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ABSTRACT
This paper presents a 3D simulation of interface debonding in composite material using 3D Discrete
Element Model (DEM). The simulation is based on the experimental results obtained by Guillebaud-
Bonnafous and al. [19]. A single fragmentation testing of an singer impregnated hemp yarn embedded
into a epoxymatrix was investigated. In DEM,matrix and yarn are supposed to be brittle materials and
follow a linear fracture model. The discrete elements of matrix are connected by the cohesive beams
whereas the one of yarn are connected by the spring links. The cohesive contact laws are implemented
to model interface debonding between yarn and matrix (yarn/matrix). Piecewise linear elastic laws
usually used in Cohesive Zone Models are retained in this work. The numerical results obtained by
DEM are compared with experiment data and finite element modeling on the stress-strain curve and
the fragmentation process in yarn during the test. This comparison allows to validate the models
used in DEM. To reduce the discrete elements number and save computational time, the bi-disperse
medium in DEM for matrix and yarn is specifically elaborated in this study.

1. Introduction
In composite material, the interface is commonly the sur-

face formed by a common boundary between fiber and ma-
trix. It plays an important role to transfer the load from the
reinforcement matrix to fiber. The failure mode, the frac-
ture toughness of composite material are directly influenced
by the interface properties [25]. When loading a composite,
the damage and fracture mechanisms can occur in the matrix
and/or in the fiber and/or at fiber/matrix interface. Interfa-
cial debonding may be a significant mechanism of energy
absorption leading to the failure of a composite.

To characterize the interface debonding properties, sev-
eral experimental technics have been used, such as the single
fiber pull-out test [8, 35, 40], the push-out test [7, 57], the
microbond test [36, 41] and the fragmentation test [4, 51].
In previous tests, the fiber/matrix interface is supposed to be
under pure shear behavior. The mechanical properties (shear
strength, friction,...) are identified from the experimental re-
sults.

Thanks to the simplicity in specimen preparation, conve-
nient testing and more informations about damage processes
can be obtained, the fragmentation test is widely used [15,
11]. This test is realized by applying a tensile load to a sin-
gle fiber embedded in a matrix (Fig.1a). The tensile stress
in the matrix transfers to the fiber via fiber/matrix interface.
When the tensile load increases, the first crack appears in
the fiber, because the failure strain of the fiber is much lower
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Figure 1: The fragmentation test: (a) typical specimen; (b)
saturation of fragmentation process, (c) matrix crack and (d)
matrix crack and interface debonding

than that of matrix. Then the fiber continues to break into
smaller fragments. This state is defined as the saturation
of fragmentation process in the fiber (Fig.1b). During the
test, the tensile stress in fiber, matrix and fiber/matrix in-
terface redistribute around the fiber break. The damage in
the specimen depends on the fiber/matrix interface strength.
For a high fiber/matrix interface strength, the crack occurs
and propagates into the fiber and the matrix (Fig.1c). Con-
trariwise, the interface debonding occurs between fiber and
matrix (Fig.1d).
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To study the fiber/matrix interface behavior, various nu-
merical models have been used. Ramzan Babaei and al. [6]
have developed a new interface model based on continuum
damage mechanics (CDM) to investigate the fiber-matrix in-
terfacial debonding in the composite material in 2D. Kelly
and Tyson [23] propose a constant shear stressmodel to study
the interface properties. This model allows to estimate the
interfacial shear strength from the final distribution of fiber
fragmented lengths. However, the constant shear stressmodel
is inconsistent while considering matrix plasticity [41, 44].
The fracture mechanics models is used in other studies [24,
31] to identify the interfacial fracture toughness, based on
debonding growth. The limitation is then to estimate the mi-
croscopic damage process (e.g. fiber/matrix interface debond-
ing, matrix crack). In order to improve the limits of these
models, the Cohesive ZoneModel (CZM) is proposed [9, 12,
45]. It allows to clarify the physical and mechanical behav-
ior of the interface debonding, the fragmentation process.

In some studies, the CZM have been implemented into
continuum method, like Finite Element Method (FEM) and
Extended Finite Element Method (XFEM) [20, 5, 34, 43,
38]. The tensile stresses transfer from matrix to fiber during
the fragmentation test. The effects of micro damage modes
(matrix crack, interface debonding) on fragmentation have
been studied [18, 50, 39, 22, 17]. However, arranging co-
hesive element everywhere in a model to predict complex
cracking paths is not the suitable way to do.

In order to overcome these difficulties of continuummodel,
the DEM is a relevant alternative. DEM is capable to nat-
urally capture the damages and their growth in composite
medium without preset paths [32]. It is not necessary to
remesh during the crack propagation. Several studies using
DEM to model the fracture behavior of composite materi-
als in 2D are presented in [55, 56, 37, 53, 52]. The pur-
pose of this research is to use 3D Discrete Element Method
for modeling the fracture behavior and fiber/matrix inter-
face debonding of composite material. Matrix and fiber are
supposed to be brittle materials and follow a linear fracture
model. Cohesive Contact Model (CCM) are implemented in
DEM to model interface debonding between fiber and ma-
trix. The DEM simulation is based on the experimental re-
sults obtained by Guillebaud-Bonnafous and al. [19].

In this paper, the DEM is first recalled. Then, the ge-
ometrical modelization of the composite medium as a bi-
disperse medium is presented; a 0◦ oriented single yarn is
considered at this stage. Next, the mechanical modelization
for yarn, matrix and yarn/matrix interface with CCM is de-
scribed. The following sections are devoted to numerical
fragmentation tests and conclusions.

2. Discrete Element Model in GranOO
workbench
TheDEMwas originally developed tomodel movements

within granular materials [13]. More recently, this method
was extended to model the fracture behavior of continuous
materials, such as brittle materials [29, 30, 26], concrete and

rocks [46, 33, 48], and composite [28, 47, 55]. In these stud-
ies, the material is modeled by an agglomerate of Discrete
Elements (DEs) interacting through bilateral cohesive links
to ensure the behavior of a continuousmaterial (Fig.2a). Spher-
ical DEs (3D [13, 10], circular (2D) [49, 29], or polyhe-
dral [27, 14] are commonly used in DEM. On the other hand
in accordancewith the physical properties ofmaterial, springs
and dampers links (Fig.2b), or cohesive beams (Fig.2c) are
usually employed. The microscopic parameters of cohesive
links are identified by a calibration process. Then, elasticity,
plasticity, viscosity and more complex behavior of material
can be addressed through these links. To model a continuum
material by DEM, the following four steps are required: (1)
Building of the discrete domain, (2) Choice of the rheologi-
cal model of the bonds, (3) Quantification of the rheological
model and (4) Implementation and application.

The discrete element software GranOO (Granular Object
Oriented workbench) developed in the lab [1] is used in this
study. The numerical resolution is based on Verlet velocities
explicit dynamics integration scheme [16]. This scheme al-
lows to calculate the discrete element position and velocity
(linear and angular) at each time step (from Eq.1 to Eq.4):

⃖⃗p(t + dt) = ⃖⃗p(t) + dt⃖⃗ṗ(t) + dt2

2
⃖⃗̈p(t) (1)

⃖⃗ṗ(t + dt) = ⃖⃗ṗ(t) + �1
dt
2
( ⃖⃗̈p(t) + ⃖⃗̈p(t + dt)) (2)

⃖⃗q(t + dt) = ⃖⃗q(t) + dt⃖⃗q̇(t) + dt2

2
⃖⃗̈q(t) (3)

⃖⃗q̇(t + dt) = ⃖⃗q̇(t) + �2
dt
2
( ⃖⃗̈q(t) + ⃖⃗̈q(t + dt)) (4)

where:
∙ t is the current time and dt is the integration time step.
∙ ⃖⃗p(t), ⃖⃗ṗ(t), ⃖⃗̈p(t) is the discrete element linear position,

velocity and acceleration.
∙ ⃖⃗q(t), ⃖⃗q̇(t), ⃖⃗̈q(t) is the discrete element angular position,

velocity and acceleration.
∙ �1, �2 is the numerical damping factor.
In present work, 3D spherical shape is used for discrete

element. To obtain a mechanical behavior representative of
continuous medium, a uniform dispersion of 25% between
maximum and minimum spheres’ radius is selected. Oth-
erwise, the cohesive beams are implemented to connect the
discrete elements (Fig.3a). Fig.3b shows the cohesive beam
in a loaded state involving displacements between centers
(O1O2) and rotations (�1�2) of the spherical discrete ele-
ments. These beams have a circular cylindrical shape. The
cohesive beam bond is defined by two geometrical parame-
ters (the length L� and the radius R�) and two mechanical
parameters (the Young’s modulusE� and the Poisson’s ratio
��). These parameters are calledmicroscopic parameters de-
noted by the symbol �. They are determined by a calibration
process [2].
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Figure 2: (a) DEM discretization of a continuous medium material, (b) the spring model and (c) cohesive beam model connect
DEs.
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Figure 3: Illustration of the cohesive beam bond in GranOO at (a) relaxing state and (b) loading state [1]

Table 1

Verlet dynamics explicit scheme

Input: ⃖⃗p(0), ⃖⃗ṗ(0), ⃖⃗̈p(0), ⃖⃗q(0), ⃖⃗q̇(0), ⃖⃗̈q(0)
t ⟵ 0
for all iteration n do

for all discrete element i do
⃖⃖⃗pi(t + dt) ⟵ Linear position Verlet scheme (Eq.1)
⃖⃖⃗fi(t + dt) ⟵ Sum of force acting on i
⃖⃖̈⃗pi(t + dt) ⟵ Acceleration from Newton's second law
⃖⃖̇⃗pi(t + dt) ⟵ Linear velocity Verlet scheme (Eq.2)

⃖⃖⃗qi(t + dt) ⟵ Angular position Verlet scheme (Eq.3)
⃖⃖⃖⃖⃗Mi(t + dt) ⟵ Sum of momentum acting on i
⃖⃖̈⃗qi(t + dt) ⟵ Angular acceleration from momentum law
⃖⃖̇⃗qi(t + dt) ⟵ Angular velocity Verlet scheme (Eq.4)

end for

t ⟵ (t + dt)
end for

3. Building the discrete domain
3.1. Experimental basement

This study is based on the experimental results of a single
fragmentation test [19]. Hemp yarn and epoxy matrix are
considered. The mechanical properties of these materials
are summarized in Tab.2.

The test configuration is shown in Fig.4. Type I and type
II geometries have been retrained for specimens in order to
ensure a sufficient stress triaxiality and properly initiate the

Table 2

Mechanical properties of hemp yarn and epoxy matrix

Young's modulus of hemp yarn 10 GPa
Ultimate strain of hemp yarn 0.021
The radius of hemp yarn 150 �m
Matrix Young's modulus (epoxy) 3.322 GPa
Matrix Poisson's ratio 0.39
Matrix yield stress 69 MPa

fragmentation process of the hemp yarn. Single yarn com-
posite specimens were tested in uniaxial tensile loading with
a load cell of 1 KN and a crosshead speed of 0.5 mm/min. In
these tests, the stress field is revealed by the photoelasticime-
try technique. Therefore, the specimens were placed into a
circular polariscope during tensile loading (Fig.4b). Fig.5
shows the fragmentation stress �frag and longitudinal strain
"frag corresponding to each yarn fracture for both specimen
geometries. The fragmentation process begins at the same
strain "frag (around 2.1%) for the different tested specimens.
This value corresponds precisely to the single hemp yarn ul-
timate strain mentioned in (Tab.2) while the fragmentation
stresses are completely different from the ultimate stress of
the single yarn.
3.2. The discrete domain creation

In this work, the middle part of a type I specimen is se-
lected and modelized with DEM (Fig.6a). The discrete do-
main and its dimensions are shown in Fig.6b. A bi-disperse
medium is elaborated for the composite. The DEs for model-
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(a) (b)

Figure 4: (a) Specimen geometry and (b) experimental technical used of 0◦ oriented single hemp yarn/epoxy composite specimen
[19]

Figure 5: Stress (a) and strain (b) reached for each yarn fragmentation during fragmentation tests on single hemp yarn/epoxy
composite specimens [19].

ing hemp yarn are greater than the ones for matrix. Indeed,
for hemp yarn, the DE radius is equal to the radius of the
yarn that supposed to be of circular cylindrical shape. The
DEs are then stacked along the yarn with geometric conti-
nuity overlapping to properly represent the yarn/matrix in-
terface. The overlap value between discrete element i and
j of yarn is characterized by the ratio: d∕(Ri + Rj), with
d = (Ri +Rj −OiOj) is the overlap value between discreteelement i and j, Ri=Rj are the radius of discrete element i
and j, respectively. OiOj is the distance between centers of
discrete elements i and j (Fig.7).

The discrete domain was created by a filling procedure.
This procedure consists in building a compacted discrete do-
main [2] following the objectives: i) reach a rate of com-
paction for modeling correctly the continuum, ii) insure the
medium isotropy (yarn andmatrix are supposed to be isotropic),

iii) preserve the interface geometry ( yarn/matrix) as realis-
tic as possible. The common filling procedure is performed
in three distinct steps: i) a random free filling, ii) a forced
filling, iii) a relaxation phase of the domain to prevent from
residual stress state [2]. For the present bi-disperse medium,
the construction of the discrete domain requires a special
pre-filling step before engaging the filling procedure. In pre-
filling step, the yarn DEs (Fig.8a) and a part of matrix DEs
(Fig.8b) are placed in the middle of the domain. This ma-
trix DEs part are regularly distributed in contact with yarn
DEs. It allows a better description of the cohesion between
yarn/matrix. These yarn and matrix DEs don’t move during
the filling process. Then, the three steps of filling procedure
presented above are realized to build matrix. In the random
free filling step, the matrix DEs (with a radius dispersion
about 25%) are randomly placed in to the volume. This step

B.D Le et al.: Preprint submitted to Elsevier Page 4 of 11
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Figure 6: Middle part of Type I specimen: (a) experiment and
(b) DEM.
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Figure 7: The overlap between two discrete elements of �ber.

ends when there is no more space to add a new DE without
inter-penetration with each other (Fig.8c). The relaxation
step allows to reduce the inter-penetrations between DEs and
undesirable prestressed effects . It stops when the maximum
inter-penetration value smaller than 10−5% is reached. The
compact discrete domain obtained after the filling procedure
is shown in (Fig.8d).

4. Mechanical modeling: cohesive beams,
springs, cohesive contact at interface and
matrix failure criteria
Once the geometry of the Type I specimen is achieved,

the mechanical behavior is considered. For the bi-disperse
medium, spring bonds are introduced to connect the DEs of
the yarn while cohesive beams are used between the DEs
of the matrix (Fig.9). Spring stiffness can be obtained ana-
lytically from the yarn mechanical properties. Only tension
behavior is considered for yarn. All cohesive beams bond of
DEM specimen are shown in Fig.10.

The DEM configuration of longitudinal and transversal
section at yarn/matrix interface is presented in Fig.11. Co-
hesive contact laws taking place between the DE in con-
tact at yarn/matrix interface are implemented. Piecewise lin-
ear laws are retained for modeling shear contact. This con-

(a)

(b)

(c)

(d)

Figure 8: The pre-�lling and �lling procedure in DEM

DE yarn

DE matrixcohesive beam
of matrix

spring link
of yarn

cohesive contact
of interface

Figure 9: The con�guration of mechanical bond and contact
used in DEM.

tact softening model is quite similar to the Cohesive Contact
Model (CCM) used in the continuum mechanics [42, 54].
The shear cohesive force is expressed as a function of the
relative tangential displacement us between DEs of yarn andmatrix in contact (Fig.12). us is calculated at each time step
dt: us = ∑N

i=1 Vtdt, with N is the iteration number and Vtis the relative tangential velocity between two particles. The
degradation of the interface begins when the displacements
us reach the values ues corresponding to the critical forces
F cs . It continues until the displacements reach the values ups .Detail of cohesive contact laws in DEM is presented in [28].
4.1. Calibration of microscopic parameters
4.1.1. Microscopic parameters of matrix epoxy and

interface
In this study, the matrix DEs are connected by the co-

hesive beams whereas the fiber DEs are connected by the
spring links (Fig.9). The cohesive beam has a cylindrical
shape (Fig.3a) defined by two geometrical parameters (the
length L� and the radius r�) and two mechanical parame-
ters (the Young’s modulusE� and the Poisson’s ratio ��)(see
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Figure 10: The cohesive beam bond of DEM specimen in (a)
3D and (b) longitudinal section.
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Figure 11: The con�guration of (a) longitudinal and (b)
transversal section in DEM at yarn/matrix interface.
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Figure 12: Constitutive of (a) shear displacement and (b) be-
havior of shear contact softening model between yarn/matrix.

Sec.2). By convenience, a radius ratio r̃� is defined by r̃� =
r�∕R̄DE with (R̄DE being the average of discrete element
radius). This value does not depend on the DE radius. The
fracture behavior of this beam is driven by microscopic fail-
ure tensile stress ��. Above and hereafter, the subscript �always denotes the microscopic scale.

The cohesive beam lengthL� is the distance between thecenters of DEs interacting. The others microscopic parame-
ters E�, ��, r̃�, �� are identified by the calibration process.
This process is realized on a numerical tensile test with a
cylinder specimen [2]. The discrete elements number used
in this test is 10000.

André et al. [2] have observed that :
i) the microscopic Poisson’s ratio �� does not influence on
the macroscopic Young’s modulusEM and the macroscopic

Table 3

Calibration of microscopic parameters of epoxy matrix

Matrix epoxy E− �− �− r̃− �−
Continuum properties M 3.322 0.39 69 - -
Discrete properties � 580 0.39 - 0.16 246

The subscript − denotes M or �.

Poisson’s ratio �Mii) the macroscopic Poisson’s ratio �M depends only on the
microscopic radius ratio r̃�iii) the macroscopic Young’s modulus EM depends on the
microscopic radius ratio r̃� and themicroscopicYoung’smod-
ulus E�.

Based on these observations, the microscopic parame-
ters of cohesive beam can be determined by the calibration
precess following below steps :

• choose arbitrary initial values for �� and E� (�� =
0.39 and E� = 1000 GPa). Then, r̃� is varied with
each numerical tensile test. Three value of r̃�: 0.1,
0.2, 0.3 are used. The numerical results allows to es-
tablish the calibration curve of �M versus r̃� ( Fig.13a).The value of r̃� is identified from this calibration curve,
which corresponds to themacroscopic value �M . With
the macroscopic Poisson’s ratio value of present mate-
rial �M = 0.39, the microscopic radius ratio r̃� = 0.16is found.

• knowing the value of r̃� = 0.16, themicroscopicYoung’s
modulusE� varies for three tensile tests: E� = 400GPa,
E� = 500 GPa, E� = 600 GPa. The calibration
curve of macroscopic Young’s modulus EM versus
the microscopic Young’s modulus E� is obtained in
Fig.13b. The microscopic Young’s modulus E� =
580GPa corresponds to the desiredmacroscopicYoung’s
modulus EM = 3.322 GPa can be obtained.

• knowing the elastic parameters at microscopic scale
(r̃� = 0.16, E� = 580 GPa, �� = 0.39), the ten-
sile test on the same specimen is realized to determine
the microscopic failure stress ��. Three values of ��:100 GPa, 200 GPa, 300 GPa are used. The failure cri-
teria is Removed DE Failure process (RDEF), detailed
in Sec.4.2. The calibration curve of macroscopic fail-
ure stress �M versus the microscopic failure stress ��is established on Fig.14. For �M = 69GPa, the value
of �� = 246 GPa is obtained.

All the microscopic parameters of the discrete domain
after calibration process (r̃�, E�, ��, ��) are listed in Tab.3.

For the interface yarn/epoxy, CCM is introduced (Fig.12).
The microscopic parameters of the cohesive contact model
are (ues, ups , F cs ). F cs is the maximum of shear cohesive force
at interface between DEs of yarn and epoxy. This force links
with the interfacial shear strength by F cs = �csSm, with �cs is
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Figure 13: Calibration curves: (a) Radius ratio r̃� calibration and (b) microscopic Young's modulus E� calibration.
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Figure 14: Calibration curves: microscopic failure stress ��
calibration.

the interfacial shear strength, Sm = �R21 is the area of con-tact surface, with R1 is the radius of matrix DE in contact
with the yarn. These values are inspired from literature [19],
�cs = 21MPa, ups = 0.02mm, ues = 0.01mm.
4.1.2. Microscopic parameters of hemp yarn

Fig.15 presents the configuration of hemp yarn in con-
tinuous and discrete medium. In DEM, the DEs of yarn are
superimposed and connected by the spring links (the DEs
overlapping is 90%) (Fig.15b,c). The stiffness kn of spring narranged in series can be easily related to the stiffness K of
the yarn, Eq.(5):

1
K
=

N
∑

n=1

1
kn

K = ES
L

(5)

where N is the number of springs, E is the yarn Young’s
modulus, S = �R2f is the cross-section of the yarn with its
radius Rf and L denotes the yarn length (Fig.15).

The numerical result of tensile test on singer yarn is shown

on Fig.16. A good convergence between numerical and the-
oretical results of Young’s modulus is obtained (Fig.16a).
The maximum strain criterion is used for the rupture of yarn.
A very good agreement for the failure strain is identified be-
tween numerical and experiment (Fig.16b).
4.2. Failure criterion for the matrix

The matrix is modeled as an homogeneous and isotropic
brittle material. The failure criteria used is Removed DE
Failure process (RDEF) [3, 21]. It leads to the deletion of a
DE when a tensile criterion is satisfied in bonds connected
to this DE Fig.17.

The virial tensor is defined for each DE as follows:

�i =
1
2Ωi

∑

j≠i

1
2

(

r⃗ij ⊗ f⃗ij + f⃗ij ⊗ r⃗ij
)

(6)

where :
• ⊗ is the tensor product
• �i is the equivalent Cauchy stress tensor for the dis-

crete element i
• Ωi is an influential volume around the discrete element
i

• f⃗ij is the force exerted on the discrete element i by
a cohesive beam that bonds the discrete element i to
another discrete element j

• r⃗ij is the relative position vector between the center ofthe two bonded discrete elements i and j
The criterion assumes that fracture occurs when the hy-

drostatic stress is higher than a threshold critical value �c [3]:

1
3
trace

(

�i
)

≥ �fail (7)
When the criterion is satisfied, all the cohesive beams in

Ωi around the discrete element i are broken ( Fig.17).
B.D Le et al.: Preprint submitted to Elsevier Page 7 of 11
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Figure 16: The numerical results of singer yarn test in (a) elastic and (b) fracture.

Figure 17: Illustration of breaking bond for RDEF criterion

The microscopic failure tensile stress �fail = 246MPa
is also determined by the calibration procedure which is de-
tailed in Sec.4.1.1.

5. Numerical results
Knowing all the microscopic parameters of discrete do-

main (r�, E�, ��, ��) (see Tab.3), a fragmentation test was
performed. This test is based on experimental test reminded
in Sec.3.1 and presented in [19]. A uniform displacement u
is imposed at the right and left edges of specimen (Fig.18).
The numerical specimen contains 66619DEs ofmatrix (with
the mean radius of 5.10−2mm) and 324 DEs of yarn.

The comparison of Young’s modulus of composite spec-
imen during the fragmentation test is presented in Fig.19. A
good agreement results is obtained between experiment, an-
alytic, finite element model (FEM) and DEM. The analyti-
cal value of Young’s modulus is identified based on Eq.(8).
With, Em, Vm, Ef , Vf are Young’s modulus and volume

uu

Figure 18: Uniform displacement impose at two opposite face
of numerical specimen.

fraction of matrix and yarn, respectively.

E = EmVm + EfVf (8)
The result of numerical and experimental stress-strain

curve is presented in Fig.20. A good tendency in elastic part
is obtained between FEM, DEM and experiment. However,
a significant difference in trend is observed when the strain
evolution and greater than 0.014. A more brittle behavior is
obtained with DEM. This result is explained by the differ-
ent matrix failure criterion used in each simulation methods
FEM and DEM. In DEM, the matrix follows a linear fracture
model whereas a elasto-plastic behavior law is used in FEM.

Fragmentation process starts when the strain criterion is
satisfied in the hemp yarn. Fig.21 shows the final fragmen-
tation result during the test. A similar number of fragmen-
tation (4 fragmentations) is obtained between experimental,
FEM and DEMmodeling. In addition, these fragmentations
are almost located at the same position.
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Figure 19: Result of Young's modulus during the fragmenta-
tion test.
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Figure 20: Numerical and experimental stress-strain curves

6. Conclusion
A 3D simulation of interface debonding in composite

material using DEM is investigated in this study. It is based
on the experimental results of a single fragmentation testing
obtained by Guillebaud-Bonnafous and al. [19]. The com-
posite material uses an impregnated hemp yarn embedded
into a epoxy matrix. In DEM, matrix and yarn are supposed
to be brittle materials and follow a linear fracturemodel. The
DEs of matrix are connected by the cohesive beams bond
whereas the DEs of yarn are connected by the spring links.
The mechanical properties of these bonds are identified by
a calibration procedure. The cohesive zone models is im-
plemented to model interface debonding between yarn and
matrix. The bi-dispersemedium inDEM formatrix and yarn
is specifically elaborated in this study to reduce the discrete
elements number and save computational time. The numeri-
cal results obtained by DEM are compared with experimen-

(a)

(b)

(c)

Figure 21: Comparison of (a) experimental, (b) FEM and (c)
DEM for the fragmentation during the test.

tal and FEM results on the stress-strain curve and the frag-
mentation process in yarn during the test. A good agree-
ment results of Young’s modulus is obtained between exper-
iment, analytic, FEM and DEM. It corresponds to a good
tendency in elastic part of the stress-strain curve in: exper-
iment,FEM and DEM. A more brittle behavior is obtained
with DEM. This result is explained by the different matrix
failure criterion used in each simulation methods FEM and
DEM.Concerning the fragmentation process, a similar num-
ber and position of fragmentation is obtained between exper-
imental, FEM and DEM modeling. These promising results
allow to validate the models used in DEM (cohesive beams
bond to model the mechanical behavior of matrix, spring
links to model the mechanical behavior of yarn and cohesive
zone models to model the mechanical behavior of interface
yarn/matrix).
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