 

fractures [25, 30]. Two resonant PZT transducers (Acoustic Emission type μ 80) were placed 

at specimen ends, in order to locate fracture origins. Only those events located in the gauge 

length with amplitude > 60 dB (corresponding to fibre failure) were kept. The transducers 

were acoustically connected to the samples by vacuum grease. A two channel Mistras 2001 

data acquisition system of Physical Acoustics Corporation (PAC) was used for the recording 

of AE data. A fixed threshold of 32 dB was selected for minimizing interference noise from 

outside. 

Fiber Nt Gauge length 

(mm) 
diameter (µm) Ef (GPa) 

SiC Nicalon 1013 115 14 200 

Glass T30  1952 64 17 80 

Glass E 1952 63 14 72 

Basalt 2870 63 13 84 

Alumina 

ALMAX 

1337 65 10 340 

C T300 5259 62 7 220 

C T800H 12071 63 7 294 

AS4C 3267 63 6.9 230 

Table 1: Characteristics of the fiber tows that were tested. 

3/ Results 

3.1/ Tensile behavior of tows 

Figure 3 shows a typical tensile force-strain curve obtained on a SiC Nicalon tow, together 

with locations of acoustic emission events in the gauge length [25]. The curve displays the 

conventional features of bundle tensile behavior, i.e., initial elastic deformations (at strains 

<0.5%), and then nonlinear deformations as a result of individual fibre breaks as indicated by 

acoustic emission events. Beyond maximum, the force on tow decreases progressively to 0, 

and the density of AE event sources looks homogeneous, which suggests that filament 
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interactions probably did not operate. Note that the curve exhibits initial linear deformations, 

which indicates that all the filaments carried the load, and thus, that slacks were not present. 

Tensile behavior for tows of the other fiber types displayed similar features (figure 4). The 

proportional limits were between 0.3 and 2%. The estimates of the initial numbers of 

continuous filaments in tows given in table 1 were derived from k0, assuming identical 

filaments. The experimental force-strain curves looked smooth. They did not exhibit step-

wise decrease in load at a constant strain [27, 35], which suggests that sudden increase in load 

when a single filament breaks did not cause breakage of a large amount of filaments and that 

expected equal load sharing was satifactory.  

     

Figure 2: Tow test set up with acoustic emission sensors.  

3.2/ Gaussian distribution of flaw strengths 

Figure 5 shows the plot of p-quintile zp versus εp, for the SiC Nicalon fiber tow. It can be 

noted that the couples of data fit a straight line. The value of coefficient of linear regression 

(R2= 0.998) confirms the goodness of fit, which indicates that flaw strengths of the SiC 

Nicalon filaments are characterized by normal distribution function. The plot of zp(σp) 

indicates clearly the mean (for zp = 0) and the dispersion of strength data (the slope =1/s). The 

 

extensometer 

2
nd

 AE sensor 

1
st
 AE sensor 
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values of µ������ extracted from the set of experimental data are given in table 1. Quite 

identical parameters μ and s were estimated on the three Nicalon fiber tows tested [25]

 

Figure 3: Load-strain curve and location of AE events along specimen axis for a Nicalon fibre 

bundle. The dotted lines delineate the gauge length 

 

Figure 4: Typical force-strain curves obtained for the various fiber tows of this work.  
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For all the other fibers of this paper, the zp(εp) plots fit straight lines (figures 6 - 9). The 

excellent goodness of fit that was observed is confirmed by the high values of coefficients of 

linear regression R2 > 0.99 for most fibers (table 2) except T300 (R2 = 0.97). This point is 

discussed in a subsequent section. Table 2 also reports the number of filaments and the 

number of data. Note that the number of data is smaller than the number of filaments. This 

difference does not have any incidence on the values of p and zp since p=P does not depend 

on the number of data as it is derived from F/ε according to equation (6), as pointed out in 

section 2.1.  

The zp(εp) plots differentiate three groups of filaments according to mean and standard 

deviation values:  

- large mean and standard deviation: glass and basalt filaments (figures 6 and 9) 

- intermediate mean and standard deviation: SiC Nicalon and C filaments (figures 7 and 9) 

- low mean and standard deviation: alumina fibers (figures 8 and 9). 

 Number of 

filaments 

Number 

of data 

R2 

SiC Nicalon 1013 402 0.998 

E-Glass 1952 686 0.99 

T30 Glass 1952 1223 0.99 

Basalt 2870 1256 0.996 

Alumina Almax 1337 155 0.99 

Carbon T300 5259 704 0.97 

Carbon T800H 12071 656 0.99 

Carbon AS4C 3267 197 0.988 

Table 2: Sizes of data sets used for the construction of zp(εp) plots, and coefficients of  

correlation. The numbers of filaments are also given.  
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Figure 5: Plot of zp(εp) for SiC Nicalon filaments. 

 

 

Figure 6: Plot of zp(εp) for glass and basalt filaments. 
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Fibre 

 

m 

      

 

ει (%) 

 

µ (%) 

 

s (%) 

method 

for Weibull 

SiC Nicalon 5.2 1.24 1.14 0.26 1st moment 

 4.86 1.20   Weibull plot 

 4.37 1.25   MLE 

GlassT30 6.89 2.20 2.05 0.36 1st moment 

Glass E 5,12 2.14 1.98 0.46 1st moment 

Basalt 5.57 2.72 2.51 0.54 1st moment 

Alumina 

ALMAX 

9,68 0.46 0.44 0.055 1st moment 

C T300 3.43 1.34 1.20 0.42 1st moment 

C T300 

(corrected) 

3.20 1.37 1.22 0.46 1st moment 

C T800H 6,19 1.56 1.44 0.28 1st moment 

AS4C 7.6 1.77 1.67 0.26 1st moment 

AS4C 

(corrected) 

6.14 1.89 1.76 0.34 1st moment 

Table 3: Statistical parameters of Weibull and Normal distributions extracted from the force-

strain curves.  

3.3/ Analysis using the Weibull model 

3.3.1/ Cumulative distributions of flaw strengths 

Figure 10 compares the following cumulative flaw strength distributions determined on the 

Nicalon filaments: 

 - the experimental cumulative distribution derived from the force strain curve using equation 

(6),  

- the normal cumulative distribution functions (cdf) calculated using the mean and standard 

deviation estimates derived from the zp (εp) plot (table 3), 
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- the Weibull cdf calculated using the Weibull parameters estimated using the 1st moment 

method (equations (17) and (18); table 3).  

 

 

Figure 7: Plot of zp(εp) for alumina filaments.  

 

 

Figure 8: Plot of zp(εp) for carbon filaments. 
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Figure 9: Comparison of zp(εp) plots. 

Figure 10 typifies on Nicalon fiber tows the excellent fit of the experimental distribution of 

flaw strengths by normal and Weibull cumulative distribution functions. It also shows that the 

Weibull and normal cdf coincide. The goodness of fit is confirmed by the values of 

correlation coefficient > 0.999 that were obtained (table 4).  As a consequence, it can be 

reasonably considered that sound estimates of Weibull parameters were obtained using the 1st 

moment expression. The two alternative methods (linear regression on Weibull plot and 

MLE) underestimated the Weibull modulus (table 3). 

The normal, Weibull and experimental flaw strengths distributions coincided also for the 

other fibers of this paper. The high values of correlation coefficients reported in table 4 assess 

the goodness-of-fit.  

3.3.2/ Prediction of force-strain curves 

Calculation of force-strain curves for the statistical parameters given in table 3 provided 

further assessment of the previous results. 
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Fibre Exp vs 

normal 

      

Exp. vs 

Weibull 

Weibull vs 

normal 

SiC Nicalon 0.999 0.999 0.999 

GlassT30 0.998 0.999 0.999 

Glass E 0.999 0.999 0.999 

Basalt 0.999 0.999 0.999 

Alumina 

ALMAX 

0.999 0.998 0.999 

C T300 0.99 0.99 0.999 

C T800H 0.999 0.997 0.999 

AS4C 0.997 0.996 0.999 

Table 4: Correlations coefficients of fit of the cumulative distributions. 

.   

Figure 10: Fit of experimental cumulative distribution by Weibull and normal distributions 

(Nicalon fiber tow).  
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(a) 
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     (c) 
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     (e)  

 

   

     (f) 
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     (g) 

 

     (h) 

Figure 11: Comparison of force-strain curves with predictions assuming a normal or a 

Weibull distribution : (a) Nicalon fiber tow, (b) T300, (c) E-glass, (d) Basalt, (e) Almax, (f) 

T300, (g) AS4C, (h) T800H. 
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The tensile curves that were predicted using equation (5) and normal and Weibull expressions 

for probability P(ε) show both good agreement with the experimental results for most fibers. 

This result was expected from the linearity of zp(εp) plots and the comparison of cdf derived 

from tensile curves with those that were computed. The Nicalon force-strain curve calculated 

for the values of parameters estimated using MLE method did not fit properly the 

experimental curve (figure 11a).   

Some discrepancy was observed on a few fibers (Almax, T300 and AS4C), as load decrease 

beyond maximum force looked steeper on a range of strains of the experimental curves when 

compared to the predicted curves (figures 11 e, g h). The corresponding zp(εp) plots displayed 

some deviation to linearity in this range of strains, indicating that strains were smaller than 

predictions. This discrepancy may be attributed to either the presence of a bi-modal 

population of flaws, or to the presence of extrinsic effects like fiber interfriction or fractures 

of small groups of fibers.  

6/ Discussion 

6.1/ Uniqueness of zp(εp) diagram  

Flaw strength is defined as the elemental strength, i.e. the critical value of the stress that 

operates on a volume element containing a flaw. When a uniaxial uniform stress-state 

prevails, the elemental strength is equal to the remote stress at failure.  This is the theoretical 

situation during a tensile test on filaments. The strain at failure is an appropriate characteristic 

of flaw strength for an elastic brittle filament.  It is in proportion to failure stress according to 

Hooke’s law: σ
p

= E
f
ε

p
 

Flaw strength, by definition, is independent of filament dimensions, whatever σp or εp are 

considered.  It depends on flaw criticality characterized by flaw size and shape [10]. 

Therefore, the main findings of this paper on flaw strength (i.e. linearity of zp(εp) plots and 
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equivalence of normal and Weibull distribution functions) do not depend theoretically on 

filament dimensions. It can be noted that they were obtained on different gauge lengths: 

115mm for Nicalon tows and 65mm for the other fiber types.  

The total population of flaws is characterized by a unique zp(εp) diagram, and a flaw is 

characterized by unique zp, and strength εp. Owing to equation (6), zp does not depend on 

sample size. The zp(εp) diagram is bounded by the strengths of the biggest and the smallest 

flaws and the corresponding values of zp (figure 12). The zp(εp) diagram for the total 

distribution is thus an invariant for a single population of flaw strengths. It is a material 

characteristic. It allows one to determine the probability of presence of a critical flaw for a 

given applied strain whatever the volume of specimen (figure 12). The total distribution is 

obtained when tow contains a large enough number of flaws. This implies a critical tow size 

above which the total flaw population is characterized. Peirce and Sakai raised this issue of 

minimum length [21, 23].  

Below the critical size of tow, subsets of the total distribution are obtained (figure 12). They 

pertain to the reference diagram whatever sample size and specimen size, since a flaw is 

characterized by a unique strength and a unique zp value.  When bigger flaws are present in a 

longer tow, weaker flaw strengths are added to the data range obtained on the smaller tows, 

whereas a large part of flaw strengths are similar to those pertinent to the smaller filaments, 

and some higher flaw strengths present in the smaller filaments are eliminated.  Conversely 

when tow size is decreased, data are added at the high flaw strength extreme whereas data are 

subtracted at the low strength extreme. The sets of flaw strength data are translated parallel to 

the zp(εp) line (figure 12). This implies that zp(long filament) < zp(short filament), and that 

p(long filament) < p(short filament).  

Figure 12 illustrates the process of size effect by evolution of location of data sets on the 

zp(εp) line as the volume of filaments is increased or decreased. Two situations are described:  
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- either the case of volume V1 when the data discard both the weakest and the strongest flaws 

of the total distribution,  

-or the cases of volume V2 and V3 for which the data characterize the biggest flaws of the 

total distribution.  

Similar situations may be observed at the high strength extremes depending whether the 

strongest flaws are present or not in the batch. The weakest and strongest flaws define the 

upper and the lower bounds of the total flaw strength distribution.   

A size effect is shown for V1 < V3, or V1 < V2 by the respective locations of data sets on the 

zp(εp) diagram (figure 12). For both V2 and V3 the data sets include the biggest flaws whereas 

high flaw strengths depend on specimen size.  

It must be pointed out that the strength of a given flaw is defined by a unique value of zp, and 

vice versa. Considering constant p and zp values for different tow sizes would not refer to a 

single flaw but instead to different flaws having the same rank in the various cumulative 

distributions pertaining to the different specimen sizes. This would show change for strengths 

of distinct flaws, which contradicts the independence of flaw strength on specimen size. The 

corresponding diagrams would be translated at constant probability, as observed with the 

Weibull model.  The power law material function proposed by Weibull (equation (16)) is 

acceptable only for the range on strengths in which the data lie which questions the validity of 

fiber strength data extrapolation [13, 39].  In [39] m estimates were found to depend on fiber 

length [39].  This effect has been observed on several other unpublished results.  

6.2/ Normal distribution of flaw strengths 

The normal distribution indicates the probability of occurrence of a characteristic in a 

population of infinite size. Therefore, the normal distribution may be regarded as a natural 

distribution for flaw strengths in a tow, owing to the large number of filaments in the tested 

tows. Normal distributions are appropriate in the following conditions: 
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 - There is a strong tendency for the variable to take a central value; 

 - Positive and negative deviations from this central value are equally likely; 

 - The frequency of deviations falls off rapidly as the deviations become larger  

These conditions suggest the features of flaw strength distributions. In particular, they 

indicate that there is a strong tendency for flaw severity to take a central value. Features of 

multifialement tows such as the large amount of filaments with elongated shape, together with 

the fabrication process of fibers may be the origin of favorable microstructure. 

 

 

Figure 12: Schematic diagram showing the location of flaw strength data sets for various 

specimen volumes (V1>V2>V3). 

 

6.3/ Implication of flaw strength distributions extracted from tow tensile behavior  

Effects of inherent flaws. 

In the presence of a large number of filaments in tow (table 1) the question arises whether the 

flaw strength distribution that was derived from experimental data is representative of the 

total population of flaws present in the material.  

When the flaw strength distribution obtained on a tow is representative of the total population 

of inherent flaws, owing to the presence of lower and higher bounds (figure 12) the 
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probability is 0 that weaker or stronger flaws are present in other identical tows. As a 

consequence, the force-strain curves would coincide. No variation would be observed on 

statistical parameters nor on the critical fiber at maximum force. It is worth noting that very 

limited variation was observed on the statistical parameters estimated on several SiC [25] or 

flax [26] fiber tows. In [29] it was shown using the Nt - dependent coefficient of variation 

[36- 38], that the forces at maximum should not be scattered when the total number of 

filaments is large. 

Furthermore, the probability of finding a more severe flaw on a longer tow would be 0 also, 

owing to the presence of lower bound.  

If the flaw strength distribution obtained on a tow were not representative of the total flaw 

population, the tensile curves and the statistical parameters would show variation. Size effects 

on strength distribution and statistical parameters would be effective [39]. Furthermore S.L. 

Phoenix showed that the Weibull modulus increases with decreasing fiber length. He 

attributed this effect to limited domain of stress data produced so that the proper cumulative 

flaw strength spectrum is generally not characterized properly.  One must consider a critical 

tow size above which the total flaw population is characterized.  

Proper characterization of the total distribution depends on spatial distribution of critical flaws 

with respect to gauge length. It can be anticipated that a low flaw density will require long 

filaments, whereas shorter filaments will be appropriate in the presence of a high flaw density. 

Obviously, a large number of filaments is preferred. Then, the determination of the minimum 

number of filaments is not straightforward. It depends first on the spatial density of flaws 

versus gauge length. Second, it must be such that the fiber tow contains the weakest and the 

strongest flaws of the total distribution. The chances of presence of these extreme flaws 

increase with the number of filaments in tow.  



 27

6.4/ Implications: Evaluation of Weibull plot and MLE methods of estimation of Weibull 

parameters 

The linearity of p-quintile vs. strain diagram demonstrated that the normal cumulative 

distribution function characterizes flaw strengths.  Then, the Weibull distribution was found 

to fit the normal distribution. Thus, it is inferred that normal cdf can be used as a reference to 

evaluate conventional methods of determination of Weibull parameters that are claimed more 

or less biased.  

Evaluation of Weibull plot based method 

Comparison of Weibull plot with the Ln(-Ln(1-P)) vs. Lnε plot of normal cumulative 

distribution is shown on figure 13 for Nicalon fiber [25].  The Weibull plot deviates from the 

reference normal distribution and also from linearity despite the presence of a unimodal flaw 

population, and although the Weibull distribution function was shown to fit quite well the 

normal distribution (figure 10). This effect was reproduced on the other fibers of this paper. It 

indicates that Weibull plot can fail to indicate whether Weibull distribution characterizes 

strength. As mentioned earlier, this effect is attributed to probability estimator. 

Representativeness of subsets of data: evaluation of Weibull plot and MLE methods  

Subsets of 20 and 30 data were extracted randomly (five draws per sample size) from the 

experimental set of strains for Nicalon fiber tow. Such sample sizes are generally 

recommended for the estimation of Weibull parameters. The probability estimator Pj = (j − 

0.5)/n was used for the construction of Weibull plot. On figure 13, the Weibull plots show 

also deviation from the reference normal distribution (Ln(-Ln(1-P) vs.Lnε) and from linearity. 

This indicates that these sets of data are not characterized by the Weibull function and that 

they do not represent the total distribution of flaw strength pertinent to Nicalon fiber. 

Furthermore, results for subsets having the same size produced by several draws lead to 
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Weibull modulus estimates that displayed significant variation: 4.75 < m < 7.18 for data 

subset size n = 20 and 4.55 < m < 6.05 for n = 30 [25].  Detailed results on Nicalon fiber and 

flax fiber are reported in [25,26].  Thus, it appears that the composition of batches of test 

specimens may yield to subsets of data that are disjoint and not representative of the flaw 

strength distribution and that are not characterized by the Weibull function. This agrees with 

the above-mentioned statement that the Weibull equation (16) is acceptable only for the range 

on strengths in which the data lie [39]. These results demonstrate that the estimation of 

Weibull parameters does depend not only on the sample size, but also on the composition of 

the sample in terms of flaw strengths. When the flaw strength distributions in samples are not 

representative of the total distribution pertinent to a fiber type, they vary with sample. The 

variation is reflected by the above-mentioned variability of statistical parameters.  

 

Figure 13 : Comparison of various Weibull plots of strains-to-failure for Nicalon fiber tow: 

(1) total sets of data, normal distribution (P=PN) and empirical data (P=j/N) ;  (2) subsets of 

20 and 30 empirical data (P=(i-0.5)/n), (3) Truncated normal distribution (P=Pt).   

 

The MLE method was applied to two subsets of 30 data selected from the Nicalon flaw 

strength data with a view to obtain even and uneven patterns of dispersion of data, i.e. an 
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homogeneous distribution and an inhomogeneous distribution with clusters of data. The 

Weibull parameter estimates (table 5) differ from the value reported in table 2 for Nicalon (m 

= 5.2, εl = 1.24). Furthermore, they display a significant variation (table 5) when compared 

with results from fiber tow behavior (5.23 < m < 5.43, 1.20 < εl < 1.25) [25]. Then, they 

depend on sample size, and also on homogeneity of data distribution. These results agree with 

the findings of the previous section. They illustrate the limitation of MLE method and the 

issue of representativeness of flaw strength distributions in fracture analysis. 

number of data 402 30 30 

m 4.37 4.07 5.23 

εl (%) 1.25 1.26 1.32 

pattern  even uneven 

Table 5: Weibull parameters estimated using MLE method on a large set of data and on 

subsets of 30 data. 

6.5/ Influence of extrinsic factors 

The contribution of extrinsic flaws, such as slacks, filament interactions, random or local load 

sharing may affect the tensile behavior of fiber tows. In [29] the influence of various extrinsic 

factors (such as load sharing, non-uniform loading) on tow strength was examined.  It was 

shown that imperfect load sharing induces a drop in tow strength and an enhanced scatter in 

data. In the present paper, the experimental force-strain curves looked smooth. Step-wise 

decreases in load at a constant strain were not observed, which suggests that simultaneous 

breakage of several filaments did not take place and that the expected equal load sharing was 

satisfactory. Moreover, the linear deformation from the origin of force-strain curves suggested 

that slack filaments were not present in tows. The plot of zp(εp) derived from tests on Nicalon 

fiber tow (figure 5) was found to agree with that obtained from tests on single filaments 
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(figure 14). This suggests that results were not polluted by extrinsic factors. Furthermore, a 

very small variation was observed on the statistical parameters estimated on different Nicalon 

tow specimens [25] and the Weibull modulus estimates were consistent with results available 

in the literature for single filaments of Nicalon (m=5.2 (table 3) against m = 5.5 in [40]).  

However, the zp(εp) diagrams evidenced deviation from linearity for Alumina Almax and 

carbon T300 and AS4C at strains when the force decrease looks steeper (figures 7,8, 11e, 11f, 

11g). But, the load decrease was not as steep as the load drops induced by the simultaneous 

failure of filaments. The strains being smaller than those expected from the trend shown by 

the linear domain of zp(εp) it may be argued that the tows were not free to deform because of 

interfiber friction. This effect was evidenced on glass fiber tows using lubricants having 

different viscosity [30]. The presence of a bimodal flaw population may be another cause. 

These issues warrant further consideration.  

However, the zp(εp) diagram is not affected when the linear part only is considered, because, 

according to equation (6), the values of P(ε) are not affected when data are removed. The 

strains > 1.6 % for AS4C and those < 0.7 % and > 1.1% for T300 were eliminated from the 

data sets. Table 3 gives the corrected parameters.   

7/ Conclusions 

Flaw strength distributions were extracted from the tensile behavior of fiber tows of various 

types: carbon, SiC, glass, basalt and alumina. Several features such as steady force decrease 

beyond maximum, spatial distribution of accoustic emission sources, limited variation in 

statistical parameters, consistency of Weibull modulus with literature, suggested that the 

testing conditions were well controlled in order to reach independent and successive breakage 

of filaments under constant strain rate.  
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Linear p-quintile vs. strain relation was obtained on all the tested fiber tows.  This 

demontrates that flaw strength is a Gaussian variate. Then, the Weibull cumulative 

distribution function was found to characterize flaw strength as well.  

 

 

Figure 14: Plots of zp(εp) for Nicalon SiC filaments determined from tests on single filaments 

and a test on a tow. 

The tested multifilament tows contained more than 1000 filaments, which allowed wide sets 

of flaw strengths to be generated. Failure probability associated to flaw strength was derived 

from force/strain ratio, independent of the size of set of data. The p-quintile vs. strain diagram 

((zp(εp) relation) is theoretically an invariant. Adding data to the set or removing data from the 

set does not affect the zp(εp) relation. This relation is a material characteristic.  To be 

representative, it must include the lower and upper bounds of the whole population of flaws 

pertinent to the flaw type considered.  Otherwise, results from different tows may display 

variability.  A minimum specimen size above which the total flaw distribution is attained 
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must be considered. This issue will require further investigation of flaw strength strength 

distributions obtained at various specimen sizes. 

Normal distribution for flaw strength indicates that there is a strong tendency for the flaw 

severity to take a central value. This may be related to the large number of filaments in tested 

specimens, but also to the fabrication process, the microstructure and the elongated shape of 

fibers. 

The normal distribution provides a sound reference for assessing the Weibull distribution and 

the statistical parameters. It allowed assessment of the estimation of parameters using the first 

moment of Weibull distribution. It also confirmed the limits of the method of estimation 

based on the construction of Weibull plot using a probability estimator, and of the MLE 

method that led to sample size dependent estimates. It appeared that subsets of the total 

distribution of flaw strengths generated on small sample sizes are not representative of the 

total distribution, they can be disjoint, and they may not be characterized by Weibull function 

even when the reference distribution is Weibull-type. This questions the issue of failure 

predictions using the Weibull model. 

It seems reasonable to anticipate that the results of this paper can be extended to most brittle 

fibers.  
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