
HAL Id: hal-03482906
https://hal.science/hal-03482906v1

Submitted on 25 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Neural network segmentation methods for fatigue crack
images obtained with X-ray tomography

Ce Xiao, Jean-Yves Buffiere

To cite this version:
Ce Xiao, Jean-Yves Buffiere. Neural network segmentation methods for fatigue crack
images obtained with X-ray tomography. Engineering Fracture Mechanics, 2021, 252,
�10.1016/j.engfracmech.2021.107823�. �hal-03482906�

https://hal.science/hal-03482906v1
https://hal.archives-ouvertes.fr


Neural network segmentation methods for fatigue crack
images obtained with X-ray tomography

XIAO Ce1, BUFFIERE Jean-Yves1,∗

INSA LYON MATEIS

a20 Avenue Albert Einstein, Villeurbanne

Abstract

Synchrotron X-ray tomography allows to observe fatigue crack propagation dur-

ing in situ tests. Accurately segmenting the 3D shape of the cracks from the

tomography image is essential for quantitative analysis. Fatigue cracks have

small openings which result in low contrast images making crack segmentation

difficult. Phase contrast available at synchrotron sources improves crack detec-

tion but it also increases the complexity of the image and human intervention is

generally used to help traditional segmentation methods. In this work, an image

segmentation method based on a convolutional neural network is developed to

replace the user interpretation of images. Combined with a ’Hessian matrix’

filter, this method can successfully extract 3D shapes of internal fatigue cracks

in metals.

Keywords: synchrotron tomography, crack segmentation,

convolutional neural network, fatigue

1. Introduction

X-ray Computed Tomography(CT) has become a well established charac-

terization technique in materials science. It allows to observe defects (cracks,

voids, inclusions) or phases in the interior of optically opaque samples with a
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spatial resolution close to that of optical microscopy (i.e. in the micrometer5

range). Because of its non destructive character, tomography is often used to

monitor the evolution of materials microstructure submitted to various exper-

imental conditions during in situ tests [1]. For example 3D images of damage

development in metallic samples during monotonic cyclic tests [2] [3], in Al al-

loys [4], steels [5], Ti alloys [6], Mg alloys [7] have been pulished. A detailed10

review can be found in [8]. With the development of faster detectors and more

brilliant sources, during one single test at a synchrotron facility, several tens of

3D images can be recorded. The quantitative analysis of such large data sets

must be carried out by automatic or semi automatic image analysis of binary

images obtained by segmentation. This step is crucial in the data processing15

chain; it must extract the phenomenon of study (cracks or pores formation un-

der mechanical loading, cell swelling or collapsing in a foam, phase coarsening

during heat treatment, particle tracking ...) from a gray scale image and turn

it into binary data.

A range of thresholding methods can be found in the literature: classic gray20

level threshold methods [9] combined with morphological operations [10] [11],

feature extraction methods [12] [13], machine learning methods [14][15], neural

network methods [16] [17].

Thresholding the gray level histogram is the simplest and most widely used

method for image segmentation, but it is highly sensitive to noise and artifacts25

and thus not very efficient in the vicinity of the crack tip where the crack opening

is low, even if the sample is under load. Feature extraction methods, including

Hough transform [18], finite plane integral transform [19] or filtering based on

Hessian matrix [20], assume that the crack has a prescribed shape in the image

such as a line (in 2D) or a plane or a portion of plane (in 3D). Such methods30

have been used for example in the case of bones [12] or concrete [21] for which

crack opening can be very small (lower than 1 µm). More recently, with the

development of machine learning algorithms, the random forest method [15] or

the convolutional neural network method [17] have been developed for image

segmentation. The basic ideas of those methods is to ’train’ the segmentation35
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algorithm on a set of manually segmented images (the ground truth). Recent

results on high resolution synchrotron images of Al alloys show that by using

such methods the total time required for segmentation is much lower than that

required by manual segmentation [22]. To the best of our knowledge, such

methods have not yet been applied for fatigue crack segmentation.40

Fatigue cracks in the interior of metals can be observed by laboratory tomog-

raphy or by synchrotron tomography. The challenges for segmenting the cracks

are different for the those two types of CT images. For the former, the limited

x-ray energy and signal-to-noise ratio give low contrast and relatively noisy gray

scale images (Figure 1.a and b). In synchrotron images, phase contrast helps45

for detecting the cracks, but the interpretation of the gray-level is more compli-

cated: because of diffraction effects the same crack can appear black or dark in

the reconstructed image depending on its opening. This type of contrast, which

will be described in more details in section 3 of the paper, poses a number of

challenges for automatic segmentation methods which have to be carried out at50

least partially manually. In this paper we propose to use deep learning meth-

ods to reproduce the user intervention for obtaining continuous, complete, and

physically meaningful 3D cracks.

The paper is organised as follows: first a segmentation method based on

the application of Hessian Matrix is described. This method which is very55

efficient for extracting planar features within noisy images (like lab tomography

images) is presented. Then a method based on a deep learning algorithm has

been used to threshold cracks in synchrotron CT images. The trained model

is used to segment successive images of the same specimen obtained during an

in situ fatigue test at different number of fatigue cycles showing the efficiency60

of the method. The effect of the input Ground Truth on the segmentation

results is then discussed using an image with a larger voxel size and different

reconstruction parameters.
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Figure 1: Reconstructed images of fatigue cracks obtained by laboratory (a)-(b) and syn-

chrotron x ray Tomography(c). Lab tomography: (a) Bearing steel after Rolling Contact Fa-

tigue Test, voxel=2.1 µm, Accel voltage 160 kV. Cracks connected to the sample surface (detail

A) appear with a better contrast than internal crack (detail B) because of lower opening; (b)

Al alloy sample, voxel size =size =2.5 µm, Accel voltage 160 kV; Synchrotron tomography: (c)

Al alloy sample, voxel size =1.3 µm, Beam energy 29keV, the distance between the detector

and the object: 15cm.

2. Methodology

2.1. Hessian matrix-based method65

As shown in Figure 2g, the method consists of three steps:

Step 1 subtraction filter

A smoothed image (3D median filter) of the crack is subtracted from the

original image bringing the crack in the foreground and reducing the noise level.

(Figure 2b). The value used for the window size for the median filter (11 voxels)70

is a compromise between a value small enough to reduce the processing time

and large enough to remove the crack from the matrix [23].

Step 2 Crack contrast enhancement

Inspired from a method developed for segmenting micro-cracks in bones [12],

a combination of linear bilateral, steerable and nonlinear bilateral filters (sub75

step i to k) is used for increasing the contrast and denoising the crack image.

- Substep i: Linear bilateral filter
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Figure 2: Algorithm flow chart of the Hessian matrix-based method: (a) 2D slice of a

laboratory tomography image from a bearing steel sample containing a crack (b) Output of

optimized subtraction filter (c) Output of linear bilateral filter (d) Output of steerable filter

(e) Output of nonlinear bilateral filter (f) Binarized image (g) algorithm flow chart of the

method.

Before calculating the Hessian matrix, it is necessary to smooth the image to

perform second order derivation operations. To do so, a bilateral 3D Gaussian

filter [24] is used; it allows to remove noise in the image while preserving the80

edges of the cracks. The equation of this filter is written:
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Where X(x,y,z) and Y(x,y,z) are the coordinates of a given pixel and its neigh-

bors, respectively, f(X) is the gray value of the input image (output of subtrac-

tion filter). σd1 and σd2 are the scale constants of the Gaussian distribution

(values corresponding to the different volumes investigated are given in A.1).85
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- Substep j: Steerable filter

To optimally enhance the contrast of cracks in the reconstructed volumes,

the 3D steerable filter based on the Hessian matrix proposed by F.Aguet [25] is

used. Some examples of Hessian matrix based methods for crack segmentation

can be found in the literature. For example, low contrast micro-cracks in human90

bones have been detected with this approach by A.Larrue et al.. Although in

this case the cracks were investigated by synchrotron tomography they present

some similarities with those shown in Figure 2.a like a low contrast due to low

opening [12][13]. Using the same idea, C.Chateau has used the eigenvalues of

the Hessian matrix to construct a contrast-enhancing filter to segment cracks in95

lightweight concrete; in that specific case the segmented cracks correspond to

the residuals of a Digital Volume Correlation calculation [21]. The basis of the

Hessian matrix based method is briefly summarised hereafter, more details can

be found for example in [20].

The eigenvalues of a Hessian matrix calculated for each pixel of an image100

represent the anisotropy of the variation of the gray value along the direction

of the corresponding vector. According to this, steerable filters can be designed

for different features detection, and here we use the planar detector [25]. For a

voxel belonging to a locally planar feature, the eigenvalues of the Hessian matrix

should be larger in one direction (the normal of the plane) and smaller in the105

remaining two directions. It is assumed that the shape of fatigue cracks corre-

spond to a series of adjacent planar portions of various sizes. The eigenvalues of

the 3D Hessian matrix are calculated at each voxel and its the maximum value

is assigned to the voxel.

- Substep k Nonlinear bilateral filter110

The output image of the steerable filter contains a lot of noise (see Figure 2d)

as the crack is not the only planar structure detected (Figure 2d). To keep only

those voxels belonging to the crack, a nonlinear bilateral filter [26] is used; it

combines the output of the steerable filter (substep i) and that of the linear
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bilateral filter (substep j); it is written:115

F(X) =
1

µ
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Where X(x,y,z) and Y(x,y,z) are the coordinates of a given pixel and its neigh-

bors, respectively, f(X) is the gray value of the input image (result of the linear

bilateral filter), S(X) is the value of the output image of the steerable filter.

σd1 and σd2 are scale constants of the Gaussian distribution. The term non-

linear means that in this bilateral noise filtering process, the output of the linear120

bilateral filter f(X), is different from the image (S(X), the output of the steer-

able filter) which is used to calculate the parameters of the filtered convolution

kernel. The results of this last filtering step shown in Figure 2.e.

Step 3 Double index maximum entropy threshold

To eventually obtain the binary image of the crack after those filtering steps125

the ‘two-index entropy threshold’ introduced by Bhowmik et al.. [10] is used

(equation 3). The first index is the gray value of a single-pixel and the second

one is the average gray value in the neighborhood. In our case the first index is

the average gray value in the in-layer neighborhood(3*3). The second indicator

g(x,y,z) correspond to the continuity between two adjacent layers (equation 3).130

For a given voxel, g(x,y,z) counts how many voxels (ignoring those at the edge

of the image) have close gray value and eigenvectors (computed in the Steerable

filter) within a radius w of the two adjacent layers (e.g. w=1, represents a 3*3

windows centered on the considered voxel in the two adjacent layers). The two

threshold values for each slice are chosen to maximize the information entropy135
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of each slice.

g(x, y, z) =
∑w

i,j=−w δ(x+ i, y + j, z ± 1)

δ(x+ i, y + j, z ± 1) =


1, if |f(x,y,z)−f(x+i,y+j,z±1)|

f(x,y,z) < α

and |d(x, y, z)− d(x+ i, y + j, z ± 1)| < β

0, else

(3)

f(x,y,z) is the output of the non linear filter, d(x,y,z) is the eigenvector of the

Hessian matrix calculated in the steerable filter. α and β are two parameters

which are tuned to achieve crack continuity (see appendix A).

2.2. Deep learning thresholding method for synchrotron CT images140

The global approach is divided into three steps: first, a 2D deep learning

method(U-net) provides a probability maps; second, the method described in

section 2.1 extracts the crack from the probability maps; third, the crack tip

is smoothed method (Alphashape method). The flowchart of the algorithm is

shown in Figure 3.145

2.2.1. U-net

In the last years, several deep learning methods have been proposed for

image classification and recognition (e.g. ImageNet,AlexNet ...) see [17] for

a review. In this work we use a convolutional neural networks (CNN) called

Unet, following the approach of Strohmann et al.. [22] who also used this type150

of algorithm for segmentation of the microstructural components of an Al-Si

alloy within a high resolution synchrotron tomography image.

The network(Unet) structure used here is shown in Figure 4. The encoder

procedure Step 1-4 aims at identifying features at different scales by a series

of convolution (Conv2D) and downsampling operations (Maxpooling2D). After155

each step, the image size is halved and the feature maps number is doubled. The

purpose of the decoder Step 6-9 is to restore the feature image to its original

resolution by Convolution (Conv2D) and upsampling operation (Bilinear inter-

polation). After each step in decoder, the image size is doubled and the feature
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Figure 3: Flowchart of the segmentation algorithm for synchrotron images. (a) 2D slice of a

synchrotron tomography image of a cast Al sample showing a crack (bottom arrow) and an

internal artificial defect (upper arrow), the crack also appears in Figure 6 with an improved

visibility; (b) Manually segmented image of (a) used as Ground Truth for training the U-net

network; (c) Probability map of (a); (d) Enhanced and denoised image obtained with the

Hessian matrix method; (e) Binarized image of (d); (f) 3D rendering image of (e); (g) 3D

rendering image with smoothed crack tip by Alphashape.

maps number is halved. Each output of the decoder is concatenated with the160

output of the encoder with the same dimension. A more detailed presentation

of the Unet method can be found for example in [17]. The details of each step to

recostruct the Neural work can be found in Table B.2 and the basic explanation

of the operations used here can be found in Table B.3.

As shown in the top part of Figure 4, the training process of the network165

consists first in generating a binary image with randomly initialized kernel val-

ues. From this image and the ground truth, a loss is calculated (loss function:
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binary cross entropy), from which updated kernel values are generated. With

those values a second iteration can start. The process is repeated for a given

number of iterations.170

The ground truth was obtained by manually segmenting some slices using

the pixel brush tool in matlab 1. The time to manually segment a 512*512

pixel image containing a crack is about 2 minutes (total time for 80 slices:

approximately 3hours). In order to avoid over-fitting, ‘data augmentation’ is

performed on the training data by using gray scale and manually segmented175

images rotated at a random angle.

The training and testing of Unet was implemented in Python 3.0 (Tensorflow

Keras), using Adam optimizer (learning rate=0.0005) and ‘binary-cross-entropy’

as a loss function. Training was carried out for 100 epochs each with 50 images

batch. The total training time of the Unet (input image size= 512*512) for each180

epochs is about 10 minutes on a standard PC with 16 GB DDR3 memory and

Intel(R) i5 Core 1.9 GHz2 (total time for 100 epochs 16h).

2.2.2. Hessian matrix based filter and Two-index entropy threshold

The output of the above described method is a 3D probability map (values

between 0 and 1). Such maps can be transformed into binary data by using a185

threshold [22]. Instead, in order to reinforce the crack 3D continuity we have

used the method described in section 2.1: the ‘Hessian matrix based filter’

is used first to detect planar structures belonging to the crack, the output is

thresholded using the ’2-index entropy threshold’.

2.2.3. AlphaShape190

The relatively jagged crack tip obtained after thresholding (Figure 3.e) is

finally smoothed as suggested by Lou et al.. [27] who used the ‘3D AlphaShape’

algorithm initially proposed by H.Edelsbrunner and E.P.Mucke [28].

1Image Labeler plugin in Matlab 2018
2This machine has been used for all calculations reported in this work
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Figure 4: Schematic explanation of the U-net training process and visualization of the network

structure. The details of each step to reconstruct the Neural work can be found in Table B.2

3. Results and discussion

3.1. Segmentation of crack images obtained by laboratory CT195

In principle Laboratory CT machines can reach voxel sizes which are com-

parable to those of synchrotron tomography. In practice, however, lab sources

suffer from i) a lower signal/noise ratio and ii) a non coherent x-ray beam (much

less coherent than that at a synchrotron source). The coherence produces phase

contrast which helps to detect sub voxel features [29]. Internal fatigue cracks200

visible on Figure 1a have a lower opening than surface ones. As shown in Fig-

ure 1a, the most visible cracks are those connected to the surface; cracks in the

bulk appear with a much lower contrast and are hardly visible on the raw image.

Such internal cracks represent a big challenge for thresholding. In Figure 1.a,

the voxel size is 2.1 µm. A lower voxel size could deliver a better image as shown205
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in [30] with a 0.7 µm voxel size also on rolling contact fatigue cracks in steels

3. However such small voxel sizes have at least two drawbacks. First, the sam-

ple dimensions are reduced [31] and, second, large exposure times are required.

In the above mentioned paper Danielsen et al.. [30] mention an exposure time

between 10 and 20s resulting in scanning times larger than 10h [32]. Such long210

scans cannot be used for in situ experiments. For those reasons one has very

often to bear with larger voxel sizes and/or shorter scans.

The result of the classical crack segmentation method on the internal crack

of Figure 1 is shown on Figure 5.b; the thresholding process is a follows: i)

contrast enhancement by brightness adjustment, ii) 3D Gaussian filtering de-215

noising iii) segmentation by using a threshold value on the grayscale histogram.

As can be seen on the figure, the crack with low contrast has not been prop-

erly detected. In the 3D rendering some parts of the crack are missing making

quantitative analysis very difficult. Figure 5 shows the results obtained on the

same crack by the Hessian matrix method described in section 2.1. A much220

more continuous crack is obtained even in crack sections with very low opening.

Another example is given in Appendix C on an Al sample. In both cases, the

proposed algorithm performs well compared to single value gray level histogram

threshold providing a much more continuous crack surface. It is likely, however,

that the real crack tip will remain undetected given the voxel size used4 but225

one can assume that the error remains constant along the crack front allowing

to capture the shape of the cracks with a reasonable accuracy. As explained in

section 1, being able to extract automatically crack fronts is a key issue for in

situ experiments where many successive crack fronts are recorded on a single

sample. The proposed algorithm can also help for thresholding cracks imaged230

by synchrotron tomography as explained in the next section.

3in that specific case the authors have also used different threshold values depending on

the crack thickness. Those values were defined manually.
4As a rule of thumb the spatial resolution is of the order of twice the voxel size
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Figure 5: Segmentation of a rolling contact fatigue crack obtained by laboratory CT. (a)

Reconstructed slice in the raw image (voxel size =2.1 µm) (b) and (d) Segmented slice and 3D

rendering obtained by classical gray level histogram threshold (c) and (e) Segmented slice and

3D rendering obtained by the Hessian matrix-based method. The Hessian matrix improves

the continuity of the binary crack in spite of its low contrast and opening.

3.2. Segmentation of crack images obtained by synchrotron tomography

3.2.1. Limits of the Hessian matrix based method

3D images of fatigue cracks have been recorded by synchrotron tomography

in a cast Al sample during a series of in situ ultrasonic fatigue experiments [33].235

The tests were carried out at PISCHE beamline of synchrotron SOLEIL, the

energy of the beam (filtered white beam) is 29keV the voxel size 1.3 µm. Figure 6

shows an image of one specimen after 1.91× 107 cycles. The fatigue specimen

contains an internal artificial defect (partly visible on the bottom left of the

figure) in order to foster internal crack initiation.240

The Hessian matrix method described in section 1 was used to segment

the crack observed in this sample. The result, shown in Figure 6.c is that
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this method fails at producing a continuous crack. This is because the contrast

created by the crack in the reconstructed image is different from that obtained

in laboratory CT. Because of the spatial coherence of the beam, some phase245

contrast appears at the crack surface.

More precisely, as shown in Figure 6.a, three different type of contrast (or

gray levels) can be observed:

- black (type 1 on Figure 3.a) for voxels belonging to a crack part with

opening larger than 1 voxel (attenuation contrast);250

- white (type 2 on Figure 3.a) for voxels belonging to a crack part with sub

voxel opening (phase contrast);

- white (type 3 on Figure 3.a) for voxels belonging to a streak artifact;

Cracks which propagate in metals from internal defects grow in an environ-

ment which is not the ambient air. As a result the crack surfaces are extremely255

flat because they correspond to crystallographic planes [34]. The alloy stud-

ied here being a foundry alloy, the grain size is of the order of 600 µm so that

those flat surfaces can extend over several hundreds of micrometers. This cre-

ates some streak artifacts, mostly at the end of the cracks, where they seem

to extend the crack plane (Type 3 defect in Figure 6.a). Those artifacts are260

known in synchrotron tomography although their exact origin remains unclear.

F.P.Vidal et al. have discussed the origin of similar streak artifact in 3D images

of Ti/SiC fibre composites. For the authors, the existence of artifacts may be

due to the detector impulse response [35]. The same conclusions are given by

L.Croton et al. from simulation of phase contrast synchrotron tomography of265

the human brain [36]. C. Madonna et al. found similar streak artifact in syn-

chrotron tomography images of rock. According to these authors, they are due

to exponential edge-gradient effects [37]. Without a better understanding of the

origin of such artifact it is not possible, yet, to suppress them from reconstructed

images and one has to adapt the segmentation methods to their presence.270
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In practice, the only way to distinguish real cracks from artifacts relies on the

user judgement during thresholding, based on what can be expected from the

crack in terms of propagation direction. That is, cracks should start from the

internal defect, and grow towards the sample surface. Also, the crack opening

should decrease from the crack mouth (at the internal defect) to the tip.275

When some black segments are present in the image (Figure 6b) one can

reasonably assume that a crack is present; often those segments are joined by

white ones (Figure 6b) and the crack position corresponds to the union of those

segments. When the crack opening is too small, it appears as a white line (’Type

2’). Instead, the part marked ’Type 3’, is judged as a strike ‘artifact’.280

Because both strike artifacts and partially opened cracks appear in white it

is not possible to extract them simply based on their gray levels. It is the user

who decides which is which based on his/her experience and also by looking

at the crack shape/position in neighbouring slices or on slices with a different

orientation (e.g. orthogonal views like those labeled ’sectional view’ on Figure285

6). Needless to say that such a process is long (approximately 2 minutes per

slice), tedious, prone to errors and almost impossible to carry on more than a

few volumes. Typically however the quantitative analysis of an in situ fatigue

test might require thresholding tens of such 3D images. To try to solve this

problem which is a true bottleneck in data analysis, we have used the deep290

learning algorithm presented in section 2.2. The results obtained are presented

in the following section.

3.2.2. Application of deep learning based method to fatigue crack in synchrotron

tomography volume

The deep learning algorithm is used to segment the volume shown in Fig-295

ure 6. As explained in section 2.2.1, 80 slices (out of 1200 for the whole image)

were manually segmented (70 for training and 10 for validation). To reduce the

computation time, the original image (1200*1200) is resized to 512*512 pixels

before training the network.

The 3D probability map obtained from the whole block by the U-net algo-300

15



Figure 6: (a) 2D slice of a synchrotron tomography image of a cast Al sample showing an

internal fatigue crack initiated from an artificial defects (underlined by a dashed red line)

after 1.91 × 107 cycles (voxel size 1.3 µm). Three types of contrast are observed: 1.crack with

opening of the order or larger than 1 voxel (black); 2.crack with subvoxel opening (white);

3.streak artifact (white). (b) and (c) thresholding of the crack using the Hessian matrix

method described in section 2.1.

rithm has been first binarized using a threshold of 0.5. The result is shown

in Figure 7e and f and compared with the results obtained with the Hessian

matrix approach (Figure 7b and c). If the Unet network is more successful at

thresholding the crack, some discontinuities remain. In particular, the part of

the crack close to the internal defect surface is missing. Changing the threshold305

to a lower value enables to detect that part but a lot of noise appears in the map.

Improving the accuracy of the probability map would require more labor cost

(see next section). In addition, this method is a slice by slice 2D approach that

does not take advantage of the 3D information of the crack image. As a result,

as explained in section 2.2 we have used the Hessian based algorithm developed310

for lab CT images to obtain a binary image from the probability map. The re-

sult is shown in Figure 7g and h; the crack appears much more continuous and

the missing part connecting the internal defect is now visible. This is obtained
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thanks to i) the Hessian matrix method which reinforces the contrast of planar

features and ii) the 2-index max entropy threshold which takes advantage of the315

3D information in the probability map.

Figure 7: Results of different segmentation methods: volume obtained at PISCHE beamline of

synchrotron SOLEIL: energy=29keV, distance between specimen and detector=15cm, voxel

size=1.3 µm, crack observed after 1.91 × 107 cycles. (a) 2D horizontal slice; (b)∼(c) 2D seg-

mented slice and 3D rendering by ‘the Hessian matrix based method; (d) Probability map

of (a); (e)∼(f) the 2D segmented slice and 3D rendering by only using U-net; (g)∼(h) 2D

segmented slice and 3D rendering by deep learning based method.
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3.2.3. Application: segmentation of a series of synchrotron tomography volumes

obtained during an in situ test

For illustrating the ability of the trained algorithm to process series of dataset

automatically, we have used two volumes of the same sample reconstructed after320

1.84× 107 and 1.98× 107 fatigue cycles [33]. Those volumes were segmented

by the U-net model trained on a third volume as explained above. The seg-

mentation of the two new volumes using the trained network is relatively fast:

20 minutes on the computer mentioned above. The results are shown in Fig-

ure 8. In spite of the complex contrast visible on the 2D graylevel slices, the325

proposed method allows to obtain complete images of the two successive crack

positions (shown in blue and yellow). After registration of the reconstructed

volumes using the defect, the two reconstructed cracks superimpose satisfacto-

rily and, interestingly, one can see that the propagation of the crack detected at

1.84× 107 cycles is not uniform but a part of its front is arrested. Such crack330

arrests have been rarely reported in 3D; they can only be observed if the num-

ber of tomographic scans is large enough which results, as explained, in large

series of dataset which must be systematically analysed. As mentioned before,

it is unlikely that the thresholding process can detect the ”real” crack front,

nevertheless assuming that the error is roughly constant along the crack front335

(same opening level) a systematic thresholding/processing, even imperfect, can

help to detect interesting regions of the crack or cycling steps which can be

analysed with more details if necessary (for example using gray level 2D slices).

The proposed segmentation method delivers continuous crack surfaces, which

can be transformed into meshes for finite element calculations without further340

treatment.

As a final remark, in the proposed approach, each segmented 3D image

of a crack is independent of the previous or the next 3D image in the series,

although a clear continuity exist between them. Some deep learning algorithms

(Recurrent Neural Network - RNN or Long Short Term Memory-LSTM) have345

been suggested for taking into account the continuity between different data-
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sets in the field of 3D biomedical imaging [38] or in the prediction of gradual

ocular disease [39]. This type of algorithms could be used to ensure a better

compatibility between the different 3D images in the temporal sequence and

produce more reliable results on crack growth.350

Figure 8: Segmentation results obtained with the trained U-net model for two successive

volumes of an Al samples after 1.84 × 107 cycles (a,b,c) and 1.98 × 107 cycles (d,e,f). The

U-net is trained on a third volume at a different number of cycles. The systematic analysis

enabled by the algorithm of the successive volumes reveals a crack arrest on a region of the

crack front (see arrow on g).

3.2.4. Influence of reconstruction parameters

If the reconstruction of 3D images always use the Filtered Back Projection

algorithm, the contrast obtained in the raw images that are to be segmented

varies from one synchrotron source to the other because the beam coherence,
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the type and quality of optics, detector and scintillators vary. We have therefore355

tested the applicability of our segmentation method on a dataset different from

the one described above. The material used is the same (cast Al alloy) and

the experiments are also similar (same in situ rig and cycling conditions). the

images have been recorded at the SYRMEP beamline of Elettra synchrotron in

Trieste. The Energy of the beam (29keV) and the specimen to detector distance360

(15cm) are the same as in SOLEIL but the voxel size is different (2.2 µm)and

the Paganin method [40] for phase retrieval was used during reconstruction. As

shown in Figure 9.a, the contrast of the cracks is different from that observed in

Figure 6 or 7 (cracks with low openings tend to appear with white contrast only)

in part due to the Paganin filter which reduces the spatial resolution because it365

acts as a low-pass filter [41]. Distinguishing the cracks from the strike artifacts

becomes more difficult even with the eye.

First, the U-net network was trained with 70 manually segmented slices

(learning rate, type of loss function and other parameters are the same as in

section 3.2.1). After 100 epochs (50 images batch), the probability maps ob-370

tained are shown in Figure 9.b. Compared with the probability map observed

in Figure 7, overall, the cracks show a lower contrast and some parts are not

detected (e.g. the part labeled Part A in Ground Truth Figure 9.d). The 3D

rendering shown in Figure 9.c., shows that some parts of the cracks close to

the internal defect are completely missed during segmentation (see arrow on375

figure). To improve crack detection, the number of manually segmented images

was doubled (140 images). By doing so, Part A was detected in the probability

maps (Figure 9.e), but with a low contrast and, as a result, this part of the

crack is still not completely imaged in the 3D rendering. By looking closely

at the shape of Part A it was noticed that it is a crack which grows from the380

defect perpendicular to the stress direction (mode I) which is also the rotation

axis during the tomography experiment. Thus Part A only appears on a few

(approximately ten) of the horizontal slices (perpendicular to the rotation axis)

used for training the model. In practice, for manually thresholding that part

of the crack, the user would use the 3D information by looking at slices with385
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different orientation to confirm (or infirm) his/her interpretation.

In slices containing the rotation axis mode I cracks such as part A are indeed

more clearly observed (Figure 9.g). Therefore, 70 vertical slices of the same

volume were used to train the network. (Figure 9.j). By comparing Figure 9j

and h one can clearly see that the probability map is much closer to Ground390

Truth than when horizontal slices were used (compare with Figure 9d and e).

The new 3D rendering produced with the vertical slices (Figure 9.i), now shows

a more complete crack,with a fully detected Part A.

From the above results, we can conclude that the network should be trained

in the most favourable configuration, i.e. using slices where the cracks are the395

most evident to visualise by eye. From that point of view, however, the cracks

investigated here form a special case as they are very planar (crystallographic)

and strongly inclined with respect to the stress direction. Such cracks are there-

fore well detected/visible on slices perpendicular to the rotation axis. However,

in a more general case, cracks initiated from a surface during uni-axial tension-400

compression tests would generally grow in mode I and therefore it is advised to

train the model on slices containing the rotation axis. It also seems that the use

of a slightly larger voxel (allowing larger samples to be imaged) and a limited

loss of spatial resolution can be compensated by an increase in the number of

slices used to train the network but more data would be required to confirm that405

point. Similarly, the parameters of the neural network training (learning rate/

type of loss function /network structure, etc.) will also affect the segmentation

results. For example, changing the type of loss function has been shown to

improve the segmentation quality of different phases in synchrotron CT images

of an Al alloy [22]. These parameters can be seen more as a talent of the neural410

network learning. In this work, we focused more on the effect of different user

mind inputs on the same neural network. Some results obtained with different

loss function type and learning rate are shown in Appendix D.
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Figure 9: Effect of different inputs on deep learning based method segmentation results

(volume obtained at Elettra Synchrotron: energy=29keV ,distance between specimen and

detector=15cm, voxel size =2.2 µm reconstruction with FBP and Paganin). (a) 2D slice

perpendicular to the rotation axis (horizontal slice); (b)’Probability map’ obtained with 70

horizontal Ground Truth slices; (c) 3D rendering obtained with network trained using 70

horizontal Ground Truth slices; (d) Ground Truth of (a); (e) ’Probability map’ obtained with

140 horizontal Ground Truth slices; (f) 3D rendering obtained with network trained using

140 horizontal Ground Truth slices; (g) 2D slice parallel to the rotation axis (vertical slice)

corresponding to the black line shown in (a); (h) ’Probability map’ obtained with 70 vertical

Ground Truth slices; (i) 3D rendering obtained with network trained using 140 vertical Ground

Truth slices (j) Ground Truth of (g). In (i) a more complete crack is obtained.

4. Conclusion

With the development of fast tomography at synchrotrons facilities, scans415

typically last less than 5 minutes. As a result, in situ experiments monitored by
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tomography can generate a considerable amount of data. In the processing of

such data, thresholding is a bottleneck on which relies the efficiency and quality

of quantitative analysis. In this paper we have described several methods for

the thresholding of fatigue cracks in tomographic volumes. In a reconstructed420

3D image, such cracks can be quite difficult to threshold when their opening is

low, particularly in the case of laboratory tomography.

The first method described in this paper for thresholding fatigue cracks in

lab CT relies on and merges several approaches developed for bones or concrete.

A Hessian matrix approach coupled with a series of bilinear filters are used to425

detect flat features which connectivity in 3D is reinforced by the 2 index entropy

method. Examples of application for cracks obtained with relatively large voxel

sizes (allowing scan times of the order of 30 minutes) have been shown for two

different alloys.

In the case of synchrotron tomography, the thresholding process is made430

more complex by the coherence of the X-ray beam which produces diffraction

effects and artifact at the crack edges. A reliable segmentation of such images

normally involves a lot of human intervention and can hardly be automatic. We

have proposed a deep learning method which uses a U-net network to replace

human intervention during thresholding. By manually segmenting a limited435

amount of images (less than 2%) the software can be efficiently trained to detect

internal cracks in a cast Al alloy. The probability map obtained from the neural

network is thresholded using the algorithm developed for laboratory CT images.

Finally, without supplementary training, 3D images of the propagation of a

crack acquired during an in situ fatigue test have been successfully thresholded,440

showing the possibility to automatize the process. The same network was used

successfully on a data-set obtained at a different synchrotron with different

imaging and reconstruction conditions.
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Appendix A. Segmentation Parameters

Table A.1: Parameters used for crack segmentation. In the first row of the table: ‘Tomo

lab’=volume obtained by laboratory CT, ’Tomo syn’=volume obtained by Synchrotron CT.

Step Variable ER7(Tomo lab) Al(Tomo lab) Al(Tomo syn Soleil) Al(Tomo syn Elttra)

Substract filter window size(voxel) 11×11×11 11×11×11 None None

Linear bilateral filter window size(voxel) 5×5×5 5×5×5 5×5×5 5×5×5

Linear bilateral filter σd1 3 3 2 2

Linear bilateral filter σd2 0.3 0.3 0.2 0.2

Steerable filter window size(voxel) 3×3×3 5×5×5 3×3×3 3×3×3

Nonlinear bilateral filter window size(voxel) 5×5×5 5×5×5 5×5×5 5×5×5

Nonlinear bilateral filter σd1 3 3 3 3

Nonlinear bilateral filter σd2 0.3 0.3 0.3 0.3

2index maxentropy threshold α 0.3 0.3 0.2 0.2

2index maxentropy threshold β 0.3 0.4 0.2 0.2

Unet Learning rate None None 0.00001 0.00005

Unet Type of loss function None None Cross entropy Cross entropy
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Appendix B. Details about U-net

Table B.2: Detailed operations and parameters in the construction of the used U-net network

Step number Operation number Operation name Parameters

Step 1 Operation 1 Conv2D Kernel size=(3,3), filters number=64, activation function=Relu, Padding=1

Step 1 Operation 2 Conv2D Kernel size=(3,3), filters number=64, activation function=Relu, Padding=1

Step 1 Operation 3 MaxPooling2D Pool size=(2,2)

Step 2 Operation 1 Conv2D Kernel size=(3,3), filters number=128, activation function=Relu, Padding=1

Step 2 Operation 2 Conv2D Kernel size=(3,3), filters number=128, activation function=Relu, Padding=1

Step 2 Operation 3 MaxPooling2D Pool size=(2,2)

Step 3 Operation 1 Conv2D Kernel size=(3,3), filters number=256, activation function=Relu, Padding=1

Step 3 Operation 2 Conv2D Kernel size=(3,3), filters number=256, activation function=Relu, Padding=1

Step 3 Operation 3 MaxPooling2D Pool size=(2,2)

Step 4 Operation 1 Conv2D Kernel size=(3,3), filters number=512, activation function=Relu, Padding=1

Step 4 Operation 2 Conv2D Kernel size=(3,3), filters number=512, activation function=Relu, Padding=1

Step 4 Operation 3 MaxPooling2D Pool size=(2,2)

Step 5 Operation 1 Conv2D Kernel size=(3,3), filters number=1024, activation function=Relu, Padding=1

Step 5 Operation 2 Conv2D Kernel size=(3,3), filters number=1024, activation function=Relu, Padding=1

Step 5 Operation 3 Dropout Rate=0.33

Step 6 Operation 1 UpSampling2D Magnification=(2,2), Method=Bilinear interpolation

Step 6 Operation 2 Concatenate input=(output of Step 6.1, output of Step 4.2)

Step 6 Operation 3 Conv2D Kernel size=(3,3), filters number=512, activation function=Relu, Padding=1

Step 6 Operation 4 Conv2D Kernel size=(3,3), filters number=512, activation function=Relu, Padding=1

Step 7 Operation 1 UpSampling2D Magnification=(2,2), Method=Bilinear interpolation

Step 7 Operation 2 Concatenate input=(output of Step 7.1, output of Step 3.2)

Step 7 Operation 3 Conv2D Kernel size=(3,3), filters number=256, activation function=Relu, Padding=1

Step 7 Operation 4 Conv2D Kernel size=(3,3), filters number=256, activation function=Relu, Padding=1

Step 8 Operation 1 UpSampling2D Magnification=(2,2), Method=Bilinear interpolation

Step 8 Operation 2 Concatenate input=(output of Step 8.1, output of Step 2.2)

Step 8 Operation 3 Conv2D Kernel size=(3,3), filters number=128, activation function=Relu, Padding=1

Step 8 Operation 4 Conv2D Kernel size=(3,3), filters number=128, activation function=Relu, Padding=1

Step 9 Operation 1 UpSampling2D Magnification=(2,2), Method=Bilinear interpolation

Step 9 Operation 2 Concatenate input=(output of Step 9.1, output of Step 1.2)

Step 9 Operation 3 Conv2D Kernel size=(3,3), filters number=64, activation function=Relu, Padding=1

Step 9 Operation 4 Conv2D Kernel size=(3,3), filters number=64, activation function=Relu, Padding=1

Step 10 Operation 1 Conv2D Kernel size=(3,3), filters number=2, activation function=Relu, Padding=1

Step 10 Operation 2 Conv2D Kernel size=(1,1), filters number=1, activation function=Sigmoid, Padding=0
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Table B.3: Explanation list of technical terms using in Deep Learning, more details can bu

found in [22] [17]

Conv2D A 2D Convolution operation, which uses K convolution kernels (size: N ×N) which

are applied to the input image to produce K new images (called feature maps).

The feature maps size is the same as input image (while preserving

the edges, a process called padding).

Relu (rectified linear activation function) is a linear function that will output the input directly

if it is positive, otherwise, it will output zero. It has become the default activation function

for many types of neural networks because a model that uses it is easier to train and

often achieves better performance.

MaxPooling2D A 2D down-sample operation, which takes the maximum value within a M ×M window

and outputs a smaller image (generally half size).

Upsampling2D A 2D upsample operation, which uses bilinear interpolation to increase the

input image size.

Dropout The Dropout layer randomly sets input units to 0 with a frequency of rate, which helps

prevent overfitting. Inputs not set to 0 are scaled up by 1/(1 - rate) such that the sum

over all inputs is unchanged (0.33 and 0.5 are the commonly used empirical values of rate).

Concatenate Two batches of feature maps of the same size (one obtained during Encoding and one obtained

during Decoding) are stacked together and the channel of output is equal to their sum.

Softmax (normalized exponential function) produces a probability distribution of values between 0 and 1

from the last step of the network.
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Appendix C. Laboratory tomography: segmentation of a fatigue crack

in a cast Al alloy

A fatigue crack initiated from an artificial surface defect during ultrasonic fa-605

tigue has been observed in a cast Al sample by laboratory tomography. Because

of the sample size (3mm) a relatively large voxel size had to be used (2.5 µm)

resulting in a very low contrast for the crack (Figure C.10). In spite of those

difficult conditions the crack could be successfully segmented by the segmenta-

tion method described in this work (section 2.1). The total segmentation time610

is 2 hours.

Figure C.10: Segmentation of a fatigue crack observed by laboratory CT in a cast Al sample.

(a) 2D reconstructed slice (voxel size =2.5 µm) because of the small opening (unloaded sample)

the crack contrast within the Al matrix is very weak. (b) and (c) Segmented slice and 3D

rendering obtained by classical gray level histogram threshold (d) and (e) Segmented slice and

3D rendering obtained by the Hessian matrix-based method. The Hessian matrix improves the

continuity of the binary crack in spite of its low contrast and opening. In the 3D rendering, the

artificial hemispheric surface defect located on the surface is shown in red. Sample diameter

3mm, voxel size 2.5 µm, Accel. voltage 160 kV, scanning time 30 minutes.
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Appendix D. Effect of loss function and learning rates

A range of parameters and functions can be used to tune the Unet net-

work. In this work, as a first approach, we have investigated the number of

images composing the ground truth, two loss functions and two learning rates.615

The results obtained by varying the number of images have been shown in sec-

tion 3.2.4, in this part we summarize the comparison of results obtained with

two loss functions and learning rates. The two tested loss functions are the

dice loss and the binary cross-entropy. As shown in Figure D.11, at the same

learning rate (1× 10−5), with ‘dice loss’ the Unet model converges faster than620

with ’cross-entropy’, but the former ends up with a higher loss: 0.2 against 0.1

for cross-entropy. The same trend is observed on the validation images. More-

over, the predicted image obtained using cross-entropy appears closer to Ground

truth than when dice-loss is used.

Two different learning rates have been tested. As shown in Figure D.12.h625

and .g, the predicted image obtained with ‘learning rate=1× 10−5’ has less

noise than the one trained with ‘learning rate=1× 10−4’ and was selected.

34



Figure D.11: Effect of loss function on predicted image. (a) test image. Loss evolution

during training for ‘cross-entropy’ (b) and ‘Dice loss’ (c) (d) Ground Truth of test image. (e)

Probability map of test image obtained with ‘cross-entropy’; (f) Probability map of test image

obtained with ‘dice-loss’

Figure D.12: Effect of learning rates on predicted image. (a) 2D test image. (b) Probability

map obtained with ‘learning rate=1 × 10−4’ (c) ‘learning rate=1 × 10−5’.
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