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[1] Results of a single-blind round-robin comparison of satellite primary productivity
algorithms are presented. The goal of the round-robin exercise was to determine the
accuracy of the algorithms in predicting depth-integrated primary production from
information amenable to remote sensing. Twelve algorithms, developed by 10 teams, were
evaluated by comparing their ability to estimate depth-integrated daily production (IP, mg
C m�2) at 89 stations in geographically diverse provinces. Algorithms were furnished
information about the surface chlorophyll concentration, temperature, photosynthetic
available radiation, latitude, longitude, and day of the year. Algorithm results were then
compared with IP estimates derived from 14C uptake measurements at the same stations.
Estimates from the best-performing algorithms were generally within a factor of 2 of
the 14C-derived estimates. Many algorithms had systematic biases that can possibly be
eliminated by reparameterizing underlying relationships. The performance of the
algorithms and degree of correlation with each other were independent of the algorithms’
complexity. INDEX TERMS: 4894 Oceanography: Biological and Chemical: Instruments and

techniques; 4275 Oceanography: General: Remote sensing and electromagnetic processes (0689); 4805

Oceanography: Biological and Chemical: Biogeochemical cycles (1615); 4806 Oceanography: Biological and

Chemical: Carbon cycling; 4853 Oceanography: Biological and Chemical: Photosynthesis; KEYWORDS:

primary productivity, algorithms, ocean color, remote sensing, satellite, chlorophyll

1. Introduction

[2] Global maps of the upper-ocean chlorophyll concen-
tration are now being generated routinely by satellite ocean
color sensors. These multispectral sensors are able to map
the chlorophyll concentration, a measure of phytoplankton

biomass, by detecting spectral shifts in upwelling radiance.
As the chlorophyll concentration increases, blue light is
increasingly absorbed, and thus less is scattered back into
space. Although global coverage can nominally be achieved
every 1–2 days, the actual temporal resolution is reduced to
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�5–10 days because of cloud cover. Nevertheless, the
coverage afforded by satellite remote sensing is vastly
greater than that obtainable by any other means.
[3] A principal use of the global ocean chlorophyll data is

to estimate oceanic primary production [Behrenfeld et al.,
2001]. The mathematical models or procedures for estimat-
ing primary production from satellite data are known as
primary productivity algorithms. In the early days of the
Coastal Zone Color Scanner (CZCS), simple statistical
relationships were proposed for calculating primary produc-
tion from the surface chlorophyll concentration [e.g., Smith
and Baker, 1978; Eppley et al., 1985]. Such empirically
derived algorithms are still considered useful when applied
to annually averaged data [Iverson et al., 2000], but they are
not sufficiently accurate to estimate production at seasonal
timescales. The surface chlorophyll concentration explains
only �30% of the variance in primary production at the
scale of a single station [Balch et al., 1992; Campbell and
O’Reilly, 1988].
[4] Over the past 2 decades, scientists have sought to

improve algorithms by combining the satellite-derived
chlorophyll data with other remotely sensed fields, such
as sea surface temperature (SST) and photosynthetic avail-
able radiation (PAR). These algorithms incorporate models
of the photosynthetic response of phytoplankton to light,
temperature, and other environmental variables, and some
also incorporate models of the vertical distribution of these
properties within the euphotic zone [Balch et al., 1989;
Morel, 1991; Platt and Sathyendranath, 1993; Howard,
1995; Antoine and Morel, 1996a; Behrenfeld and Falkow-
ski, 1997a; Ondrusek et al., 2001]. Algorithms have been

used to estimate global oceanic primary production from
CZCS data [Antoine and Morel, 1996b; Longhurst et al.,
1995; Behrenfeld and Falkowski, 1997a; Howard and
Yoder, 1997], and more recently from Sea-viewing Wide
Field-of-view Sensor (SeaWiFS) data [Behrenfeld et al.,
2001]. Global maps of the average daily primary production
for varying periods (weeks, months, and years) are now
being produced from Moderate Resolution Imaging Spec-
troradiometer (MODIS) data.
[5] While many of the photosynthetic responses (to light,

temperature, etc.) are commonly represented, model-based
algorithms differ with respect to structure and computa-
tional complexity [Behrenfeld and Falkowski, 1997b]. Mod-
els may be similar in structure but require different
parameters depending on whether they describe daily,
hourly, or instantaneous production, and even where these
aspects are similar, algorithms often yield different results
because of differences in their parameterization. Balch et al.
[1992] evaluated a variety of algorithms (both empirical and
model based), using in situ productivity measurements from
a large globally distributed data set, and found that they
generally accounted for <50% of the variance in primary
production.
[6] In January 1994 the National Aeronautics and Space

Administration (NASA) convened an Ocean Primary Pro-
ductivity Working Group with the goal of developing one or
more ‘‘consensus’’ algorithms to be applied to satellite
ocean color data. The working group initiated a series of
round-robin experiments to evaluate and compare primary
productivity algorithms. The approach was to use in situ
data to test the ability of algorithms to predict depth-
integrated daily production (IP, mg C m�2) based on
information amenable to remote sensing. It was decided to
compare algorithm performances with one another and with
estimates based on 14C incubations.
[7] Our understanding of primary productivity in the ocean

is largely based on the assimilation of inorganic carbon from
14C techniques [Longhurst et al., 1995], and thus it was
considered appropriate to compare the algorithm estimates
with 14C-based estimates. However, it was recognized that
the 14C-based estimates are themselves subject to error
[Peterson, 1980; Fitzwater et al., 1982; Richardson, 1991].
The 14C incubation technique measures photosynthetic car-
bon fixation within a confined volume of seawater, and there
are no methods for absolute calibration of bottle incu-
bations [Balch, 1997]. Furthermore, there is no universally

Table 1. Algorithm Testing Subcommittee of NASA’s Ocean

Primary Productivity Working Groupa

Participant Affiliation

Robert Armstrong Stony Brook University
Richard T. Barber Duke University
James Bishop Lawrence Berkeley National Laboratory
Janet W. Campbell University of New Hampshire
Mary-Elena Carr Jet Propulsion Laboratory
Wayne E. Esaias NASA Goddard Space Flight Center
Richard Iverson Florida State University
Charles S. Yentsch Bigelow Laboratory for Ocean Sciences

aThese individuals were responsible for conducting the primary
productivity algorithm round-robin experiment. They agreed not to
participate by testing algorithms of their own.

Table 2. Participant Teams Whose Algorithms Were Tested in Round Robin

Participant Affiliation

David Antoine and Andre Morel Laboratoire de Physique et Chimie Marines
William Balch and Bruce Bowler Bigelow Laboratory for Ocean Sciences
Michael Behrenfeld and Paul Falkowski NASA Goddard Space Flight Center/Rutgers University
Nicolas Hoepffner Joint Research Centre of the European Commission
Dale Kiefer University of Southern California
Steven Lohrenz University of Southern Mississippi
John Marra Lamont-Doherty Earth Observatory
Vladimir Vedernikov P.P. Shirshov Institute of Oceanology
Kirk Waters and Bob Bidigare NOAA Coastal Services Center/University of Hawaii
James Yoder and John Ryan University of Rhode Island/Monterey Bay Aquarium and Research Institute
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accepted method for measuring and verifying vertically
integrated production derived from discrete bottle measure-
ments. Despite this fact, here we treat the 14C-based
estimates as ‘‘truth’’ and refer to the differences between
algorithm-derived and 14C-derived estimates as ‘‘errors.’’ In
all statistical analyses, however, the two are recognized as
being subject to error.
[8] Participation in the round robin was solicited through

a widely distributed ‘‘Dear Colleague’’ letter. A central
ground rule was that the algorithms tested would be
identified only by code numbers. The first round-robin
experiment involved data from only 25 stations and was
thus limited in scope. It was decided that a more compre-
hensive second round was needed. In this paper, we present
results of the second round-robin experiment involving
data from 89 stations with wide geographic coverage.
Round two was open to all participants of round one, as
well as to others who had responded positively to the initial
invitation.
[9] The following questions were addressed: (1) How do

algorithm estimates of primary production derived strictly
from surface information compare with estimates derived
from 14C incubation methods? (2) How does the error in
satellite-derived chlorophyll concentration affect the accu-
racy of the primary productivity algorithms? (3) Are there
regional differences in the performance of algorithms? (4)
How do algorithms compare with each other in terms of
complexity vis-a-vis performance?

2. Methods

[10] A subcommittee of NASA’s Ocean Primary Produc-
tivity Working Group was formed to administer the round-
robin experiments (Table 1), and there were 10 participant
teams (Table 2) who volunteered to test their algorithms. A
test data set was assembled to be used for evaluating
algorithms. Algorithm developers were provided with only
the information accessible to spaceborne sensors, and they
subsequently returned predictions of integral production at
each station. Results were compared with estimates derived
from the 14C incubations and with the results of other
algorithms.

2.1. Test Data

[11] Data from 89 stations were obtained from nine
sources (Table 3), representing diverse geographic regions

and a variety of measurement techniques. The acquired
station data included the downwelling photosynthetic avail-
able radiation incident on the water surface (daily PAR
between 400 and 700 nm, in mol photons m�2) and
measurements of the chlorophyll concentration, temper-
ature, and PAR at discrete depths in the upper water column.
From the profile data, we determined surface chlorophyll
(Bsfc, mg Chl m�3), sea surface temperature (SST, �C), and
the euphotic depth or 1% light level (Zm, m).
[12] In addition, we were provided 14C-based estimates of

the daily primary production (Pi, mg C m�3) at discrete
depths Zi ranging from the surface to the 1% light depth.
‘‘Measured’’ integral production, IPmeas, was computed for
each station by trapezoidal integration, using the formula

IPmeas ¼P1Z1 þ
Xm

i¼2

0:5ðPi�1 þ PiÞðZi � Zi�1Þ; ð1Þ

where the number of depths (m) varied among stations.
Integral chlorophyll (IB, mg Chl m�2) was also computed
over the same layer by a similar formula. The surface
information provided to the algorithm developers and other
information not provided (e.g., IPmeas, IB, and Zm) are listed
in Table 4.
[13] The measurement methods were consistent within

each data set but differed between data sets. The equatorial
Pacific (EqPac [Barber et al., 1996]), North Atlantic
(NABE [Ducklow and Harris, 1993]), and Arabian Sea
[Barber et al., 2001] data were from the Joint Global Ocean
Flux Study (JGOFS) [Knudson et al., 1989; Chipman et al.,
1993] process studies. Primary production measurements
from these campaigns were based on 24-hour, in situ
incubations, in accordance with JGOFS protocols. The
SUPER data set [Welschmeyer et al., 1993] also used 24-
hour, in situ incubations. Simulated in situ incubations were
used to produce the Antarctic Marine Ecosystem Research
at the Ice Edge Zone (AMERIEZ) data (24-hour incubations
[Smith and Nelson, 1990]), the PROBES data (dawn-to-
dusk incubations [Codispoti et al., 1982]), and the Marine
Resources Monitoring, Assessment, and Prediction (MAR-
MAP) data (6-hour incubations scaled by daily PAR meas-
urements [O’Reilly et al., 1987]). The Palmer data from the
Long-Term Ecological Research (LTER) site [Moline and
Prezelin, 1997] were based on 90-min incubations in photo-
synthetrons [e.g., Prezelin and Glover, 1991] that were then
scaled to estimate daily rates. This methodological diversity

Table 3. Data Sets Used to Test Algorithmsa

Data Set Region n IP Latitude Longitude Months Years

AMERIEZ Antarctica 7 315 �66 �58 �51 �38 March–Nov. 1983–1986
SUPER North Pacific 10 688 50 53 �145 �145 June–Aug. 1987–1988
EqPac nonequator Tropical Pacific 13 724 �12 12 �140 �140 Feb.–Sept. 1996–1996
NABE Northeast Atlantic 12 1027 46 47 �20 �19 April–May 1989–1989
EqPac equator Equatorial Pacific 8 1170 0 0 �140 �140 Feb.–Oct. 1996–1996
Arabian Sea Arabian Sea 12 1192 10 19 57 67 March–Aug. 1995–1995
PROBES Bering Sea 9 1203 55 58 �167 �164 April– June 1979–1981
MARMAP Northwest Atlantic 8 1560 40 43 �71 �67 Aug.–Sept. 1981–1981
Palmer LTER Antarctica 10 1795 �65 �65 �64 �64 Feb.–Dec. 1991–1992

aColumns are the region, number of stations (n), average depth-integrated daily production (IP, mg C m�2), and ranges in latitude, longitude, months,
and years.
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Table 4. In Situ Data Used to Test Primary Productivity Algorithmsa

Station Region Lat. Long. Date SST PAR Sfc.
Chl

Zm IBmeas IPmeas

1 EqPac
nonequator

12 �140 5 Feb. 1996 25.9 25.2 0.114 85 14.2 309

2 5 �140 13 Feb. 1996 28.5 30.7 0.179 71 14.0 427
3 3 �140 15 Feb. 1996 28.4 36.2 0.210 71 16.1 670
4 �2 �140 1 March 1996 28.6 27.0 0.132 106 16.5 586
5 �5 �140 4 March 1996 28.7 36.4 0.170 106 19.9 675
6 12 �140 11 Aug. 96 28.4 41.6 0.063 79 10.0 319
7 5 �140 19 Aug. 1996 27.5 33.7 0.284 79 22.1 561
8 3 �140 22 Aug. 1996 27.0 36.9 0.230 79 17.3 637
9 2 �140 24 Aug. 1996 23.8 38.9 0.355 79 27.7 1630
10 �2 �140 3 Sept. 1996 25.5 35.2 0.223 79 20.4 1047
11 �3 �140 6 Sept. 1996 25.3 36.1 0.274 79 26.2 1362
12 �5 �140 8 Sept. 1996 25.9 30.8 0.225 79 21.7 861
13 �12 �140 13 Sept. 1996 26.4 30.9 0.135 79 14.6 323
14 EqPac

equator
0 �140 23 Feb. 1996 28.3 14.6 0.227 71 18.9 513

15 0 �140 24 Feb. 1996 28.3 43.8 0.247 71 17.6 867
16 0 �140 29 Aug. 1996 24.8 36.6 0.372 79 28.8 1399
17 0 �140 30 Aug. 1996 24.9 33.2 0.257 79 25.9 1041
18 0 �140 14 Oct. 1996 25.0 33.5 0.240 82 27.9 1573
19 0 �140 16 Oct. 1996 25.3 34.6 0.218 82 25.3 1373
20 0 �140 18 Oct. 1996 25.2 32.7 0.247 82 27.5 1432
21 0 �140 20 Oct. 1996 25.1 32.7 0.242 82 23.1 1163
22 PROBES 55 �165 17 April 1979 3.5 26.3 2.21 32 78.7 1090
23 56 �167 18 April 1979 4.0 28.8 1.92 35 63.2 891
24 57 �166 22 April 1979 3.4 32.4 7.04 27 134.1 1576
25 55 �165 6 May 1979 5.5 27.3 8.86 14 207.8 2306
26 55 �166 20 May 1979 5.0 33.4 4.05 28 113.1 2022
27 58 �164 8 June 1979 8.4 50.1 1.06 32 111.9 1309
28 55 �167 15 April 1981 3.9 28.2 0.96 33 29.5 364
29 55 �167 1 June 1981 6.9 36.9 4.34 18 82.1 1053
30 56 �166 5 June 1981 7.5 34.3 0.68 28 33.9 214
31 SUPER 50 �145 3 June 1987 7.2 36.7 0.282 59 21.2 595
32 53 �145 9 June 1987 6.9 26.4 0.659 57 36.8 671
33 50 �145 15 June 1987 7.7 48.2 0.344 60 24.4 913
34 50 �145 18 June 1987 7.4 21.5 0.531 60 27.0 1541
35 50 �145 20 Sept. 1987 11.7 35.5 0.402 56 18.9 887
36 50 �145 8 May 1988 5.6 29.1 0.270 89 26.5 366
37 50 �145 27 May 1988 7.0 36.5 0.166 69 12.1 446
38 53 �145 5 Aug. 1988 11.5 23.5 0.129 81 15.8 360
39 53 �145 19 Aug. 1988 11.8 20.2 0.191 68 14.8 479
40 50 �145 25 Aug. 1988 12.0 39.8 0.297 60 16.0 621
41 AMERIEZ �58 �38 18 Nov. 1983 �0.1 19.9 2.97 57 146.3 502
42 �60 �38 21 Nov. 1983 �1.4 40.2 0.43 65 29.5 457
43 �60 �38 23 Nov. 1983 �1.3 50.4 0.41 63 44.7 273
44 �60 �40 27 Nov. 1983 �0.7 13.9 4.70 22 123.1 633
45 �65 �48 11 March 1986 �1.7 9.4 0.11 70 7.1 148
46 �66 �49 16 March 1986 �1.8 7.3 0.08 70 7.9 105
47 �65 �51 23 March 1986 �1.8 7.6 0.07 70 5.7 88
48 Palmer

LTER
�65 �64 10 Dec. 1991 �0.4 45.2 0.72 40 55.3 1259

49 �65 �64 16 Dec. 1991 �0.1 64.2 1.17 25 92.7 3207
50 �65 �64 28 Dec. 1991 2.2 67.1 2.52 19 184.8 6308
51 �65 �64 4 Jan. 1992 0.7 42.9 11.59 12 157.2 3894
52 �65 �64 16 Jan. 1992 0.5 33.1 0.84 35 51.5 994
53 �65 �64 24 Jan. 1992 �0.2 14.1 0.73 29 19.9 187
54 �65 �64 3 Feb. 1992 0.4 35.5 1.06 26 20.2 220
55 �65 �64 10 Feb. 1992 0.3 24.1 0.69 47 34.0 673
56 �65 �64 17 Feb. 1992 0.4 17.7 3.45 69 63.2 340
57 �65 �64 27 Feb. 1992 0.2 40.8 2.43 35 58.8 868
58 Arabian Sea 19 67 19 March 1995 25.5 53.4 0.541 40 20.1 1327
59 10 65 24 March 1995 29.0 51.4 0.077 73 11.1 602
60 14 65 27 March 1995 27.8 52.3 0.078 64 10.3 679
61 16 62 31 March 1995 27.1 51.2 0.188 40 14.6 841
62 17 60 3 April 1995 26.9 56.3 0.218 39 21.8 1145
63 18 58 6 April 1995 26.9 57.3 0.164 38 10.8 651
64 19 67 22 July 1995 28.0 40.2 0.308 61 20.8 886
65 14 65 28 July 1995 27.4 52.5 0.521 46 23.8 1455
66 10 65 31 July 1995 28.0 48.8 0.583 48 25.7 1542
67 16 62 4 Aug. 1995 25.8 53.7 0.436 48 21.1 1522
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introduced a source of variance in the test data, and
consequently in the algorithm performance statistics, that
was largely confounded with regional effects. However, we
accepted the diversity under the premise that a similar
diversity might have existed in the data sets used to
parameterize algorithms (see section 5).
[14] Integral primary production and surface chlorophyll

spanned 2 orders of magnitude in the test data set, while
SST and PAR varied over the wide ranges found globally
(Figure 1). The symbols shown in Figure 1 denote the
various data sets and regions, and these will be used
consistently in subsequent figures. The widest ranges in
production, biomass, and irradiance and the lowest temper-
atures were found in the Antarctic data (Palmer LTER and
AMERIEZ). There was a general positive correspondence
between IP and Bsfc, and between IP and PAR, but there
were no simple empirical relationships useful for algorithm
purposes. There was no apparent relationship between IP
and SST at temperatures below 20�C, but in the equatorial
Pacific and Arabian Sea, where surface temperatures were
above 20�C, production decreased with increasing surface
temperature.

2.2. Evaluation Procedures

[15] The data analysis and evaluation of algorithm results
were carried out at the University of New Hampshire
(UNH) under the direction of the first author with input
from other members of the algorithm testing subcommittee
(ATS) (Table 1). The complete test data set was assembled
and resident on computers at UNH, but algorithm codes
were not exchanged. That is, each participant team was
responsible for running its own algorithm code based on
input data furnished by the ATS.

[16] The information provided for each station included
(1) latitude and longitude to the nearest 0.1�, (2) day of the
year, (3) incident daily PAR (mole photons m�2), (4) SST
(�C), and (5) two values for the surface chlorophyll con-
centration (mg Chl m�3). One of the chlorophyll values
(randomly assigned) was the measured surface chlorophyll
(Bsfc), and the other was a simulated satellite-derived
chlorophyll (Bsat) computed as

Bsat ¼ Bsfc10
DB; ð2Þ

where DB was a pseudorandom normal (Gaussian) error
with zero mean and standard deviation equal to 0.3. This
error represents a factor-of-2 uncertainty in satellite-derived
chlorophyll that has been reported for open ocean (Case 1)
waters [O’Reilly et al., 1998; Gordon et al., 1985]. The 89
values of DB were statistically independent.
[17] Participants did not know which chlorophyll was the

measured surface chlorophyll, Bsfc, and which was the
corrupted ‘‘satellite’’ chlorophyll, Bsat. They were asked to
return two algorithm estimates of integral production for
each station, one for each chlorophyll value. Their results
were then ‘‘unscrambled’’ to identify the integral production
estimate based on measured chlorophyll, IPalg, and that
based on Bsat, IPsat.
2.2.1. Performance Indices
[18] The performance of each algorithm was based on a

log-difference error (D) defined as

D ¼ logðIPalgÞ � logðIPmeasÞ; ð3Þ

which is a measure of relative error. Performance indices
were the mean (M ), standard deviation (S ), and root-mean-
square (RMS) of the 89 log-difference errors. Since the
units of these indices are decades of log, and not easily

Table 4. (continued)

Station Region Lat. Long. Date SST PAR Sfc.
Chl

Zm IBmeas IPmeas

68 18 58 11 Aug. 1995 23.2 49.6 1.358 27 26.0 2141
69 18 57 12 Aug. 1995 20.7 51.4 0.569 27 17.8 1518
70 NABE 47 �20 25 April 1989 12.6 49.9 0.565 59 34.4 944
71 47 �20 26 April 1989 12.6 19.6 0.908 61 57.9 876
72 47 �19 27 April 1989 12.6 13.8 0.748 65 52.3 682
73 47 �20 29 April 1989 12.6 30.4 1.061 53 47.3 910
74 46 �20 30 April 1989 12.7 45.9 0.807 55 45.1 1286
75 46 �20 1 May 1989 12.7 13.9 0.879 59 36.5 781
76 47 �20 2 May 1989 12.5 53.6 1.066 50 48.6 1387
77 47 �20 3 May 1989 12.7 24.8 1.135 49 32.9 915
78 47 �20 4 May 1989 12.5 13.7 1.107 50 64.2 852
79 47 �20 5 May 1989 12.4 50.3 1.274 49 61.6 1402
80 46 �19 6 May 1989 13.1 27.1 0.710 49 83.8 1031
81 46 �19 8 May 1989 13.0 21.8 1.724 40 82.2 1253
82 MARMAP 41 �71 27 Aug. 1981 19.6 35.0 3.62 15 47.4 1716
83 43 �71 28 Aug. 1981 13.9 48.6 7.23 14 68.5 3482
84 43 �70 28 Aug. 1981 14.9 48.6 1.72 21 51.5 1161
85 42 �67 29 Aug. 1981 16.1 40.6 1.29 25 37.5 691
86 40 �69 31 Aug. 1981 19.4 33.2 0.52 37 51.4 1248
87 41 �70 2 Sept. 1981 14.4 40.3 3.76 22 63.0 1864
88 41 �70 2 Sept. 1981 18.7 40.3 0.64 40 32.7 1412
89 41 �71 3 Sept. 1981 18.0 21.1 0.59 40 40.7 904

aSurface and column-integrated data for the 89 stations that were used to test algorithms are given. Values are listed with the number of significant
figures provided in the original data sets. Units are SST, �C; PAR, mol photons m�2; Surface (Sfc.) Chl, mg Chl m�3; 1% light level Zm, m; integral
measured chlorophyll IBmeas, mg Chl m�2;; and depth-integrated daily production IPmeas, mg C m�2.
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translated into absolute terms, we also present three inverse-
transformed values:

Fmed ¼ 10M ; ð4Þ

Fmin ¼ 10M�S ;

Fmax ¼ 10MþS :
ð5Þ

[19] Log-difference errors (D) for each algorithm tended
to be symmetrically distributed about their mean and
approximately normally distributed. Assuming an under-
lying normal distribution for D, Fmed would be the median
value of the ratio

F ¼ IPalg

IPmeas

¼ 10D; ð6Þ

and 68% of the F values would lie within the ‘‘one-sigma’’
range (Fmin to Fmax).
2.2.2. Effect of Errors in the Satellite Chlorophyll
[20] The IPsat estimate based on the simulated satellite

chlorophyll, Bsat, was subject to two errors: the relative error

D defined in equation (3) and an error due to the satellite
chlorophyll error, DB, which is

Dsat ¼ log IPsatð Þ � log IPalg
� �

: ð7Þ

[21] To investigate the effect of errors in the satellite
chlorophyll, Dsat was regressed against DB. The slope of
this regression yields information about the sensitivity of
the IP algorithm to errors in the satellite chlorophyll
retrieval. A slope of 1 would indicate that the resulting
error in IP is directly proportional to the error in Bsat,
whereas a slope less (greater) than 1 shows less (greater)
sensitivity.
2.2.3. Regional Analyses
[22] To investigate regional differences, performance indi-

ces were computed for each data set separately. Although
there were methodological differences between data sets, we
treated the different data sets as ‘‘regions’’ for the purpose
of this analysis. A two-way analysis of variance (ANOVA)
was performed on the D data to determine whether there

Figure 1. Relationships found in in situ data between daily
depth-integrated primary production (IP, mg C m�2) and
properties amenable to remote sensing. (a) Surface chlor-
ophyll concentration (Bsfc, mg Chl m�3). (b) Sea surface
temperature (SST, �C). (c) Above-water daily photosynthetic
available radiation (PAR, mol photons m�2). Symbols
shown here will be used consistently in all figures.

Figure 2. Scatterplots of algorithm-derived primary pro-
duction (IPalg, mg C m�2) versus production measured in
situ (IPmeas, mg C m�2) for 12 algorithms tested. Solid line
represents perfect agreement, and dashed lines represent
factor-of-2 relative errors. Algorithm category [Behrenfeld
and Falkowski, 1997b] is shown in upper left corner of each
plot.
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Table 5. Performance Indices for Relative Errors in Algorithms as Compared With Measured IPa

Algorithm Type M S RMS Fmed Fmin Fmax

1 WRM �0.18 0.19 0.26 0.66 0.42 1.04
3 DIM �0.01 0.22 0.22 0.98 0.59 1.61
4a TIM �0.09 0.25 0.26 0.81 0.46 1.43
4b TIM �0.11 0.21 0.24 0.77 0.47 1.26
4c TIM 0.03 0.32 0.32 1.08 0.52 2.24
5 TIM 0.05 0.28 0.28 1.11 0.58 2.12
6 WRM 0.13 0.24 0.27 1.34 0.78 2.33
7 DIM �0.36 0.29 0.46 0.44 0.23 0.85
8 WRM 0.15 0.23 0.27 1.40 0.82 2.38
9 WRM �0.27 0.21 0.35 0.53 0.33 0.86
11 TIM �0.37 0.34 0.50 0.42 0.20 0.92
12 WRM �0.36 0.24 0.43 0.44 0.25 0.75

aColumns are the mean (M ), standard deviation (S), and root mean square (RMS) of the log-difference error (D). The geometric mean and one-sigma
range of the ratio (F = IPalg/IPmeas) are given by Fmed, Fmin, and Fmax, respectively. The algorithm type is based on the categories defined by Behrenfeld and
Falkowski [1997b].

Figure 2. (continued)
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were significant differences in algorithms, regions, and
‘‘interactions’’ between algorithms and regions.
2.2.4. Comparing algorithms
[23] To compare algorithms, a correlation coefficient (r)

was calculated from the log-transformed results, log(IPalg),
for each pair of algorithms. We did not use correlations (or
r2 as a measure ‘‘percent variance explained’’) to measure
the performance of the algorithms themselves, because high
r2 is not a sufficient condition for good agreement. That is,
high linear correlation can exist despite systematic errors. In
the case of two algorithms, however, we computed corre-
lations and average ratios, and we also examined all pair-
wise plots to determine the degree of agreement. Results
were considered in the context of differences in algorithm
structure and complexity.

3. Algorithms

[24] Twelve algorithms by 10 teams were tested in the
round robin. Each participant team was assigned a code
number to identify its algorithm’s results in subsequent
comparisons. Code numbers ranged from 1 to 12. (Teams
2 and 10 dropped out after receiving code numbers). Team 4
submitted results for three algorithms, which were identified
by letters (e.g., 4a, 4b, and 4c).
[25] Although the identity of the algorithm developers is

not revealed, in accordance with ground rules, paragraphs
describing each of the algorithms are provided in Appendix
A. Participation in the round robin was voluntary, and thus
the nature of the algorithms tested was purely fortuitous. As
it turned out, the algorithms belonged to three of the four
major categories of complexity described by Behrenfeld and
Falkowski [1997b]. The category not represented was that
of wavelength-integrated models (WIMs). In this category,
time and depth are resolved, but light is not spectrally
resolved.
[26] Five algorithms (numbers 1, 6, 8, 9, and 12) were from

the wavelength-resolved model (WRM) class, which is the
most detailed and highly resolved of all algorithm types. In
algorithms of this category, the photosynthetic rate is com-
puted at each depth and at various times throughout the day,
based on a spectrally resolved underwater light field. In some
cases the vertical profile of chlorophyll was modeled (1, 8,
and 9), and in others it was assumed to be uniform (6 and 12).

Four of the algorithms (1, 8, 9, and 12) applied a photosyn-
thesis-irradiance relationship to calculate the chlorophyll-
specific productivity. They required parameterizations of the
maximum light-saturated rate of photosynthesis (PB

max) and
photosynthetic efficiency (a, the slope of the PB versus E
curve in low light). An alternative approach, used by algo-
rithm 6, was to calculate the radiant energy absorbed by the
phytoplankton and then apply a quantum yield (j, moles
carbon fixed per mole photons absorbed) to derive produc-
tivity. Temperature is generally used in the parameterization
of PB

max or jmax.
[27] Five algorithms (4a, 4b, 4c, 5, and 11) belonged to

the class of time-integrated models (TIMs), in which depth
is resolved but both time and wavelength are integrated.
These algorithms employed models of the daily production
normalized to chlorophyll (Pz/Bz) as functions of the daily
irradiance Ez at depth Z. Such models might resemble the
photosynthesis-irradiance models (PB versus E ), as was the
case for the 4a–4c algorithms, or they might be based on a

Table 6. Performance Indices When Algorithms Used ‘‘Corrupted’’ Satellite Chlorophyll (Bsat) Instead of Measured Chlorophylla

Algorithm RMS, % Fmin, % Fmax, % Correlation Slope Intercept

1 0.31 (+17) 0.37 (�13) 1.16 (+12) 0.99 0.50 �0.003
3 0.28 (+27) 0.50 (�15) 1.80 (+11) 0.98 0.62 �0.008
4a 0.30 (+17) 0.41 (�11) 1.57 (+10) 0.99 0.57 �0.001
4b 0.29 (+21) 0.42 (�12) 1.41 (+12) 0.99 0.56 �0.001
4c 0.35 (+10) 0.48 (� 8) 2.40 (+7) 0.99 0.56 0.000
5 0.35 (+22) 0.49 (�16) 2.42 (+14) 0.99 0.76 �0.003
6 0.28 (+3) 0.74 (�5) 2.35 (+1) 0.94 0.30 �0.006
7 0.47 (+2) 0.22 (�4) 0.95 (+13) 0.85 0.37 0.018
8 0.30 (+11) 0.74 (�10) 2.56 (+7) 0.98 0.56 �0.004
9 0.39 (+12) 0.28 (�13) 0.96 (+11) 0.99 0.58 �0.005
11 0.51 (+2) 0.19 (�3) 0.96 (+4) 0.96 0.42 0.004
12 0.49 (+13) 0.23 (�10) 0.82 (+9) 0.97 0.53 �0.001

aColumns are the resulting values of RMS, Fmin and Fmax, and (in parentheses) the percentage change relative to the values in Table 4. The correlation,
slope, and intercept are based on regressions of Dsat versus DB.

Figure 3. Error in satellite-derived production [Dsat =
log(IPsat/IPalg)] associated with a simulated error in satellite
chlorophyll [DB = log(Bsat/Bsfc)] for algorithm 4b. This is
typical of relationships seen for other algorithms (Table 6).
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quantum yield approach (5 and 11). Algorithms 5 and 11
modeled the vertical distribution of chlorophyll, whereas the
4a–4c algorithms assumed a uniform chlorophyll profile.
Chlorophyll was multiplied by the modeled Pz/Bz and then
integrated over the water column to estimate depth-inte-
grated production.
[28] Two algorithms (3 and 7) belonged to the Depth

Integrated Model (DIM) category. In these models, there
was no vertical resolution of chlorophyll, light, or other
properties, but rather IP was derived from integrated (IB) or
average euphotic zone chlorophyll, surface PAR, and SST.
Details of the individual algorithms are provided in Appen-
dix A.

4. Results

4.1. Comparisons With 14C-Based Estimates

[29] The 12 algorithms varied widely in performance
(Figure 2 and Table 5). Estimates falling within a factor
of 2 of the 14C-based estimates are points bounded by the
dashed lines in Figure 2. Many of the estimates fell within
this factor-of-2 range, with the most notable exceptions
occurring at Antarctic stations (open and solid triangles) and
at PROBES stations in the Bering Sea (solid diamonds).
[30] Performance indices are listed in Table 5. As a

benchmark, RMS values of <0.3 indicate agreement within
a factor of 2. The RMS values comprise a random error
(indexed by S ) and a systematic error or bias, M. Most
algorithms exhibited large biases as indicated by nonzero
values of M, which translated to median ratios, Fmed,
ranging from 0.42 (algorithm 11) to 1.4 (algorithm 8). If
the biases could be eliminated, the RMS error would equal
S, in which case 10 of the 12 algorithms would be within a
factor of 2 (S < 0.3). It may be possible to eliminate biases
by reparameterizing the underlying relationships between
production, chlorophyll, and light. The sensitivity of the
algorithms to model parameterization may be seen by
comparing results for algorithms 4a, 4b, and 4c, which
differed only in their parameterization of PB

opt (the TIM
equivalent of PB

max).

4.2. Effect of Bsat Error

[31] Errors in the satellite chlorophyll algorithm were
simulated using a random number generator that introduced
a factor-of-2 error in Bsat. Considering the magnitude of the
Bsat errors, the resulting increases in IPsat errors (Table 6)

were remarkably small. Numbers in parentheses are the
relative changes in algorithm performance compared with
their corresponding values in Table 5. The RMS differences
increased between 3 and 27%, chiefly due to increases in S,
as reflected by the expanded one-sigma range of F. Algo-
rithm 6 seemed the least sensitive to the chlorophyll errors,
while algorithms 3 and 5 showed the greatest sensitivity.
[32] Regressions of Dsat = log(IPsat/IPalg) versus DB =

log(Bsat/Bsfc) provided additional insight concerning the
sensitivity of IP estimates to errors in Bsat. The results for
algorithm 4b shown in Figure 3 are typical. In all but three
cases, correlations between Dsat and DB were >0.97; all were
>0.85. These high correlations reflect the deterministic
nature of the relationships between IPalg and Bsfc. For any
algorithm, if IPalg were directly proportional to Bsfc, then the
regression of Dsat versus DB would have a slope of 1.
Instead, the slopes ranged from 0.30 to 0.76, indicating that
errors in Bsfc produced less-than-proportionate errors in IP.
This is due, in part, to the nonlinearity of IP with respect to
chlorophyll, which affects the depth of integration as well as
the light-harvesting capacity of the phytoplankton. Most
slopes fell between 0.5 and 0.6, which is consistent with
several studies [Eppley et al., 1985; Morel and Berthon,
1989; Morel, 1988], which found that IP varies approxi-
mately as

ffiffiffiffiffiffiffi
Bsfc

p
. The algorithm having the smallest slope

(algorithm 6) was the one least affected by errors in Bsfc

based on changes in its performance indices. Likewise, the
two highest slopes correspond to the two algorithms (3 and
5) that showed the greatest sensitivity.

4.3. Regional Comparisons

[33] Performance indices for pooled results from the nine
regions are listed in Table 7. The PROBES (Bering Sea)
region was the only case where the algorithms, on average,
overestimated the 14C-based estimates (by 14%). In all other
regions the algorithms underestimated the 14C-based esti-
mates (between 5 and 52%). The PROBES (Bering Sea)
region had the lowest pooled RMS (0.23), whereas the
EqPac equator had the highest value (0.50), largely because
of a high negative bias (M = –0.32). No region was
uniformly better or worse for all algorithms. Individual
algorithm RMS values (not shown) ranged from 0.19 to
0.47 in the PROBES region and from 0.13 to 0.79 in the
EqPac equator region. The Arabian Sea had the three lowest
RMS values (0.07, 0.07, and 0.06, which were for algo-
rithms 6, 7, and 8, respectively).

Table 7. Performance Indices for Pooled Data Within Each Region (Data Set)

Region n M S RMS Fmed Fmin Fmax

AMERIEZ 7 �0.02 0.40 0.40 0.95 0.65 1.47
SUPER 10 �0.16 0.23 0.28 0.70 0.68 1.08
EqPac nonequator 13 �0.14 0.28 0.31 0.72 0.65 1.15
NABE 12 �0.07 0.30 0.31 0.84 0.69 1.25
EqPac equator 8 �0.32 0.38 0.50 0.48 0.49 1.06
Arabian Sea 12 �0.19 0.26 0.32 0.65 0.64 1.08
PROBES 9 0.06 0.23 0.23 1.14 0.84 1.33
MARMAP 8 �0.06 0.40 0.40 0.88 0.64 1.40
Palmer LTER 10 �0.12 0.25 0.27 0.76 0.69 1.13
Total 89 �0.12 0.31 0.33 0.76 0.65 1.22
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[34] The two Antarctica regions (Palmer and AMERIEZ)
appeared to have the worst results, judging from outliers in
Figure 2, and yet pooled errors from these regions did not
have especially high values of RMS or M. These regions
included the lowest and highest values of primary produc-
tion, as well as extremes in other variables. The apparent
poor performance might actually be a result of the range in
the Antarctic data causing high and low values to be more
conspicuous.
[35] The two-way (regions and algorithms) ANOVA

confirmed what was obvious from Figure 2, namely, that
there were highly significant differences among regions
[F(8,960) = 30.4; p � 0.0005] and among algorithms
[F(11,960) = 80.9; p � 0.0005]. The algorithm-region
interaction was also significant [F(88,960) = 5.7; p �
0.0005], indicating that algorithm performances were
region dependent.

4.4. Algorithm Comparisons

[36] Although there were significant differences among
algorithms, pairwise comparisons revealed high correlations
(>0.9) in many cases. In general, the degree of correlation
was unrelated to the algorithm complexity or category
[Behrenfeld and Falkowski, 1997b]. Examples of several
highly correlated pairs are illustrated in Figure 4. The two
algorithms most highly correlated were 9 (WRM) and 4b

(TIM). The three best-performing algorithms of each type [1
(WRM), 3 (DIM), and 4b (TIM)] were strongly correlated
with one another. From these results it is clear that the
structure or complexity of an algorithm seems to have no
relationship to its performance.

5. Discussion

[37] Some of the variance in performance is likely due to
methodological differences within the test data set itself,
particularly in the diversity of 14C incubation methods.
Short-term incubations (e.g., the Palmer LTER data)
generally approximate gross primary production, whereas
longer-term (e.g., 24-hour) incubations more closely
approximate net primary production. If the algorithms were
parameterized to yield net primary production, then they
should consistently underestimate the Palmer LTER data.
From Table 7, we see that the algorithms did, in fact,
underestimate Palmer data, but to a lesser extent than the
JGOFS data sets (EqPac and Arabian Sea), which were 24-
hour incubations. There appeared to be no trends relative to
the type of incubation (whether in situ, simulated in situ, or
in a photosynthetron).
[38] The data furnished to participant teams did not

include the year. In retrospect, we think this might have
been a mistake, particularly in areas such as the equatorial
Pacific where interannual variability is high and well
understood. Another reason the year is important is that
the ‘‘clean techniques’’ used for the past 2 decades gen-
erally produce higher estimates of primary production
[Fitzwater et al., 1982]. These considerations would only
apply if algorithms somehow adjusted for interannual
variability or the technique used. Since the year of the
measurement was not provided, the algorithms made no
adjustment for these factors. It is interesting that the oldest
data set (PROBES, 1979–1981) was the only one in which
algorithms overestimated the 14C-based production, a result
that could be explained if the algorithms had been para-
meterized for clean techniques. The highest negative bias
was in the equatorial Pacific, where, on average, algorithm
predictions were only half the measured IP values, but
these data (Eqpac equator, February–October 1996) were
from a ‘‘normal’’ year, before the onset of the 1997–1998
El Niño. This does not explain why the algorithms would
be too low, assuming they were also parameterized for
normal conditions.
[39] A comparison of algorithm predictions with meas-

urements made at discrete locations does not account for
the real value of the remote sensing measurement, namely,
the improved spatial and temporal coverage afforded by
satellite observations. The coverage and long-term consis-
tency afforded by remote sensing can compensate to some
degree for its lack of accuracy. Ideally, both ship-based and
satellite measurements will be used to monitor for changes
in primary production at large scales. A robust integrative
model, assimilating both in situ and remotely sensed data,
will likely be required. A relatively simple technique has
been demonstrated with CZCS data whereby global satellite
maps are adjusted by blending them with in situ measure-
ments [Gregg and Conkright, 2001]. The result is to

Figure 4. Scatterplots comparing algorithms 1 (WRM), 3
(DIM), 4a (TIM), 4b (TIM), and 9 (WRM).
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remove biases found in the satellite products. We observed
significant biases relative to the 14C data and also when
comparing algorithms with one another. We strongly urge
that additional effort be invested to understand why algo-
rithms differ systematically from one another and from the
14C data.
[40] The round-robin experiments elicited some debate

as to whether computationally complex algorithms are
worthwhile. The fact that simpler algorithms (DIMs and
TIMs) performed as well as or better than complex
algorithms (WRMs) suggests that the computational com-
plexity may be unnecessary and, in fact, may be ill
advised given concerns about scaling (see below). How-
ever, several participants argued in favor of the highly
resolved models. They maintain that computational com-
plexity is not an issue, because of the speed of modern
computers, whereas the advantage is that it links algo-
rithms to the experimental methods, carried out at the
same scales, which inform our understanding of photo-
synthesis in the ocean [Kirk, 1994; Falkowski and Raven,
1997]. Such detailed algorithms have a greater opportu-
nity to incorporate future advances in remote sensing that
might provide information on accessory pigments, absorp-
tion by dissolved organic matter, or fluorescence yield. So
far, however, there has not been a clear demonstration
that additional complexity improves the performance of
algorithms.
[41] Scaling issues are potentially an important concern

that should be addressed with more rigor [Bidigare et al.,
1992; Campbell et al., 1995]. Satellite-derived fields repre-
sent mean properties at much larger scales than the in situ
data used to parameterize the algorithms. Typically, satel-
lite-derived primary production represents the mean pro-
duction over an area of at least 1 km2 (often much larger)
and over timescales of a week or longer. Many of the
algorithms employ nonlinear relationships that were derived
from measurements made at the spatial scale of an incuba-
tion bottle and at the timescale of hours. When the same
models are applied to chlorophyll, light, and temperature
averaged over the satellite scales, the result is not necessa-
rily the mean primary production at the larger scale.
Variance existing within the larger ‘‘averaging bin’’ affects
the mean IP at the larger scale, but this variance is generally
not incorporated into model parameterizations (for a good
discussion of this issue see Trela et al. [1995]). This points
to the importance of matching the scales at which the
models are parameterized to the scales of the satellite
products.
[42] Satellite-derived primary production is much more

difficult to ‘‘validate’’ than many of the other derived
properties such as chlorophyll or SST. The latter can be
validated by obtaining in situ measurements at the time of a
satellite overpass. Although the spatial scale of the in situ
measurement would not match that of the pixel (1 km2), at
least the two would be simultaneous. Because incubations
take several hours, the in situ primary production measure-
ment will never match the timescale of a polar-orbiting
satellite. At best, one can compare the estimate for a
particular day and pixel. A more elaborate validation effort
would be to observe diurnal changes in chlorophyll and

light and then consider how this variability affects the
satellite IP estimate.
[43] Knowledge of the vertical distribution of chlorophyll

and light should improve primary productivity algorithms.
The vertical distribution of light was represented in all
algorithms except the DIMs (3 and 7), but only five
algorithms modeled the vertical chlorophyll structure (1,
5, 8, 9, and 11). There was no evidence, however, that
modeling the vertical structure was advantageous. One of
the DIMs (algorithm 3), with no vertical resolution, did as
well as or better than the algorithms with depth-resolved
properties.
[44] Behrenfeld and Falkowski [1997a] demonstrated that

the single most important parameter needed to improve
algorithms is information on the maximum light-saturated
rate of photosynthesis, PB

max (or P
B
opt). In many of the tested

algorithms, temperature was used to derive this parameter,
but the lack of consistency among available models sug-
gests that temperature alone is not enough [Behrenfeld and
Falkowski, 1997b]. Recently, a new PB

max model has been
developed [Behrenfeld et al., 2002] that accounts for the
effects of nutrient availability and photoacclimation. For
this to be applicable to remote sensing, this model still
requires the development of methods to assess the nutrient
status and the physical structure, but results are promising.
An avenue of current research along these lines involves the
use of the natural (solar-stimulated) chlorophyll fluores-
cence, which can be remotely sensed by a sensor with
sufficient spectral and radiometric sensitivity [Letelier and
Abbott, 1996]. The MODIS instrument [Esaias et al., 1998]
is currently making such measurements. The fluorescence
yield may be inversely related to the quantum yield of
photosynthesis [Falkowski and Kiefer, 1985; Kiefer and
Reynolds, 1992], and thus if reliable measures of chloro-
phyll, PAR, and chlorophyll fluorescence can be made,
these may be used to parameterize PB

max. A combination
of satellite and in situ measurements will be needed to
address these issues.

6. Conclusions

[45] Conclusions related to the four questions addresseed
by this study are summarized as follows:
[46] 1. How do algorithm estimates of primary production

derived strictly from surface information compare with
estimates derived from 14C incubation methods? The 12
algorithms tested varied widely in performance. The best-
performing algorithms agreed with the 14C-based estimates
within a factor of 2. Two of these algorithms have been
adapted by NASA for producing primary productivity maps
with MODIS data. Most of the algorithms had significant
biases causing them to differ systematically from the in situ
data. A concerted effort should be made to understand the
cause of the biases and to eliminate them if possible.
[47] 2. How does the error in satellite-derived chlorophyll

concentration affect the accuracy of the primary productiv-
ity algorithms? The relative errors in primary productivity
(Dsat) resulting from the simulated errors in surface chlor-
ophyll concentration (DB) were highly correlated with DB.
This fact reflects the deterministic relationship between
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production and chlorophyll in the underlying models. The
slopes of the regressions (Dsat versus DB) ranged between
0.3 and 0.8, indicating that errors in surface chlorophyll
produce less-than-proportionate errors in IP.
[48] 3. Are there regional differences in the performance

of algorithms? There were significant regional differences,
as well as algorithm-region interactions, indicated by the
ANOVA results. No one region was uniformly better or
worse for all algorithms. The region with the most serious
biases was the equatorial Pacific, where algorithms under-
estimated in situ measurements by a factor of 2.
[49] 4. How do algorithms compare with each other in

terms of complexity vis-a-vis performance? Many of the
algorithms were highly correlated with one another. This
was not surprising, since several are based on the same
models, but what was surprising was that the level of agree-
ment had no apparent relationship to the mathematical struc-
ture or complexity of the algorithms. In some cases, complex
algorithms based on depth-, time- and wavelength-resolved
models were highly correlated with simpler algorithms that
were time and/or depth integrated. There were distinct sys-
tematic differences between algorithms. A future effort to
understand systematic differences is strongly recommended.

7. Future Considerations

[50] Four of the algorithms tested are now being applied
operationally to satellite data, or are planned for use with
near-future missions. A third round-robin exercise is cur-
rently underway. In the third round robin, algorithms are
given global fields of satellite-derived chlorophyll, SST, and
PAR, and a detailed comparison of the algorithms is being
conducted to determine how and where they differ.
[51] In accordance with our recommendation, future

round robins will not be blind. The anonymous nature of
the results presented here seriously diminishes their useful-
ness beyond the participants themselves. A more open
approach would have facilitated detailed comparisons
between algorithms to investigate, for example, why there
were systematic differences (e.g., Figure 4). The only way
this could have been done under the ground rules of a blind
comparison would have been if the ATS ran the codes
instead of the development teams. The level of effort
involved on the part of the ATS was not feasible at the
time this exercise was conducted.
[52] Comparisons with in situ data are also being made in

the ongoing round robin. Algorithms will be compared with
over 1,000 in situ measurements, all made according to
JGOFS protocols. The number of stations (89) used for
evaluating algorithms in the second round robin was much
too small to adequately characterize the performance of
algorithms. The goal of the algorithms should be net primary
production, because that is what both land and ocean satellite
products are intended to represent [Behrenfeld et al., 2001].
Thus 24-hour in situ incubations are the preferred method.

Appendix A: Algorithms

A1. Algorithm 1

[53] This algorithm employed a photosynthesis-irradiance
relationship with physiological P versus E parameters (a

and Pmax) taken from the literature. The relationship of
Eppley [1972] was used to compute Pmax as a function of
temperature. The spectral downwelling irradiance incident
at the surface was estimated based on the 5S code [Tanré
et al., 1990] and on cloudiness determined as the ratio of the
given PAR to clear-sky PAR estimated from the model.
Chlorophyll profiles were based on statistical models that
were selected based on the upper (surface) chlorophyll
concentration as an index of the ‘‘trophic level’’ [Morel
and Berthon, 1989; Berthon and Morel, 1992]. A bio-
optical model, based on optical measurements made at
sea, was used to propagate the radiative field through the
water column. The shapes of the algal absorption spectra
were derived from in vitro experiments. The magnitude of
the spectra employed a statistical analysis of chlorophyll-
specific absorption of algae as a function of the trophic level
[Bricaud et al., 1995] and the Wozniak et al. [1992] results
concerning variations in the quantum yield with trophic
level [see Morel et al., 1996].

A2. Algorithm 3

[54] Chlorophyll concentration was assumed to be uni-
form over the euphotic layer, and IP was computed as: IPalg
= PBBsfcZm, where PB is the daily primary production rate
per mg chlorophyll and Zm is the depth of the 1% light level.
A simple PB versus E model was used to compute PB as a
function of the average PAR within the euphotic layer, E =
E0/4.6. The P

B versus E model used a constant value of a =
0.11 mg C (mg Chl)�1 h�1 (W m�2)�1 from Platt et al.
[1991] for Atlantic noncoastal waters and used a relation-
ship in which PB

max depends on SST [Eppley, 1972].

A3. Algorithms 4a–4c

[55] In these algorithms the relationship between daily
carbon fixation and daily average PAR at each depth was
calculated using a constant slope for the light-limited region
of the water column and using various models for the
maximum photosynthetic rate (Pb

opt). The three versions
differed with respect to the models used for Pb

opt. Algorithm
4a employed a seventh-order polynomial fit to empirical
data as described by Behrenfeld and Falkowski [1997a];
algorithm 4b used a modification of the Eppley model as
described by Antoine and Morel [1996a]; and algorithm 4c
assumed a constant value of Pb

opt equal to 4.6 mg C (mg
Chl)�1 h�1. The chlorophyll profile was assumed to be
constant and equal to the surface value.

A4. Algorithm 5

[56] In this algorithm a chlorophyll-specific absorption
coefficient for PAR was modeled as a function of time of
year, ranging from 0.006 to 0.015 m2 (mg Chl)�1, with the
maximum occurring in the summer months. The total
attenuation coefficient for PAR included phytoplankton
absorption, together with water and detrital attenuation,
and then PAR irradiance profiles, Epar(z), were derived
according to Beer’s Law. Chlorophyll was assumed to have
a Gaussian-shaped subsurface chlorophyll maximum for
surface values <0.4 mg m�3 and was assumed constant with
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depth, otherwise. Production as a function of depth was then
calculated using an irradiance-dependent formulation for
quantum yield together with phytoplankton absorption and
Epar(z), and production was then integrated over depth.

A5. Algorithm 6

[57] This algorithm calculates the spectral radiation
absorbed by phytoplankton and multiplies that by a
quantum yield to compute the hourly rate of primary
production at each depth. The solar irradiance is split into
spectral components via the 5S radiative transfer code
[Tanré et al., 1990], and the spectral light field is propa-
gated through the ocean using very simple two-stream
approximations. The absorption and scattering coefficients
required for this were obtained from the literature [Smith
and Baker, 1981; Pope and Fry, 1997; Bricaud et al.,
1995; Gordon and Morel, 1983; Petzold, 1972]. All
absorption calculations were carried out spectrally and
then integrated (400–700 nm). Quantum yield was calcu-
lated using a parameterization based on maximum quan-
tum yield of 0.03 mol C (mol quanta)�1 and a light-
dependent term. The chlorophyll profile was assumed to
be vertically uniform.

A6. Algorithm 7

[58] This algorithm is based on empirical relationships
developed by the author from data obtained on many
expeditions in tropical, temperate, and polar regions. The
primary production data was from half-day in situ incuba-
tions, and chlorophyll was measured by spectrophotometric
methods without applying a correction for phaeopigments.
Estimation of the daily primary production was obtained
using a ‘‘psi-based’’ formulation: IP = y 	 E0 	 DL 	 IB,
where y (‘‘psi’’) was empirically modeled as a function of
temperature for three trophic zones determined by the sur-
face chlorophyll level. E0 was the daily incident radiation;
DL was the hours of daylight, and IB was empirically
modeled from the author’s own data, where different
models were applied depending on the surface chlorophyll
level and the zone (tropic, temperate, or polar).

A7. Algorithm 8

[59] This algorithm employed a photosynthesis-irradiance
relationship whose parameters were determined statistically
for the biogeochemical province in which the station is
located [Longhurst et al., 1995]. Similarly, the vertical
chlorophyll profile was based on statistical models of
profiles for each province. Surface incident irradiance was
determined based on cloudiness (in a manner similar to that
used by algorithm 1). A full radiative transfer code was then
used to propagate spectral irradiance downward through the
water column.

A8. Algorithm 9

[60] This algorithm is similar to that described by Morel
[1991]; solar spectral irradiance was estimated using the
Gregg and Carder [1990] model with a wind speed of 4 m
s�1, water vapor of 2 cm, and visibility of 23 km. Clear-sky

surface spectral irradiance was scaled to the measured
surface PAR. The diffuse downwelling attenuation coeffi-
cient was estimated as the sum of the total absorption
coefficient plus backscattering coefficient divided by the
average cosine. Methods for estimating total absorption and
backscattering are from Morel [1991, 1988]. The vertical
profile of chlorophyll was simulated using the models of
Morel and Berthon [1989], and the temperature dependence
of PB

max was based on an Eppley model as modified by
Antoine and Morel [1996a]. A constant value of 0.033 m2

(mg Chl)�1 was used for the chlorophyll-specific absorption
coefficient at 440 nm. Daily primary production was deter-
mined by trapezoidal integration in hourly time steps over
the photoperiod and at 0.5-m-depth intervals.

A9. Algorithm 11

[61] This algorithm used input data on surface chloro-
phyll, temperature, and light and estimated vertical profiles
of these three properties over the euphotic zone. The depth
distributions of chlorophyll and temperature were estimated
using empirical relationships derived from a large globally
distributed data set. The daily production at each depth was
calculated as the product of chlorophyll, the daily PAR
(Epar), and the chlorophyll-specific light utilization effi-
ciency (y). The chlorophyll-specific light utilization effi-
ciency, y, was constrained not to exceed a theoretical
maximum based on the ambient temperature.

A10. Algorithm 12

[62] In this algorithm the light field was spectrally and
vertically resolved, but a uniform vertical distribution of
chlorophyll was assumed. The algorithm calculation
requires knowledge of surface chlorophyll concentration,
surface light, temperature, mixed layer depth, and the
concentration of a limiting nutrient. From this information,
estimates of the P versus E parameters were made, and thus
P was determined at each depth and integrated to estimate
IP.
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