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Abstract  

The ubiquity of two-phase systems has rendered them a subject of prime importance especially from 

numerical perspectives. Among several methods described in the literature, which are generally classified 

as sharp or diffuse interface methods, phase-field (diffuse interface) method has been at the paramount 

of several recent investigations owing to its several advantages, primarily to handle complex topological 

changes. Though several advancements have been made in the subject, one of the important challenges 

with this approach using Cahn-Hilliard equation lies in the determination of an appropriate value of 

mobility. Despite certain propositions in the literature in terms of non-dimensional numbers (Peclet and 

Cahn numbers), ambiguity in the velocity scale to be chosen for evaluating mobility poses a challenge for 

their straightforward extension to real systems. In addition it renders the system to be dependent on 

numerical parameters. In the current work, we address this problem using a new approach to calculate 

the mobility parameter in terms of local equilibrium interface thickness which in itself is evaluated from 

the phase-field. Consequently, this helps to make the model independent of numerical parameters 

making it more reliable. We test this approach for several canonical and complex cases, such as the rise 

of lighter bubble in a heavier medium, bubble coalescence, Rayleigh-Taylor instability. The results are 

compared with those in literature or obtained using level set method. An excellent agreement is observed 

illustrating the potential of this approach to make phase-field model more prominent.   
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1. Introduction 

Several physical processes in industrial and scientific applications consist of more than two fluids or 

interacting phases such as in heat transfer systems, power systems, process engineering etc. and they are 

categorized as two-phase flow systems. Understanding the flow dynamics in these systems is of prime 

importance for their efficient design and utility. With limitations in experimental techniques, 

mathematical modelling provides an alternative pathway especially in optimizing the processes and 

exploring new designs. However, seeking advantage of this approach is faced with three major challenges: 

tracking the movement of the interface, accurately reproducing the surface tension forces and, 

eventually, correctly describing the heat and mass transfer between the phases. Several numerical 

methods have been described in literature, broadly categorized as interface tracking and interface 

capturing methods. The former approach explicitly tracks the interface, for example, in boundary integral 

methods (Hou et al., 2001) or front tracking methods (Tryggvason et al., 2001). Alternatively, the dynamics 

of the interface can be implicitly captured using a scalar function such as in volume of fluid, level set or 

phase field method. These can be further classified as sharp and diffuse interface methods based on the 

representation of the interface. In sharp interface methods, like Volume of Fluid (VoF) or Moment of Fluid 

(MOF) (Asuri Mukundan et al., 2020; Milcent and Lemoine, 2020), the interface is defined as a geometrical 

surface that separates the immiscible phases. However, these methods are known to break down when 

the interface thickness becomes of the order of the local radius of curvature (Hou et al., 1997; Lowengrub 

and Truskinovsky, 1998). This can be addressed by smoothening the interface over a few grid cells for 

computational ease as in Level Set Method (LSM) (Osher and Sethian, 1988). One of the drawbacks of LSM 

is that it hardly conserves mass though several advancements have been proposed like coupling with VOF 

(Sussman, 2003; Sussman and Puckett, 2000) or the use of regularized characteristic function instead of 

reinitialization (Hong et al., 2007; Olsson et al., 2007). A comprehensive review of LSM can be found in 

the recent review article by Gibou et al. (Gibou et al., 2018). Another method with a similar approach to 

spread the interface is the Phase-Field Method (PFM) or the Diffuse Interface Method (DIM) (Anderson et 

al., 1998; Jacqmin, 1999; Kim, 2015; Lowengrub and Truskinovsky, 1998). However, contrary to LSM, the 

smoothening is inherently based on the interface thickness which is more of a physical parameter than 

merely a computational adjustment.  

In the PFM, the interface is defined as a region of smooth transition of properties from one fluid (or phase) 

to another. This was first proposed by van der Waals (Rowlinson, 1979) and was later extended by Cahn 

and Hilliard (Cahn and Hilliard, 1958, 1959) where the authors derived an expression for the total free 
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energy of the inhomogeneous system taking into account the effects of local energy at the interface 

arising due to the gradient of mole fraction. The starting point of the PFM thus lies in identifying the 

system to be inhomogeneous �. �. � a certain variable, usually an intensive property (Cahn and Hilliard, 

1958) such as density, termed as the phase-field variable, �. It is followed by describing the total free 

energy including the gradient terms as a functional of �. The physical constraints or conditions of the 

system change the total energy of the system which in turn will move towards the state of minimum 

energy (or maximum entropy) thereby altering the � field. As the variation of � represents the interface 

region, the movement of interface is therefore implicitly captured by the evolution of � using phase-field 

equations, such as the advected form of Cahn-Hilliard equation (Cahn and Hilliard, 1958, 1959) or Allen-

Cahn equation (Allen and Cahn, 1972; Allen and Cahn, 1973), the former being primarily considered in 

literature owing to its conservative nature. The phase-field equation is coupled to the momentum 

conservation in Navier-Stokes equations via the Korteweg stress by expressing the surface tension force 

as the interface energy per unit area. This calls for two additional physical parameters, namely interface 

thickness (�) and surface tension (	) to define the model. The coupled analysis of phase-field equation 

with hydrodynamics, 
. �. Navier-Stokes/Cahn-Hilliard (NS-CH) was initially undertaken by Gurtin et al. 

(Gurtin et al., 1996) following which several pioneering works, as eloquently described in the review works  

(Anderson et al., 1998; Emmerich, 2008; Helmut Abels et al., 2017; Kim, 2015), have led to noteworthy 

advancement of the subject (Guo and Lin, 2015; Magaletti et al., 2013; Mirjalili et al., 2020; Xu et al., 

2018). A wide range of problems in fluid mechanics have been analyzed using this method, such as 

coalescence of drops (Jacqmin, 1999), Faraday instabilities (Takagi and Matsumoto, 2011), contact angle 

and effect of variable wettability (Borcia et al., 2008, 2014) and thermo-capillary phenomena (Antanovskii, 

1995; Guo and Lin, 2015). One of the primary assumptions of the classical phase-field model is the 

incompressibility and uniform density of both the phases/components (Hohenberg and Halperin, 1977). 

While the former holds true in many cases, the latter is far from real systems. With Boussinesq 

approximation based approach being limited to small density ratios (Hua et al., 2011), several modified 

models have illustrated systems with density ratio as high as 1000 (Boyer, 2002; Ding et al., 2007; 

Lowengrub and Truskinovsky, 1998; Shen and Yang, 2010). This is a challenging numerical problem despite 

being frequently encountered in two-phase applications. A comparative study of these different models 

has been undertaken by (Aland and Voigt, 2012)).  

Despite a rich literature on the subject supporting the aforesaid advantages, PFM has not been used 

extensively for physical problems as compared to its other counterparts such as VOF or LSM (A Mirjalili et 

al.). One of the most often cited drawbacks is the higher computational cost owing to the need of having 
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a minimum of 4-6 grid points in the interface region so as to accurately capture the evolution of � on a 

uniform computational grid, thus necessitating a finer mesh. This can however be addressed using 

adaptive mesh as discussed in the recent work of (Wang et al., 2018)). Another challenge is the 

appropriate choice of the mobility parameter (�) which appears in the Cahn-Hilliard equation, referred 

to as phase-field equation henceforth. As described in (Magaletti et al., 2013), the mobility defines the 

mass diffusivity between the two phases occurring locally at the interface at a molecular scale and 

characterizes the timescale for attaining the equilibrium. The description in terms of time scales is of prime 

relevance to the current work and will be discussed in §6. In an abstract sense, it can also be understood 

as a diffusion coefficient of the potential (variation of the free energy functional with the phase-field 

variable). Several relations have been proposed for it in the literature (Jacqmin, 1999; Lowengrub and 

Truskinovsky, 1998; Magaletti et al., 2013; Sibley et al., 2013; Xu et al., 2018; Yue et al., 2010) in terms of 

dimensionless quantities, namely Peclet number (� ∝ �/�	) and Cahn number �� = �
�, where  � is the 

interface thickness, 	 is the surface tension coefficient and � is the characteristic length, primarily using 

matched asymptotic analysis. This ensures the PFM approaching the sharp interface limit when the 

interface thickness tends to zero. The problem has been investigated more intensively in the recent works 

of (Magaletti et al., 2013), (Xu et al., 2018), and (Mirjalili et al., 2020).  (Magaletti et al., 2013) presented 

a summary of existing relations whilst highlighting that a general method to appropriately choose the 

mobility parameter is lacking in literature. One of the striking features of their work has been to consider 

a multi-scale time analysis accounting for different dynamic scales involved in PFM. Based on their 

analytical analysis, they scaled the mobility parameter and defined it in the form of a dimensionless 

number, �∗. This was termed as the mobility number and was expressed in terms of the Cahn-number as 

�∗ = ����, where α is an appropriate constant. A better understanding of this number can be sought in 

terms of � which can be expressed as ��/�∗. Based on their elementary test cases, � = 3 was found as 

the optimum value. However, using this relation for real physical systems is not so straightforward 

primarily due to different possibilities of characteristic velocity scales to choose from. This has been aptly 

highlighted in the recent work of (Kajzer and Pozorski, 2020). Opting for maximum velocity in the domain 

as the velocity scale, they introduced another numerical factor termed as safety factor to ensure that 

mobility is not over estimated. In our perspective, this still makes the model dependent on an unknown 

numerical parameter and brings an element of uncertainty about the accuracy of the results obtained 

with PFM, especially when no a priori estimates are available for validation with experimental or analytical 

data. Even after validating with a certain value of mobility, it is likely that changing a set of physical 

parameters of a system may cause the solution to become erroneous for the same value.  
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In the current work, we address this issue by developing a method wherein we follow an innovative 

approach to evaluate the local interface thickness (in space and time) in terms of the gradient of the 

phase-field variable assuming the interface is in local equilibrium. In doing so, we implicitly consider each 

computational volume as an isolated entity �. �. � phase-field equation which permits to choose local 

velocity as the velocity scale in the mobility relation proposed in (Magaletti et al., 2013). We call this 

method as adaptive interface thickness based mobility approach for the phase-field method (AITM-PFM) 

which makes the PFM less dependent on the choice of mobility or any other numerical parameter 

rendering it more robust. The article is organized as follows. We first describe the usual phase-field model 

followed by presenting the AITM-PFM. The mathematical and numerical method used in the current work 

are then described. Subsequently, the validation of the current numerical model is presented for canonical 

cases followed by the case of the rise of a lighter bubble in a heavier medium (density ratio 10 and 1000) 

highlighting the dependence of outcome on mobility in the usual PFM. We then demonstrate the 

robustness of the developed methodology for different other test cases, Rayleigh-Taylor instability, 

axisymmetric bubble rise and bubble coalescence. 

 

2. Phase field method 

Consider a two-phase system which is inhomogeneous �. �. � the phase-field variable, �. The free energy 

of the system per unit volume (��), as discussed in (Cahn and Hilliard, 1958, 1959), can be described as,  

�� = ��(�) +   
� |"�|�  (1) 

 

where, the first term represents the bulk free energy 
. �. due to pure phases while the second denotes 

the gradient of energy arising from the interface region. The parameters � and � are related to the 

physical variables, surface tension (	)  and interface thickness (�). Further, � is represented by a double 

well function where the minima of the function (0 and 1 in the present case) represent the pure two 

phases as shown in Error! Reference source not found.. The system will rest in a state to minimize its free 

energy (Cahn and Hilliard, 1958, 1959), which can be mathematically described by the variation of energy 

functional, �� w.r.t  � as,   

% = &'(
&) = � *+

*) − " ∙ (�"ϕ )  (2) 
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where, % denotes the chemical potential.  

The minimization condition yields a vanishing chemical potential, 
. �.,  % = 0, which can be further 

reduced to equal contribution of bulk and gradient of energy, � *+
*) = " ∙ (�"ϕ ) at the equilibrium state. 

This can be elucidated in physical sense as follows. Any departure from the initial equilibrium state will 

increase the energy of the system. For instance, the spread (diffusion) of the interface will lead to a higher 

contribution of the bulk free energy. This will be counteracted upon by the gradient term driving the 

interface to become sharper, thus increasing its contribution to restore the equilibrium. The condition of 

vanishing chemical potential can be further modified to derive the expression for surface tension which 

in a 1D case is given by 	 =  / (��)012
32 . This can be further simplified to yield a relation for � and � in 

terms of surface tension 	 and interface thickness � as, 

� = 3√2	� , � = 3√2 7
�  (3) 

In addition, we can also define � at equilibrium in a 1D profile as, 

� = 1
2 + 1

2 �8�ℎ :�
�

;
√2  

(4) 

 

where ; = 1 − 0.5 in order to be coherent with the choice of � = 0 and 1 representing the bulk phases. 

It can be extended to higher dimensions in a direction normal to the interface. This is a major advantage 

of PFM where an infinitely derivable smooth function is used. The departure from an equilibrium state of 

a physical system occurs primarily due to the movement of the underlying phase and thus the interface. 

To capture this motion, the phase-field variable is subjected to an advection equation, as encountered in 

usual flow equations. Owing to its property to conserve the phase-field parameter, we consider the 

advected form of Cahn Hilliard (CH) equation in the present work as defined below, whose right-hand side 

plays the role of maintaining equilibrium at the interface,   

=�
=� + > ∙ ?� = ? ∙ (�?%) 

(5) 

 

Here, � represents the mobility parameter. In the non-dimensional form (Ding et al., 2007) , it appears in 

the � which for the current form of equations can be written as � =  @�/�� . This also helps to define 

the characteristic time scale of CH equation which is analogous to the fast time scale in inner layer 
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(interface region) considered in (Magaletti et al., 2013). It can be interpreted as the time scale at which 

the equilibrium of the interface is attained or restored when it deviates from its equilibrium state. The 

similarity of CH equation to the diffusion equation, the diffusion variable being the chemical potential 

rather than � itself, makes it possible to define CH time scale as �) ∝ A
B. In the present work, we consider 

mobility of the form � = �C�(1 − �), �C being a constant factor. This particular choice ensures that 

the phase-field equation acts only in the interface region and circumvents the possibility of any artificial 

diffusion arising in the bulk. This is further motivated from the work of (Sibley et al., 2013) in which, using 

matched asymptotic analysis, the authors have shown that a variable mobility helps to recover the 

classical pressure jump condition at the interface even when the bulk may not be in equilibrium. This helps 

to impede any numerical artifact as numerical limitations may not lead to exactly vanishing chemical 

potential in the bulk, especially near the interface region causing an erroneous pressure field.   

The phase-field equation is coupled to the Navier-Stokes by adding a surface tension force defined in 

terms of phase-field variable. This has been presented in literature in stress as well as in potential form. 

Herein, we chose the potential form (Badalassi et al., 2003; Ding et al., 2007; Sibley et al., 2013) , owing 

to its ease in numerical implementation, which in case of incompressible flow systems can be written as,  

�7 = %"� 

 

(6) 

The form of expression given in Eq. (6) can be further written as ?�� − �("� ⨂ "�), where the latter 

term is known as Korteweg stress. It is worth mentioning that several variations of this force have been 

presented in literature as summarized by (Sibley et al., 2013) owing to different methodologies followed 

to derive the expression. The general expression for these terms which appear along with expression in 

Eq. (6) in the framework of current study can be written as, −ℬ?(��(�) +  F  
G |"�|�) where different 

values of ℬ and F represent different models considered in literature as summarized in (Sibley et al., 2013) 

( for example, ℬ = 1 and F = −2 yield the model by (Jacqmin, 1999)). In several works, these additional 

terms are sometimes included in the pressure term and the pressure term appearing in the momentum 

equation is thus termed as modified pressure. However, it is not clear whether the pressure used for post 

processing the numerical experiments is the modified pressure or the usual mechanical pressure. In order 

to avoid any ambiguities, we keep the pressure in the momentum equation as the mechanical pressure 

and let these additional terms go explicitly into the momentum equation as considered by (Jacqmin, 1999) 

and described in (Sibley et al., 2013) , 
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�7,H = ?(��(�) −  �2 |"�|�) 

 

(7) 

where subscript I refers to additional terms. Thus, the total force due to phase-field, termed as surface 

tension force (�JK) henceforth is, 

�JK = �7 + �7,H = %"� + ?(��(�) − �
2 |"�|�) (8) 

 

3. Adaptive interface thickness based mobility (AITM-PFM) 

The previous section described the phase-field model as has been discussed in the literature. We 

now present our approach to obtain appropriate mobility using the relation described in (Magaletti et al., 

2013). Herein, we develop the theoretical background while test cases will be demonstrated in §7. Several 

authors have presented relationships using matched asymptotic analysis when the Cahn number (��) 

tends to zero (Jacqmin, 1999; Lowengrub and Truskinovsky, 1998; Magaletti et al., 2013; Sibley et al., 

2013; Xu et al., 2018; Yue et al., 2010). These are obtained at a fixed �� (both in space and time) and thus 

it can be inferred that the derived appropriate value of mobility, at least in principle, will ensure that the 

initial �� is maintained throughout the simulation along the perimeter of the interface thereby sustaining 

the equilibrium state. However, this is faced with two major challenges. Firstly, in an event of large 

topological changes, such as in Faraday or Rayleigh-Taylor instabilities or breakup/coalescence of drops, 

despite making the closest appropriate choice of mobility, the interface thickness across the entire 

perimeter may not be exactly preserved and may vary locally in space (and/or time). This may lead to over 

or under estimation of the value of mobility for that given local interface thickness and may gradually 

increase the error over a period of time especially when studying a long-term behavior. Among different 

possible solutions, one could develop a similar relation whilst considering �� as a field. Not ruling out the 

possibility to attain better results with this methodology, the analysis will however be highly complicated 

and exhaustive. Secondly, as was described in §1, the proposed relations in the literature involve a velocity 

scale (or � ), which in a dimensional system will always lead to an ambiguity to choose the appropriate 

velocity scale. Nevertheless, not repudiating the possibility to have such a suitable scale for a given 

problem, this will still call for some trial and error to rely upon the solution. For instance, the authors in 

(Kajzer and Pozorski, 2020) used the relation proposed by (Magaletti et al., 2013) in the dimensional form 

as, 



9 
 

�L ≅ �NO 
7   (9) 

 

Here, @ is characteristic velocity or velocity scale for a given physical system. The authors used maximum 

velocity in the domain for @ but ended up by introducing another numerical factor, termed as safety factor 

in order to prevent the over-estimation of the mobility. Though it opens up the possibility to use the 

analytical relation in a more practical sense, we believe it still relies on a numerical (safety) parameter to 

have the correct results thereby raising concerns over the fidelity of the solution in the absence of any 

benchmark cases, especially when using the method for industrial problems such as exploring new designs 

or optimization studies.  

In order to derive an alternate approach, we begin by assuming that the interface is in “local” 

equilibrium. The emphasis on the word “local” denotes the condition that each point in the interface 

region is in equilibrium. The significance of assuming the local equilibrium is two folds. Firstly, as we only 

know � profile under equilibrium conditions (as given in Eq. (4)), the corresponding interface thickness 

can thus be reverse calculated only under the aforementioned assumption. Secondly, by assuming the 

local equilibrium, each computational grid point/sub-volume can be considered as an isolated or a 

separate entity and the problem thus boils down to find the appropriate local mobility. In such a scenario, 

knowing the local “equilibrium” interface thickness (as described below), the local velocity becomes an 

obvious choice to be considered in the mobility relation (Eq. (9)) removing any ambiguity in defining the 

velocity scale. Thus, we have narrowed down the overall problem to evaluate this local interface thickness 

which is the highlight of the current work and is described below.  

Consider a 1D case for the sake of simplicity and a straightforward extension follows in higher 

dimensions. The initial interface profile at � = 0, with interface thickness �C at equilibrium can be written 

as described by Eq. (4), 

�C = A
� + A

� �8�ℎ PQ3C.R
�S√� T  (10) 

 

where �C = : S
US . The equilibrium slope at any point 1 can be written as, 

VQ,C = W)S
WQ = A

�√��S X�Yℎ� PQ 3C.R
�S√� T  (11) 
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As the system evolves, the interface topology/thickness will tend to change locally (contract or diffuse) 

thereby deviating from the equilibrium state and our objective is to restore it back via an appropriate 

value of the mobility. For the sake of illustration, let us consider that the interface contracts and the 

interface thickness tend to become �Z such that �C > �Z with � profile as shown in Error! Reference 

source not found.. Herein the slope at same point 1 can be evaluated from Eq. (11) with �C replaced by 

�Z (or �(\)(1) to be coherent with numerical terminology and representing the interface thickness at the 

end of iteration). Further, let �(\)(1) denote the � field at the end of �Z] iteration. The assumption of 

local equilibrium as mentioned before further implies that the relation for the interface thickness and the 

slope as given by Eq. (10) and Eq. (11) will be valid throughout, both in space and time, which may not be 

true otherwise. A simple algebraic manipulation to eliminate (1 − 0.5) from Eq. (10) and Eq. (11) yields, 

�(\)(1) = A
�√� ^_ (`(a)(b))

_b c
 X�Yℎ� P�8�ℎ3Ad2�(\)(1) − 1eT   (12) 

  

The above Eq. (12) thus describes the local equilibrium thickness at any 1 in terms of local slope, 

W ()(a)(Q))
WQ  , which can be evaluated numerically from the �(\)(1) field. In physical terms, it can be 

interpreted as the interface thickness which would persist if we had the given  � −field. Using this in Eq. 

(9), we can thus write the mobility as, 

�L(\fA) = �(a)NO(a) 
7   (13) 

 

Here, @ represents the local velocity magnitude. It is to be mentioned here that the proportionality 

constant proposed in (Magaletti et al., 2013) was based on certain test cases only. Further, as themselves 

quoted by the authors that the proposed relation will ensure that dynamics of sharp interface are retained 

in the limit of vanishing Cahn number and the proportionality constant could play a role in numerical 

stability, we stick to the relation as in Eq. (13) to circumvent any ambiguities creeping into the model. This 

ensures that the proposed model does not depend on any numerical parameter controlling the outcome 

of the simulation. The initial value of mobility, 
. �. at � =  0, is taken to be very small referring to the 

value which ensures negligible parasitic currents. This can be estimated using the initial interface thickness 

in Eq. (13) following which the appropriate value is obtained locally based on how the system evolves. 

Since we adapt the local interface thickness to have the appropriate value of mobility, we have defined 

this methodology as adaptive interface thickness based mobility – phase field method (AITM-PFM). It is 

to be noted here that the calculated interface thickness is only used to evaluate the appropriate value of 
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mobility and does not imply that the actual interface thickness has changed and thus the parameters � 

and � remain constant. In fact, the idea of adaptive interface thickness to calculate the mobility is to 

ensure that initial interface thickness is retained by adapting mobility locally based on changes in the local 

interface profile.  

 

4. Mathematical model for two-phase system  

We consider classical Navier-Stokes equation for incompressible fluids comprising of conservation of mass 

and momentum in addition to CH equation (Eq.(5)) as described above. Thus, the complete set of 

governing equations can be written as,  

" ∙ > = 0 (14) 

 

g P*>
*Z + (> ∙ ")>T = −" + hi�> +  jkl + mnop  (15) 

 

In Eq. (15) , mnop stands for external volumetric forces such as gravity while jkl  denotes surface tension 

force given by Eq. (8). It is to be mentioned that owing to the choice of volume fraction as the phase-field 

parameter, the solenoidal velocity condition is attained as described in (Abels et al., 2012; Ding et al., 

2007). The physical properties are calculated as a linear combination of volume fraction (phase-field 

parameter) as,  

q =  qA� + (1 − �)q� (16) 

 

where, q denotes density and viscosity.   

 

5. Numerical discretization        

The governing equations described above representing a two-phase system are discretized using the finite 

volume method which is briefly presented in this section. These are solved using our open-source code 

Notus CFD (Coquerelle and Glockner, 2016; Desmons and Coquerelle, 2020; Jost et al., 2020) which is 

based on structured staggered cartesian meshes. The code permits to use several discretization methods; 

we have chosen the ones that are most widely used for two-phase flow simulations in order to focus on 
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the PFM itself. One of the key features of the code is that it furnishes validated numerical models such as 

Level Set method (Coquerelle and Glockner, 2016) that has been used in this article for comparison. The 

code uses the well-known projection method introduced by (Chorin, 1967) where a prediction velocity is 

first computed from the momentum equation and then corrected to ensure incompressibility while the 

pressure is updated from the pressure increment obtained from the Poisson equation. As the momentum 

equation is solved prior to CH equation, the surface tension term in the momentum equation is evaluated 

based on � field at discrete time �(\). 
The phase-field equation involves a fourth order derivative of the phase-field variable which makes it 

challenging for numerical discretization. Herein, we resort to implicit discretization using a second order 

central difference scheme for ? ∙ (�?%) term which can be expanded to " ∙ P�"d4��s − 6��� +
2�� − " ∙ (�"�)eT for the form of free energy considered in the present work. Thus, we have chosen to 

numerically approximate this nonlinear term through the following linearization,  

? ∙ (�?%) ≃ " ∙ ^�(\fA)" P4���(\)�(\fA) − 6��(\)�(\fA) + 2��(\fA) − " ∙ d�"�(\fA)eTc 

 (17) 

 

As mentioned earlier, � is taken to be dependent on � which in Eq. (17) is evaluated explicitly as 

�(\fA) ≡ �C\fA�(\)(1 − �(\)) with �C\fA evaluated using the relation given by Eq.(13). 

For temporal discretization, we resort to first order forward in time as, 

*)
*Z ≃ )(awx)3)(a)

∆Z   (18) 

 

The advection term is integrated in time thanks to a second order Runge-Kutta Non-Strong Stability 

Preserving (RKNSSP32) explicit scheme, as suggested by (Wang and Spiteri, 2007) coupled with a fifth 

order Weighted Essentially Non-Oscillatory (WENO53) spatial scheme. This numerical method ensures 

high spatial as well as temporal precision for the transport of the interface. This is similar to the one 

considered in the work of (Ding et al., 2007).  

 

6. Results with constant Mobility and interface thickness  
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The presence of surface tension in a two-phase problem induces an additional force in the system whose 

effect has to be weighed against other prevalent forces (viscous, inertia, gravity etc.). The model should 

therefore be able to address a wide range of physical problems. Different canonical test cases, as 

considered in the literature, are presented in the current work to account for different effects. We divide 

these test cases into two categories, validation studies wherein we describe elementary cases whilst 

considering constant mobility �L in order to validate the current model and numerical scheme (§6.1 and 

§6.2). Subsequently, we consider more stringent studies involving topological changes of the interface 

and highlighting the limitations with constant �L (§6.3) followed by demonstrating AITM-PFM (§7). 

In all these studies, the time step for simulation is taken to be 103sX unless mentioned otherwise. A 

uniform grid is used in the entire 2D domain, both in 1 and z directions, which is defined based on the 

number of grid points in the initial interface thickness , {|, as ∆1 = ∆z = �/{|. It is worth mentioning 

that the interface thickness has been interpreted in different ways in the literature. For instance, (Jacqmin, 

1999) defined it as a region of 90% variation of �. In the context of current work, it refers to the region 

where � varies from 0.05 to 0.95. For the sake of clarity, we prefer to term it as computational interface 

thickness. However, to the best of our understanding, this definition holds relevance to define the number 

of grid points in the interface as also pointed out by (Magaletti et al., 2013). For instance, defining {| grid 

points in computational interface thickness (defined by 90% cut off) will actually lead to 4{| grid points 

in the region of complete variation of � from 0 to 1 within the presented framework. In order to avoid 

any confusion, we refer to interface thickness and not computational interface thickness when defining 

the grid size as per the aforementioned relation. Nevertheless, it can be safely ascertained that if the latter 

is considered, a higher spatial resolution and thus, more accurate results than presented herein can be 

attained. It is to be mentioned here that in order to prevent over and under shoot of the phase-field 

variable from its bounds 0 and 1, we ensure that the phase-field function remains bounded by setting � =
0 and � = 1 if � < ~ and � > 1 − ~ where ~ = 103�. Though it may be argued that the underlying 

numerical schemes should be able to ensure the boundedness, our numerical tests show satisfactory 

agreement with results from literature rendering our approach simpler.   

 

6.1 Bubble/droplet in equilibrium 

Consider a drop of one fluid phase which is suspended in another phase as shown in Error! Reference 

source not found. and is at rest in equilibrium (
. �. @C = 0). In the absence of any external force, the 
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pressure difference between the two phases is balanced by the surface tension and is given by the Young-

Laplace pressure jump in 2D: ∆ = 	/�, where R=D/2 is the radius of the drop. The implementation of 

surface tension force is known to yield non-physical velocity fields, termed as spurious or parasitic 

currents, in the system, originating in the interfacial region. These arise due to discretization errors in the 

numerical schemes or numerical parameters used in the model, such as mobility in the PFM. These are 

further enhanced with the increase in density difference of the two phases and surface tension coefficient. 

In convection dominated problems their interference with physical velocities may lead to erroneous 

results depending on their relative magnitude. Nevertheless, an ideal case would be to have vanishing 

parasitic currents.  

In the current work, we evaluate the spurious currents generated as a function of �� and number of grid 

points in the interface ({|). This implicitly represents the interface thickness and the grid size, 

respectively along with the mobility.  We consider two different cases, first with both phases having the 

same density as considered in (Mirjalili et al., 2019) and second, with density ratio 1000. This particular 

choice of high-density ratio is motivated to account for various problems resembling to air-water physical 

system. Viscosity is the same for both the phases and is taken to be 0.1 8. X. As in (Coquerelle and 

Glockner, 2016; Mirjalili et al., 2019), Laplace number (ratio between surface tension and momentum 

transport, represented by �8 = (	g�)/h�) is used to characterize the current problem. For the case of 

different densities of the two phases, g in �8 refers to the mean density. The highest �8 considered are 

1.2 × 10G and 7.84 × 10G for the cases of same and different densities, respectively. Further, the 

simulations are run for dimensionless time �∗ = 7Z
�� = 250 as also considered in (Mirjalili et al., 2019) as 

it gives ample time for any spurious currents to dampen out due to viscous effects. As viscous and surface 

tension are the primary forces in this case, the outputs are compared in terms of Capillary number (�8 =
O��b�

7  ).  Error! Reference source not found. shows the evolution of �8 for �� =  0.1 and grid sizes 100 ×
100 , 200 × 200 and 400 × 400  which correspond to {|  =  4, 8 and 16, respectively for �C = 103R 

and 103AC. While in both cases of mobility, the spurious currents seem to converge, a higher value leads 

to greater spurious currents which can be explained as follows. Despite initializing with an equilibrium 

profile at � =  0, the numerical inaccuracies and precision cause imbalance in the equilibrium state. A 

higher value of mobility implies more diffusion to counter this imbalance causing higher spurious currents. 

A similar reasoning can be cited for its lower value and is evident from the trend for �C = 103AC.   
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We further compare �8 at �∗ = 250 for different �� = �
� and {| as shown in Error! Reference source not 

found.. Herein, we have shown results for uniform density and density ratio of 1000. The observed trend 

is on expected lines wherein reducing the interface thickness and adding more grid points in the interface 

result in minimizing the spurious effects reflected from lower values of �8. We further verify the Young 

Laplace relation and evaluate the error in surface tension obtained from numerical computations as, 

����L� = |	��Z��� − 	\��������|
	��Z���

× 100 
(19) 

 

Here, 	\�������� is evaluated using the Young Laplace relation with ∆ representing the difference in 

average pressure inside and outside the bubble and 	��Z��� = 1 {/V is the imposed value in the 

simulation. An important point to be highlighted here is how to define the inside and outside of the 

bubble. Considering the definition based on 90% cut off as in (Jacqmin, 1999) thereby implying � > 0.95 

as interior region of the bubble and � < 0.05 as exterior, we obtain ����L� ≈ 1.87 % for �� =  0.1 with 

{| = 4. However, the same gives ����L� ≈ 13 % when � = 0.5 was considered to define interior and 

exterior of the bubble.  Thus, while it may be intuitive to consider � = 0.5 as the position of the interface, 

it will be more judicious to define average properties based on the definition of bulk as proposed in 

(Jacqmin, 1999). The assertion can be further reasoned to the fact that the interface region merely 

represents a transition zone from one bulk phase to another one and thus can be excluded to be a part of 

bulk fluid region.  

 

6.2 Advection of bubble/droplet 

 

Extending the validation studies, we consider another canonical test case in which the whole domain is 

advected with a certain velocity, the schematic being the same as shown in Error! Reference source not 

found. except that @L has now some finite value. Though being far from a realistic system, it provides a 

means to demonstrate the coupling between NVS and CH equations in a more rigorous manner as the 

finite velocity field will have more stringent impact on the evolution of the pressure field, especially near 

the interface region. Nevertheless, the problem in a physical sense can be sought as an equivalent to a 

droplet (or a bubble) in equilibrium when seen from the reference frame of the fluid and thus it is expected 

that the initial profiles of the flow variables will be unaffected. However, advecting the interface may lead 

to numerical errors owing to the discretization method, grid size, etc. whose accrual over time may cause 
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erroneous outputs. We analyze the impact of advection velocity on the interface profile after one 

advection period as considered in (Mirjalili et al., 2020). In addition, the analysis is also extended to a 

wider range of velocities. 

They characterized the problem by splitting the contribution of error in two categories, namely, the 

deviation from an ideal sharp interface profile (��) and secondly, as �� = �(� = �, 1, z) −
�(� = 0, 1, z) , where � is time period of advection and is related to advection velocity as � = �/@C with 

� =  1 V in the present case. Herein, we focus on �� which implicitly represents the impact of grid size 

or {| and is evaluated using the following expression, 

 

‖��‖� = ‖�(�, 1, z) − �(0, 1, z)‖� (20) 

 

where ‖∙‖� denotes the �� norm. The time simulation is performed with time step of 103G X and mobility 

�C = 103AC. The choice of mobility is driven from the fact that the current case refers to a state of 

equilibrium and thus a lower value aids to maintain it as was shown in §6.1. 

 

Error! Reference source not found. shows ‖��‖�  for @C = 1 VX3A, 25 VX3A and 50 VX3A as a function 

of {| = 4, 8, 16 and 32 for �� = 0.1 and 0.05. An increase in advection velocity causes the interface 

profile to deteriorate which can however be circumvented upon grid refinement (increasing {|) and is 

supported from observations in Error! Reference source not found.. It also illustrates the effect of 

decreasing �� at a constant {| and it can be inferred that a sharper interface profile requires a higher 

number of grid points to have a better or a same order of accuracy. This arises by virtue of sharper 

gradients which are more prone to inaccuracies in numerical precision and thus needs a smoother 

transition which is attained by a finer mesh. This also highlights one the challenging aspect of PFM 

approach, 
. �.  a smaller �� number is essential to approach the sharp interface limit which may however 

necessitate more grid points to reduce the influence of numerical errors.     

We further extend the analysis over several periods of advection in order to study the impact of numerical 

errors over a long duration, a feature relevant to real systems. We restrict this investigation to the case 

with uniform density in order to demonstrate the impact of errors even on such a simple system. Herein, 

the computation is performed until the time � = 4 X with an advection velocity of @C = 1 V. X3A whilst 

the other parameters are same as mentioned above. We first compare the phase field and pressure 

profiles at � = 4 X for {| = 4 and 8 and at z =  0. 5 V plane (see Error! Reference source not found.).   
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We observe a smooth transition in both the profiles for both the cases. Upon increasing the advection 

velocity @C to 25 V. X3A, an interesting behavior is observed wherein even though the interface profile 

nearly retains its smooth transition from one phase to another, the pressure profile near the onset and at 

the end of the interface region gets distorted for {| = 4 which vanishes upon increasing the number of 

grid points ( {| = 16 ) as depicted in Error! Reference source not found. . A similar observation has been 

made in (Mirjalili et al., 2020) in the � profile. The result presented here is therefore even more intriguing 

as it can be ascertained that despite the interface profile retaining its shape, an unrealistic pressure field 

can be developed near the interface due to numerical inaccuracies. In order to ascertain whether it is also 

a model limitation, we compare it with the pressure profile from the model of (Jacqmin, 1999) (see Eq. 

(7)) which is illustrated in Error! Reference source not found.. It is found that the unrealistic pressure 

profile (jump and fall near the interface region) nearly disappears except in the encircled region. We can 

thus deduce the following from these observations. Firstly, it is essential to account for the additional 

terms in the governing equations which help to ensure that any deviation from the equilibrium profile is 

restored thereby providing a sharp interface like pressure jump condition. This is coherent with the 

analytical demonstration in (Sibley et al., 2013). We would like to mention here that due to the absence 

of any explicit quote in the literature to use the modified pressure or to consider additional terms in the 

model, it thus became inevitable to compare these models to bring out clarity on the subject. 

The second observation pertains to a small kink as highlighted in Error! Reference source not found. 

which shows that even though the model has well accounted for additional terms to ensure equilibrium, 

the sharp interface pressure jump condition may be violated due to numerical inaccuracies which, 

nevertheless, can be improved upon by refining the mesh. 

 

6.3 Rise of a lighter fluid bubble in a heavier fluid 

 

Unlike the presented cases so far, most real systems involve change in the topology of the interface 

thereby disturbing the equipotential state. In such scenarios, mobility acts to restore the equilibrium state 

and in principle, it needs to be attained at the time scale of other physical mechanisms. In order to 

demonstrate this, we analyze a system comprising of a bubble of a lighter fluid rising in a heavier medium 

under the action of gravity.  

Error! Reference source not found. shows the schematic of the problem while the fluid properties are as 

follows, gA = 100 ��. V3s, g� = 1000 ��. V3s, hA = 1 8. X, h� = 10 8. X and 	 = 24.5 {. V3A. 

The system configuration is similar to the one considered in (Coquerelle and Glockner, 2016; Hysing et al., 
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2009). The Cahn number in the present case, defined as �/�, is taken to be 0.04. The model used in this 

test case (and for other cases henceforth) accounts for additional terms as described in Eq.(7) owing to 

their role as illustrated in the previous section. The results are compared in terms of the position of the 

bubble as well as the pressure field at various time instances which have been obtained from LSM as 

described in (Coquerelle and Glockner, 2016). One of the prime reasons for our interest in comparing the 

latter is to analyze how well the pressure jump condition evolves in the PFM when compared with sharp 

interface model and the effect of mobility on the same. Further, the absence of any such presentation in 

the literature, to the best of authors’ knowledge, motivates such a comparison thereby imposing a more 

stringent analysis of the model.  

Error! Reference source not found. shows the position of the bubble for different values of mobility at 

� =  3 X while the pressure profile is illustrated in Error! Reference source not found.. In order to 

understand this behavior, we plot the position of the bubble at various time instances as shown in Error! 

Reference source not found. for �L = 103AC.   

As the bubble rises, the interface region on the leading side (facing the top surface) reduces in thickness 

whereas the trailing side becomes thicker as highlighted in Error! Reference source not found.. While the 

overall interface region is conserved, it is important to highlight that the thickness of the interface region 

along the perimeter is no longer uniform as was at � = 0. This is however obtained using a higher value 

of mobility, �L = 103R as can be seen in Error! Reference source not found.. A higher value implies a 

smaller time scale of relaxation (�) ∝ 1/�) and thus the interface dynamics is able to match the time 

scale of the bulk phenomenon, 
. �. bubble rise due to density difference in this case. A close match of the 

PFM with LSM (Error! Reference source not found. and Error! Reference source not found. ) further 

validates our argument. It is noteworthy that there exists an upper limit to the value of mobility as a higher 

value can lead to more diffusion (numerical) and thereby distorting the interface. Thus, it can be inferred 

that accurate results with PFM are obtained only for a certain range of mobility illustrating its strong 

influence on the results. Even within that range of mobility, the results may slightly differ which in the 

absence of any benchmark case can cause ambiguity about the fidelity of the solutions.  

 

The test case thus highlights the limitation of the PFM model in current form as the value of mobility has 

to be chosen by trial and error to match against certain benchmark cases. A similar argument will hold if 

we chose from different velocity scales in Eq. (13). It is important to mention here that various velocity 

scales may not even lead to stable numerical solution and one may have to introduce a scaling factor as 
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highlighted in (Kajzer and Pozorski, 2020). In order to overcome this, the AITM-PFM as described in §3 has 

been developed in the current work and test cases with this approach are presented in the next section.  

 

7. Test cases with AITM-PFM 

 

7.1  Bubble rise revisited  

We begin demonstrating test cases with AITM-PFM approach initially for the same problem as described 

in §6.3 followed by a similar problem but with a higher density ratio to emphasize the robustness of the 

approach. Error! Reference source not found. shows the position of the interface (marked with � =
0.5 contour) and pressure profile for �� =  0.02 and {| = 5 (test case as in §6.3) wherein the solution 

is found to match quite well with that obtained from LSM. The initial value of mobility is set to �L =
103AC to ensure minimal spurious currents at the first iteration following which it changes as per the local 

adaptive interface thickness as described by Eq. (9). Error! Reference source not found. shows the 

position of the bubble at various time instances for the same case and it can be observed that the 

thickness of the interface region along the perimeter is preserved.  

We further illustrate the evolution of �C in Error! Reference source not found. in order to provide insights 

of the proposed method. For the sake of clarity, the contour plots have been shown only in the interface 

region defined by � ∈ [0.05 , 0.95].  As governed by the dynamics of the bubble rise, the velocity of the 

leading edge is smaller as compared to the trailing edge (Chen et al., 1999; Tripathi et al., 2015) owing to 

a higher-pressure gradient at the latter. It can thereby be ascertained that the interface will advect at a 

faster speed at the trailing edge. Thus, in order to ensure that equilibrium in the interface is attained 

within the same time, a higher value of mobility at the trailing edge as compared to the leading edge is 

expected in order to balance the respective advection rate (higher mobility implying higher diffusion). The 

contour plots shown in Error! Reference source not found. are coherent with the proposed explanation. 

It is important to reiterate here that in the current method, each control volume is considered to be an 

independent entity, thanks to the local interface thickness as defined by Eq. (12). Thus, the mobility 

required to attain equilibrium in the interface is at local scale and therefore governed by local advection 

dynamics. This is different from the case of constant mobility wherein the entire interface region is 

considered to be a single entity and is driven towards equilibrium by a global value. Thus, a lower mobility 

at the leading edge which was decreasing in thickness is counter-intuitive but holds true as in the present 
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study, we are focused on considering the interface in the form of a locally independent entity to attain 

equilibrium.  

We also compare the velocity of the bubble rise which is shown in Error! Reference source not found. 

with the average velocity of bubble rise defined by,  

�� = P∑() )∆�
∑ )∆� T)¡C.�R   (21) 

 

where, ¢ is the y component of the velocity and ∆� is the cell volume. Herein, we consider � > 0.95 to 

be in coherence with the definition of interface region (0.05 < � < 0.95) and thus the aforesaid 

expression representing the interior of the bubble. A close match between the profiles from the current 

method and LSM further validates the model.  

We extend to test our approach for a similar system with the density ratio between the heavier and the 

lighter fluid being 1000. The physical properties of the fluids considered are as follows gA = 1 ��. V3s,
g� = 1000 ��. V3s, hA = 0.1 8. X, h� = 10 8. X and 	 = 1.96 {. V3A (Coquerelle and Glockner, 

2016; Hysing et al., 2009). The significance of this test case lies to demonstrate the strength of the 

proposed methodology (AITM-PFM as well as numerical) for large density difference systems which are 

usually encountered in many real-world applications. We compare the position of the bubble at various 

time instances in Error! Reference source not found.. A close coherence between the LSM and our 

approach validates our methodology. A further justification is illustrated by comparing the pressure 

profiles at 1 = 0.5 V plane at various time intervals as depicted in Error! Reference source not found..  

 

7.2 Rayleigh Taylor Instability 

As a second test case, we analyze the system corresponding to Rayleigh-Taylor instability as schematically 

shown in Error! Reference source not found. at � =  0 X.  This case is a well-known problem comprising 

of a heavier fluid resting over a lighter fluid in the presence of gravity. When the interface is slightly 

perturbed, the configuration becomes unstable and the heavier fluid moves into the lighter fluid and vice-

versa. Herein, for validating and comparing the results with the literature, we consider same parameters 

as in (Haghshenas et al., 2017; Zuzio and Estivalezes, 2011). The initial interface profile at � =  0 X is given 
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by zL = £
� − I Y¤X ̂ � P1 − �

�Tc , where ¥ =  4V, � =  1 V, � is wavenumber defined as 2¦/�  and I is 

amplitude of perturbation taken to be 0.05 V. The � field at � = 0 X is defined by,  

�(1, z, 0) = A
� + A

� �8�ℎ P§3§S
√� � T  (22) 

 

The other fluid properties are as follows, gA = 0.1694 ��. V3s, g� = 1.225 ��. V3s, hA = h� =
0.00313 8. X and 	 = 0.001337 {. V3A. The fluid densities correspond to Atwood number (I� =
 ¨x3¨N
¨xf¨N) of 0.757.  The simulation is performed with �� (1, z, � = 0 X) = �

� = 0.005 and {| = 5.  

A comparison between the interface profile at various time steps using LSM and AITM-PFM is illustrated 

in Error! Reference source not found. and a close match is observed. A particular attention needs to be 

focused at � = 0.9X where similar filament structures were obtained as in case of LSM. This was attained 

with a lower value of �� in order to approach the sharp interface limit. It is to be further mentioned that 

with �� = 0.02 at the same time, the results were slightly different. Instead of curved filaments, a more 

diffused plume was formed which can be understood by the fact that in order to capture finer structures, 

the interface thickness needs to be less than the structures themselves. The results, however, have not 

been shown for the sake of brevity but an explicit mention is necessary to highlight that in an event of 

slight mismatch obtained whilst using our approach, it is not the limitation of AITM-PFM but an inherit 

characteristic of PFM.  

 

7.3 Axisymmetric bubble rise 

The problems considered so far can be described as relatively simple problems as the only topological 

change in the interface was the change in length (
 . �. change in perimeter). However, in several real-

world problems, one may encounter even more complex topological changes such as splitting or merging 

of the interface region for instance in detachment or coalescence of drops, respectively. These are more 

challenging as we have formation (vanishing) of the new (old) interface followed by capturing the 

dynamics of these new entities. In this section, we consider the problem of axisymmetric bubble rise as 

considered in (Ding et al., 2007; Sussman and Smereka, 1997) demonstrating the splitting of the bubble 

into two. The dimensionless parameters described in (Ding et al., 2007) are converted to dimensional 

form following which the simulation variables considered are as follows, � = 0.25 V , � = 9.81V. X3� ,
gA = 1.0 ��. V3s, g� = 1000 ��. V3s, hA = 3.915 8. X , h� = 0.03915 8. X and 	 = 3.065 {. V3A. 
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Herein, the values of viscosity and surface tension are obtained from the corresponding Reynolds and 

Bond numbers of 100 and 200, respectively as in (Ding et al., 2007) while the domain size is given by (� =
4�, ¥ = 8�). We compare here the z −position at which the bubble is about to split and is given by 

4.05 � = 1.0125 V as described in (Ding et al., 2007) which in the present case is found to be at z =
1.02 V ( an error of 0.75 % is found). As before, we further compare the results obtained using AITM-

PFM and LSM and a close match is observed as shown in Error! Reference source not found..  

The observed splitting up of the bubble resulting in toroidal shape is in coherence with that described in 

the literature (Tripathi et al., 2015) for the chosen parameters (Reynolds number = 100 and Bond number 

= 200). While a detailed discussion can be found elsewhere (Bonometti and Magnaudet, 2006; Chen et 

al., 1999), we provide a brief overview of the observed behavior. At the start of the bubble rise, the 

presence of a higher-pressure gradient at the bottom of the bubble as compared due to the top one makes 

the fluid to move in at the bottom surface. This stream of fluid, which can be considered as a jet, pushes 

further into the lower surface eventually piercing the top surface resulting in the splitting of the bubble 

as observed in Error! Reference source not found.. It is worth mentioning that for a higher surface 

tension, a higher resistance to the piercing of the upper surface will be present thereby leading to a 

different terminal shape. A more detailed discussion on these can be found in the aforementioned 

references.  

 

7.4 Coalescence of bubbles.  

As a final test case we consider the problem of the coalescence of two bubbles in a close proximity of each 

other (schematic shown in Error! Reference source not found., gA =   g� = 1000 ��. V3s, hA =  h� =
0.1 8. X and 	 = 1 {. V3A)  to form a single unit. While the physical phenomenon causing this can be 

found in (Aarts et al., 2005), our objective lies in capturing this behavior from numerical perspectives. It 

is expected that the bubbles will approach each other and once the coalescence begins, their shape will 

become an ellipse with major axis oscillating from z to 1  before finally settling to a circular shaped bubble. 

One of the major issues addressed in the context of this problem with incorrect mobility is that it leads to 

bubble entrapment (Magaletti et al., 2013) which is not physical in nature. For the sake of illustration, we 

run a simulation with constant �L = 103AC for which the final shape (contour plot) along with � profile 

at z = 0.5V is shown in Error! Reference source not found.(a) describing the aforesaid problem as has 

also been mentioned in (Magaletti et al., 2013). When the bubbles start to coalesce, the local region at 

which the bubbles come in contact move to a state of disequilibrium which can be represented by sharp 
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gradients in � profile. In order to have correct coalescence, appropriate mobility should be able to diffuse 

these gradients fast enough so as to match the interface dynamics due to inertia. At a low value, the 

desired level of diffusion fails to occur causing entrapment of one phase in another as shown in Error! 

Reference source not found.(a). However, it is quite intuitive to understand that this is not what is 

expected in real sense and appropriate results can be attained at a higher value of mobility (�L = 103R) 

as shown in Error! Reference source not found.(b). It is to be noted that in case of incorrect mobility, even 

though we may be able to match the other behavior such as final shape or Laplace pressure jump after 

coalescence, the results would still be incorrect as this type of entrapment is not expected and in more 

complicated analysis can lead to erroneous results.  

We now use our approach to demonstrate the evolution of the bubble which is shown at various time 

instances in Error! Reference source not found.. It can be seen that bubbles coalesce to form a circular 

shape while no entrapment is observed, following the same intermittent shapes as in (Magaletti et al., 

2013), owing to local mobility being adapted to ensure equilibrium is attained in coherence with time 

scale of the physical dynamics. This is further evident from Error! Reference source not found. wherein 

� profile along 1 axis is drawn at z = 0.5 V at various time instances. It is clear that the shape of the 

bubbles oscillates initially and thus so does the � profile before settling to a smooth �8�ℎ type profile as 

is clear in Error! Reference source not found.(c).   

 

8. Conclusion  

The current work presents a new approach to obtain an appropriate value of mobility based on the local 

interface thickness. Starting with the description of the classical phase-field model as presented in the 

literature, we validate our numerical methodology, primarily for the phase-field equation wherein we use 

a second-order implicit central differencing scheme for the fourth order derivative term, using canonical 

test cases (droplet in equilibrium and advection of the bubble). The results also highlight the need to 

consider additional terms when using the potential form of surface tension term to ensure the correct 

pressure jump condition across the interface. Furthermore, a more stringent case of rise of a lighter fluid 

in a heavier medium illustrates the influence of mobility on the outcome of the solution. Herein, we 

address this problem using an innovative methodology defining it as adaptive interface thickness based 

mobility-phase field method (AITM-PFM). Assuming local equilibrium conditions, we reverse calculate the 

corresponding ‘equilibrium’ interface thickness thereby implicitly implying that each sub-volume is an 

independent system �. �. � phase field and tend to move towards equilibrium within the time scale of the 
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bulk phenomena.  This permits to use the local velocity (magnitude) as the velocity scale in the relation of 

mobility, available in terms of non-dimensional numbers including characteristic velocity, and thus 

facilitates its straightforward utility to physical systems. The developed methodology thus helps to 

overcome the ambiguities in the choice of appropriate velocity scale which can eventually lead to the 

introduction of another numerical factor in the model thereby rendering the fidelity of the PFM 

dependent on numerical parameter. AITM-PFM is validated via various test cases varying from a simple 

bubble rise to more complicated ones involving splitting / merging of the interface. The proposed method, 

in addition to solving the governing equations of PFM as described in literature, needs to evaluate just an 

additional relation as described by Eq. 12 whilst using a simple numerical discretization scheme when 

compared to the more sophisticated ones used in the literature (Badalassi et al., 2003; Ding et al., 2007). 

It can thereby be ascertained that the current method does not add to any computational losses when 

compared to usual PFM though the inherit limitation of PFM in terms of computational cost do come 

along. Nevertheless, among the two major limitations of PFM as described in §1, we have addressed the 

problem of appropriate choice of mobility parameter using AITM-PFM and this opens up new perspectives 

to use this method in conjunction with adaptive mesh or to look for other possible solutions to address 

the problem associated with computational costs in PFM. The method can thus be seen as a significant 

improvement to address the challenges in the phase-field method and expand the utility of phase-field 

method to more physically complex problems involving large topological changes.  
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Figure 1: Schematic of double well polynomial representing the bulk free energy function . 

 

 

 

 

 

Figure 2: Schematic of interface profile illustrating shrinkage of interface thickness �. �. � ��. 

  



 

 

Figure 3: Schematic of test case for droplet in equilibrium (	� = 0 �/�) and advection of drop in � direction 

with different 	� > 0 as in §6.2. 

 

 

Figure 4: Evolution of �� for the case of droplet in equilibrium (	� = 0 �/�)  for �� =  0.1 on a semi-log plot. 

 



 

Figure 5:  Variation of �� for different �� at �∗ = 250 for uniform density and density ratio of 1000.  

 

 

Figure 6: ‖�Δ‖2 for different advection velocities for system with uniform density as function of number of grid 

points in the interface for �� =  0.1 and 0.05.  



 

Figure 7: (a) Phase field � and (b) pressure profiles at � = 0.5 � and � =  4 � for �� =  0.1, 	� = 1 �� ! for 

different "#. 

 

 

 

Figure 8: (a) Phase field � and (b) pressure profiles at � = 0.5 � and � =  4 � for �� =  0.1 and 	� = 25 �. � ! 

for different "#. (b) the pressure profile for the model which includes terms as given in Eq. (7) by (Jacqmin, 

1999) is also shown. The encircled region represents region where unphysical pressure jump is observed with 

this model and the one from (Jacqmin, 1999).  

 



 

Figure 9: Schematic of the rise of a lighter bubble in a heavier medium.  

 

 

 

Figure 10: Position of the bubble at � =  3 � with level set method (LSM) and phase field method (PFM) for 

different values of mobility. 

 



 

Figure 11: Pressure profile at � = 0.5 � plane with LSM and PFM for different values of mobility.  

 

 

 

Figure 12: Position of the bubble at various time intervals with PFM for %� = 10 !�. Herein � − field plot has 

been used to illustrate the position owing to its variation from 0 (red) to 1 (blue) and has been used in all the 

figures henceforth. 

 



 

Figure 13: Position of bubble at various time intervals for %� = 10 '.  

 

 

 

Figure 14: (a) Position of the bubble (b) pressure field at � = 0.5 � plane at � =  3 � using LSM and AITM-PFM. 



 

Figure 15: Position of bubble at various time intervals with AITM-PFM. 

 

 

 

Figure 16: Evolution of %� for the results shown in Figure 15 using the relation given in Eq. 

Error! Reference source not found. with local interface thickness evaluated using Eq. 

Error! Reference source not found..  

 

 



 

Figure 17: Average velocity of rise of bubble using LSM and AITM-PFM  

 

 

Figure 18: Position of bubble at various time instances using LSM and AITM-PFM (�� =  0.02 and "# = 10) 

(case: density ratio 1000). 

 

 



 

Figure 19: Pressure profile at � = 0.5 � plane at � =  1 � and � =  2 � using LSM and AITM-PFM (case: density 

ratio 1000).  

 

 

 

Figure 20: Comparison of the interface position in case of Rayleigh Taylor instability at various time steps using 

AITM-PFM and LSM.  

 



 

 

Figure 21 Position of bubble at various time instances using AITM-PFM and LSM.  

 

 



 

Figure 22: Schematic of bubble coalescence. 

 

 

 

 

Figure 23 Coalescence of bubbles with constant interface thickness and thus mobility (a) %� = 10 !� (b) %� =

10 ' . 

 

 



 

Figure 24 Coalescence to bubbles at various time intervals using AITM-PFM.  

 

 

Figure 25 � −profile along � axis at � = 0.5 � for time instances illustrated in Figure 24. 

 




