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A Framework for Multiproduct Batch Plant Design with Environmental Consideration: Application To Protein Production

This paper presents a framework for optimal design of batch plants. It consists of a master optimization algorithm, i.e., a genetic algorithm (GA) coupled to a discrete-event simulation (DES). The innovative aspect of this work is the use of "shortcut" models included in the DES for describing the unit operations. The example of a protein production process serves as an illustration to show the effectiveness of the approach. The major interest is that the use of local models for unit operations allows the computation of an environmental index in combination with an economic indicator. The optimization framework determines the plant structure (parallel units, allocation of intermediate storage tanks), the batch plant decision variables (equipment sizes, batch sizes) and the process decision variables (e.g., final concentration at selected stages, volumetric ratio of phases at the liquid-liquid extraction, ...). The results show that a plant configuration can be easily improved, only by changing the campaign policy for instance. Optimization results for monocriterion cases (miminization of investment cost and two environmental impact criteria based on biomass produced and amount of solvent used) illustrate the efficiency of the methodology, finding a set of "good" solutions which may be interesting for the decision maker.

Introduction

The design of multiproduct and multipurpose batch plants is a key problem in chemical engineering.

At first, this problem was solved by engineers using the rules of thumb. This treatment was possible because, in most cases, the batch plants where designed to produce only one product. In general, this empirical approach yet led to oversized equipment.

Later and especially with the increasing development of the pharmaceutical industry, this approach found its limits with the design of multiproduct plants and, above all, with multipurpose batch plants, which constitute the most general case of batch plant structures.

The formulation of batch plant design generally involves mathematical programming methods, such as LP (linear programming), NLP (nonlinear programming), MILP (mixed-integer linear programming) or MINLP (mixed-integer nonlinear programming).

To use the above-mentioned methods (the list is not exhaustive), a mathematical model representing the batch plant must be developed. An objective function is then defined which refers in most cases to investment cost. Plant modeling involves satisfaction of constraints related for instance to time horizon or production requirements, ....

The main drawback of this methodology is the difficulty, even impossibility, to describe with a high degree of sophistication, the real constraints (various storage policies or operator shift, for instance, ...). In other cases, the number of equations to take as constraints often renders the problem impossible to solve.

An alternative was proposed by Be ´rard et al. 1 It consists of coupling a discrete event simulator (DES) in order to evaluate the feasibility of the production at medium term scheduling, with a master optimization procedure based on a genetic algorithm (GA). Let us recall that discrete event simulation is one way of building up models to observe the time based (or dynamic) behavior of a production system. An overview of the basic concepts in discrete-event simulation can be found in the dedicated literature. [2][3][4] The optimization variables are only discrete variables and the problem presents a marked combinatorial feature (the equipment sizes are considered as discrete values).

Following these ideas, Dedieu et al. 5 generalized the approach to consider multicriteria design and retrofitting. The choice of a hybrid method GA/DES was then all the more justified as several criteria were simultaneously taken into account: a tradeoff between investment cost, equipment number, and a flexibility index based on the number of campaigns necessary to reach a steady-state regime was investigated. The multicriteria genetic algorithm (MUGA) developed was based on the combination of a monocriterion genetic algorithm (MOGA) and a Pareto sort (PS) procedure.

This work is motivated by the need to take into account the capital cost as well as the environmental impact from the earliest design stage. A simplest version of the previously developed DES model has been implemented to model multiproduct batch plant features.

The originality of the global model is that it considers computed values for operating times deduced from embedded local models for unit operations. Let us recall that the constant time and size factor model 6 is the most widespread to design multiproduct batch processes. This model is used to optimize the plant design by proper selection of batch sizes of each product, the operating times of semicontinuous units and the structure of the plant. Only the works presented by Salomone and Iribarren, 7 Montagna et al., 8 Chiotti et al., 9 and Asenjo et al. 10 include process performance models to compute time and size factors and select process variables as optimization variables.

Following these ideas, a new framework for batch plant design which integrates unit operation models into the batch plant wide model is proposed in this paper. The aim of the global approach is to optimize the global batch process, from recipe set-point adjustment and product sequencing to batch plant design. Of course, this methodology implies a compromise for reference models used for unit operations, which are necessary to quantify the environmental impact of the plant.

The approach proposed in this work is to offer a general methodology for ecological and economic assessment in the batch plant design. It involves three major steps:

•Development of unit operations models at the lowest level.

•Development of the batch plant wide model at medium term.

•Simultaneous optimization of operating conditions and plant structure with both economic and ecological targets.

This paper is devoted to the presentation of the two first levels as well as results in monocriterion optimization for each criterion, cost and environmental impact.

It first presents the discrete event simulator used for batch plant modeling. Then, an example of a biochemical batch plant serves as a validation tool: 11 it must be emphasized, as previously mentioned, that it constitutes a rare global batch process found in the dedicated literature. The interesting feature is that recipe models are also available for this process. It is important to say that the corresponding design problem was initially solved with a mathematical programming formulation based on investment cost minimization with equipment sizes considered as continuous optimization variables.

This paper is organized as follows: section 2 presents the basic principles of the discrete event simulation as well as the framework of the developed DES. Section 3 presents the process dedicated to the production of proteins used as an illustration of the proposed methodology, as well as the adaptations of the DES to treat this case. The example is particularly interesting since biochemical plants generally lead to a wide range of liquid, solid, and gaseous waste streams that require treatment prior to discharge. The results obtained for several simulations are presented in the following section, where the advantage of using this methodology appears. Section 5 is devoted to the master optimization algorithm, where a detailed description of the genetic algorithm is given. Section 6 shows the results obtained in the case of monocriterion optimization. In the final section, the conclusion is presented and the guidelines established.

Discrete Event Simulation (DES) Framework

This section presents the DES developed in order to be embedded in the global framework for optimal batch plant design. The DES has two interfaces: the first with the master optimization algorithm from which it takes the batch plant configuration as well as the operating conditions and returns the feasibility of the solution as well as the optimization criteria. The second interface links the DES with the unit operation model: the DES sends the operating conditions to the unit operation model and returns the operating times and the results of mass balances (see Figure 1).

In a DES, a process is described as it evolves with time and changes take place only a finite number of times, i.e., event occurrence date. 12 The DES was developed using C++ object-oriented language, keeping the approach proposed by (Be ´rard et al., 1999) 1 (Figure 2). It must be emphasized that object-oriented (OO )13 techniques have received a lot of attention in recent years and the use of OO techniques are becoming increasingly common. The power of object oriented techniques lie in the ability to produce 'modular′ code (known as classes) that can be "easily" modified and reused. 14 The ability to contain software complexity into classes and to be able to realistically represent entities from the real world in software make OO techniques ideally suited to simulation which is inherently complex.

In (Be ´rard et al., 1999) 1 , a four layer framework was proposed, the aim being the development of a standard library for the simulator classes that are general to any case, thus minimizing the task of treating different study cases or the variants of a given one (i.e., design or scheduling objectives). In this approach, at the lowest level, the common engine can be found. The events in the next level are, most of them, common to all batch plant simulations, but some case studies could need the definition of a particular event. Only few equipment items are common to all batch plants (i.e., storage vessels) whereas most of which are particular to each problem and must be defined. The upper layer is the supervisor, which must be generally adapted to each study case.

In what follows, the description of the basic design of the DES and its operation principles are presented. Following the classical terminology used in objectoriented approaches, the main so-called objects of the DES will be described. To treat a particular problem, specific objects should be derived from this basic structure.

The core of the simulator is the engine, which has two functions: the first one is to order the events in its calendar by their occurrence date whereas the second one is to activate them if the necessary resources are available; if not, it reports the Event to a next date.

The equipment class is a basis class for all batch plant equipment items. This class is an interface for all the objects derived from it.

An event represents a change of the real system at a given time. The class event is also a basis class from which the different events should be defined. An event is characterized by its occurrence date, its action over the modeled system, and a type that enables to give priorities when two or more events have the same occurrence date. As a general rule, events which release resources have priority over the others, and when events have the same type, the classical FIFO rule (first in, first out) is applied.

Product is a basis class from which all products will derive; unlike in the previous classes, either event or equipment, product is not an interface for its derivate classes, because it is difficult to define an interface that takes into account all the chemical product features. To solve this issue, a particular interface class will be defined for each specific problem. The product class has the name of the product and its production recipe as member data. Of course, a next step could be to follow the guidelines for modeling and standardization efforts proposed by several organizations (for instance, The CAPE-OPEN Laboratories Network (CO-LaN) is the internationally recognized user-driven organization for the testing and management of the CAPE-OPEN standard. The standard defines rules and interfaces that allow CAPE (computer-aided process engineering) applications or components to interoperate.)

The recipe contains the information about the treatment sequence needed to produce a specific product. Each treatment sequence has as data the treatment stage, which contains the equipment items that can carry out the treatment, as well as the storage stage that contains the equipment items that can store the batch if the equipment required for the treatment stage is not available.

Through its member data, the supervisor has access to all the objects in the simulation and aims at supervising simulation evolution and at stopping it if given conditions are not verified.

Process Description

The example (see Figure 3) used to validate the DES is taken from Pinto et al. 15 A more detailed description of the process can be found in. 11 The batch plant is composed of eight stages for the production of four recombinant proteins, two therapeutic proteins, human insulin and vaccine for hepatitis B, a food grade protein, chymosyn, and a detergent enzyme, cryophilic protease. The results obtained are still generic for any plant producing recombinant proteins from yeast.

3.1. Global Process Description. All the proteins produced as cells grow in the fermentor. Vaccine and protease are considered as being intracellular; hence, for these two products, the first microfilter is used to concentrate the cell suspension, which is then sent to the homogenizer for cell disruption to liberate the intracellular proteins. The second microfilter is used to remove the cell debris from the solution proteins.

The ultrafiltration prior to extraction is designed for concentrating the solution, to minimize the extractor volume. In the liquid-liquid extractor, salt concentration (NaCl) is manipulated to first drive the product to a poly(ethylene glycol) (PEG) phase and again into an aqueous saline solution in the back-extraction. In this process, many of the proteins other than the product are removed.

Ultrafiltration is used again to concentrate the solution. The last stage is finally chromatography, during which selective binding is used to better separate the product of interest, from the other proteins.

Insulin and chymosin are extracellular products. Protein is separated from the cells in the first microfilter, where cells and some of the supernatant liquid stay behind. To reduce the amount of valuable product loss in the retentate, extra water is added to the cell suspension.

The homogenizer and microfilter for cell debris removal are not used when the product is extracellular. Nevertheless, the ultrafilter is necessary to concentrate the dilute solution prior to extraction. The final steps of extraction, ultrafiltration, as well as chromatography are common to both the extracellular and intracellular products.

A brief description of each process stage is presented and the different assumptions used to compute the processing time and the mass balance through the plant are explained in Appendix A (for a more detailed description see Pinto et al. 15 ) Let us note that some differences in the assumptions were carried out because the aim of this work is to describe the involved unit operations with simple models, to obtain complete information about the treatment stage (i.e., flow composition, required amount of utilities, wastes, ...). In the previous work, 10 the models were only used to compute the operating time and the corresponding efficiency, with a formulation based on constraints to solve the optimization problem.

In this work, classical chemical engineering balances are carried out at each treatment stage. It must be emphasized that an additional advantage of a DES approach over mathematical programming is that different scenarios can be easily studied, for instance for scheduling or retrofitting purposes.

Simulator Extension to the Biochemical Plant.

From the basis class defined in section 2, additional classes to implement the previous example were derived. Figure 4 shows the inheritance for the four different products: insulin, vaccine, chymosin, and protease.

The protein class was inherited from the product class and owns as member data the common features to all the proteins treated in the example: the final concentration at the fermentation step, the final concentration at the first microfilter and the phase ratio in the liquidliquid extraction. Two classes were inherited from intracellular and extracellular proteins: the former has respectively the number of passes through the homogenizer and the water ratio added at the second microfilter as member data. The latter has the water ratio added at the first microfilter. The two extracellular products insulin and chymosin were inherited from extracellular. Vaccine and protease were inherited from the intracellular class. As was previously mentioned, a container class is defined to include all the products of the problem and serves as an interface.

Figure 5 shows the inheritance for the different equipment items. The unit operation performance models have then been embedded in the DES model to determine the behavior of the plant.

The class names correspond to the unit operation that they can perform: Fer (fermentation), MF1 (first microfiltration), Hom (homogenization), MF2 (second microfitration), UF1 (first ultrafiltration), Ext (liquidliquid extraction), UF2 (second ultrafiltration), Ch (chromatographic separation), and Sto (intermediate storage).

Since the simulator development aims at batch plant designing, the system description only requires two event types (see Figure 6): first, the load event of a batch in the treatment stage that consists of the equipment items in which the batch can be loaded and the associated storage stage, if any equipment items are not available and, second, the unload event.

DES Results

In the works of Montagna et al. 10 and Asenjo et al., 11 a strategy based on monoproduct campaigns was assumed, even when considering the design of a multiproduct batch plant.

Two preliminary simulation runs were performed in order to validate our approach on the example treated in. 15 In both simulations (Figures 7 and8), the process operating conditions were taken from ref 11, with constant time and size factors; the equipment number corresponds to the solutions obtained in the different cases of optimization. The plant was composed of one equipment item for each stage of treatment and a policy of no intermediate storage was applied. The equipment size was fixed in order to guarantee a high use rate.

It is important to say that the conditions of the optimal solutions found by these authors have not yet been exactly reproduced since the assumptions on mass balances are not the same. More precisely, they only take into account the interest proteins, while all the compounds of a given batch must be considered to estimate the environmental impact at the design stage.

In Figure 7, the Gantt diagram relative to the production of an extracellular protein product is presented for five monoproduct campaigns. Since the fermentation step is the longest operation, the campaign starts when a fermentor is available. Figure 7 illustrates five monoproduct campaigns for an intracellular product.

At this stage, some remarks can be made. In Figure 7, for extracellular product manufacturing, two equipment items are not used (hom-01 and mf2-01), because cells do not need to be disrupted to extract the product. In the case of intracellular products (see Figure 8), we can observe that the first microfilter used for extracellular proteins has an acceptable utilization rate. The nonuse of additional water at this stage for intracellular products reflects this important difference. We observe a similar behavior for the first ultrafiltration stage. In this case, the analysis of process modeling reveals that intracellular products arrive after two microfiltration stages, instead of one for extracellular products. Thus, the concentration is higher, and consequently, the amount of water to be filtered takes a lower value.

It is also important to note that the liquid-liquid extractor has a very low use rate. This stage has a constant operation time of 1.8 h, which is very low compared with the other stages; i.e., the fermentation time is around 24 h and cannot be improved in any way.

Another alternative using multiproduct campaigns was tested in this study. This kind of strategy can be directly tested with the DES, while its implementation requires another formulation when using mathematical programming techniques.

While keeping the same batch plant structure, a multiproduct campaign, composed of a batch of each product to be synthesized, was run. The release order of the different batches in the plant was fixed altering intracellular and extracellular products.

Figure 9 displays the results obtained. The first remark is that the same batch plant was able to produce the same production rate in both operating modes. In the multiproduct campaign, only one assumption has been added concerning the possibility for a batch to stay in the active process step for storage (unavailability of storage vessels or of the following process steps).

It can also be noted that the equipment items, which present a low use rate for some products in the previous plant operating mode, have now a regular use rate. In turn, now, four of the eight stages are oversized around 100% (mf1-01, hom-01, mf2-01 and uf1-01).

The approach based on the coupling of a DES with unit operation models shows its flexibility since no modification from the initial model formulation is required: the only difference is that operation times may be computed by representation models. Thus, different strategies can be directly tested for sensitivity analysis and could be thus automatically treated when embedded in the global optimization tool.

More precisely, the parameter list can include the campaign composition, the number of products in each campaign, the number of batches of each product, the batch sizes, the starting order of the campaign batches and the time interval between campaigns, ....

Master Optimization Algorithm With Genetic Search

Stochastic algorithms, such as simulated annealing (SA) [16][17][18][19] or genetic algorithms (GA) 20,21 are more and more used for combinatorial optimization problems in various fields, and particularly in chemical engineering. [START_REF] Pibouleau | A Survey of Optimization Tools via ESCAPE Symposia[END_REF] Table 1 compares the main features of both mathematical programming and stochastic optimization methods. Since practical industrial problems might not be "mathematically" understood at design start and since batch plant design must take into account both investment cost and environmental impact, the choice of the stochastic optimization method is clearly justified.

5.1. Genetic Algorithm. The main advantage of GA upon SA is that it works on a set of potential solutions instead of a single one; however, for particular applications, the major drawback lies in the difficulty of carrying out the crossover operator for generating feasible solutions due to the problem constraints. As this problem was easily solved within this work and as the final aim was multiobjective optimization, the GA use was considered the most suitable way to tackle the problem.

A GA is a computational model that emulates the theory of evolution for solving combinatorial problems, or more precisely finding good solutions to it. This type of algorithm uses a "guided random search" in which a set of different solutions (the population) to a problem are investigated and refined simultaneously. This procedure is based on the natural processes of heritage and selection.

A flowchart of a classical GA is presented in Figure 10 where the cycle {evaluation, selection, crossover, and mutation} is repeated until a stop criterion (i.e., a maximum number of generations) is reached.

The design problem solved in this study can be formulated as follows:

Given production recipes and a production level to satisfy for each product to manufacture, determine batch plant structure (i.e., number and size of parallel equipment items and storage vessels) as well as some operating conditions of key processes, in order to satisfy a given performance criterion (based on either economical or economic consideration).

5.1.1. Encoding for Design Problem. Since the design problem involves both continuous and discrete values, a binary system was chosen for encoding, as it simplifies the genetic operators, i.e., crossover and mutation.

In Tables 2 and3, all the optimization variables and their corresponding type (discrete or continuous) are listed. The continuous variables were discretized and encoded in a binary way by a variable change (Figure 11). To simplify the encoding parameters, all the continuous variables were encoded using the same bit number (eight bits). For each one, it was checked whether the discretization was enough accurate for the problem. This encoding method was developed for the cases where the equipment items are identical at a given stage. Figure 12 shows a code section used for operating stage encoding. For each stage, the equipment item number was encoded by a binary way (part A in Figure 12).

The number of bits reserved to this variable sets the maximum equipment item at the stage. The equipment item of the stage is equal to the binary value plus one for guaranteeing the presence of at least one equipment item at each treatment stage. This was not implemented for storage stage because the existence of storage vessels is not necessary for product synthesis. For the equipment size, a number of bits equal to the available size for the equipment items was reserved (part B in Figure 12), the chosen size having the positive value whereas zero was allocated to the other places. When equipment items are composed of several parts (i.e., the first micro filter has a retentate vessel, the filter and a permeate vessel), the same approach is repeated for each component (parts B and B′ in Figure 12).

The number of variables is then equal to respectively 26 discrete and 18 continuous. The combinatorial aspects due to discrete variables reaches 3.38 × 10 13 and the global combinatorics is 6.93 × 10 16 . It can of course be deduced that the main combinatorial importance came from the discrete values. The discretization of the continuous variables does not add any important complexity to the problem.

Initial Population Creation.

In the implementation of a GA, all the generated populations are assumed to have the same given size. To create the initial population, the chosen procedure consists of a random string initialization. This strategy guarantees a population various enough to explore large zones of the search space. Before being integrated into the initial population, the physical feasibility of each generated structure is tested and corrected if necessary, until the set of so-generated configurations reaches the given population size.

It must be emphasized that the correction procedure may be necessary when either mutation or crossover leads to the same kind of default, i.e., absence of a positive value for a gene or presence of two positive values. In both cases, a simple correction procedure is proposed. In the former case, it consists of the random allocation of a positive value and in the latter case in the random elimination of one value.

5.1.3. Fitness Evaluation. Classically, a GA uses for each individual of the current population a fitness function, which must be maximized. Since this work is related to minimization cases (investment cost, environmental impact), the individual fitness F i is calculated by where C i is the objective function value for individual i and C max is the maximum objective function value computed on the current population.

A null fitness is assigned to individuals that do not verify the production requirements.

5.1.4. Selection Procedure. For a given survival rate, the selection process is achieved via a classical 

F i ) C max -C i
Goldberg's biased roulette wheel. 20 The selection by Goldberg's wheel is performed and each selected individual is included into the new population.

5.1.5. Crossover Operation. To complete the new population, a classical one-point crossover is performed on pairs of individuals randomly chosen in the current population (see Figure 13).

Mutation Operation.

Once the new population is generated by the selection procedure and the crossover operation is applied, the mutation procedure (see Figure 14) is carried out on this population, with a fixed mutation rate. The number of individuals to which the mutation procedure is carried out is equal to the integer part of the value by the population size multiplied by the mutation rate. These individuals are chosen randomly among the population and then the procedure is applied. 5.1.7. Some Remarks about Encoding. From the development stage of the code, it was pointed out that some binary sequences that can be generated do not represent a viable solution for the optimization problem, which may be attributed to equipment item size encoding. This phenomenon may result either from mutation or crossover, as illustrated in Figures 15 and16.

The arrows represent the gene (or chromosome part) exchange position, which is randomly generated either for mutation or for 1-point crossover.

Even if the code random generation can be easily guided, it was preferred to keep as generic the crossover and mutation procedures to guarantee the randomized search and then to develop a procedure for code checking and correction for invalid solutions. More practically, the method tests for each equipment item size if a place with the value 1 is allocated. If not, the value 1 is allocated randomly. If two 1 digits are allocated, one is eliminated randomly. It must be remarked that three or more 1 digits cannot be present, given that the procedures modify only one point of the code at each time (see Figure 17).

This encoding method was preferred for two main reasons: first of all, to keep the homogeneity on the global encoding system (using only binary variables), and second to keep the optimization algorithm as simple as possible.

Optimization Criteria.

The cost criterion considered in this study is classically based on investment minimization because there was not enough information to evaluate the operational cost of the batch plant (raw material cost, utilities cost, ...) and to embed it in a net present worth computation.

The optimization criterion involving investment cost for equipment and storage vessels Cost p is calculated by where variables have the following meanings.

NOP ) number of operations. NEQ i ) number of equipment items (for operation (i). NSV ) number of storage vessels.

A i , B i , and C i ) cost coefficients for operation i. A s , B s , and C s ) cost coefficients for storage vessels.

V ij ) volume of equipment ij. V sk ) volume of storage vessel k.

Considering environmental impact (EI), let us recall that several methodologies are available in the literature. The most important concept perhaps refers to the life cycle assessment (LCA) methodology: [START_REF] Burgess | The application of life cycle assessment to process optimisation[END_REF] it considers all the wastes generated in order to produce the different products in the upstream stages (i.e., raw material production, energy generation, etc.), in the study stage (i.e., solvents, nonvaluable byproducts, etc.) and in the downstream steps (i.e., recycling, incineration, etc., ...). The aim of LCA is to consider the wide chain in order to prevent pollution generation and to compare the different alternatives to manufacture a product. Another concept used the pollution balance (PB) principle, [START_REF] Cabezas | Pollution prevention with chemical process simulators: the generalized waste reduction (WAR) algorithmsfull version[END_REF] equivalent to the balance made for mass or energy. It means that a process can not only pollute but also consume a polluting product and can be, consequently, a benign process.

Finally, the so-called pollution vector (PV) methodology [START_REF] Stefanis | Minimizing the environmental impact of process Plants: A process systems methodology[END_REF] consists of evaluating the environmental impact by means of an impact vector over different environments (i.e., water, air, etc.) defined as the mass emitted on an environment divided by a standard limit value in this environment.

A guideline of this work is to integrate all these aspects for batch plant design, as much as allowed by information availability for the case study.

Given the production recipes for the different products and the general flowsheet, the first step consists of applying the LCA methodology to determine all the products contributing to the environmental impact (Figure 18).

For information availability reasons, the study was reduced to the process being studied, which is of course a limited application of LCA. Products (i.e., vaccine) and raw materials (glucose, NH 3 ) were considered as not having an environmental impact. After that, a PB is applied, using the PV to quantify the environmental impact. In this case, an adapted definition of the pollution vector was introduced, because the standard limit values for the polluting product were not found in the literature. This vector has two components; the first one is the total biomass quantity released and the second one is the PEG volume used. Even if the solvent can be recycled, it cannot be carried out at 100%, so the 
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environmental impact is considered as proportional to this quantity. The pollution indexes were thus defined as the quantities divided by the mass of the manufactured products. Let us note that the environmental impact minimization can be viewed as a multicriteria problem.

So, the three criteria considered in this study to be minimized are respectively the investment cost, the biomass produced and the amount of used solvent.

Monocriterion Batch Plant Optimal Design Results

The DES model was developed and tested in several operating conditions and then coupled to the master optimization algorithm. From the results obtained in section 4, the two following campaign operating policies were considered, either mono-or multiproduct campaign. Table 4 shows the demand for each product. The batch size is calculated by the DES, as the biggest batch that can be processed at each stage by the smallest equipment item. Since the demand and the batch size are then available, the number of batches to be manufactured for each product is then computed. In the monoproduct campaign policy, all the batches of a product are treated before processing different product. In the multiproduct campaign mode, one batch of each product is treated successively, following the order presented in Table 4.

Table 5 presents the available range of the equipment item sizes for each equipment type.

Most of the works in the literature consider the equipment size items as continuous variables; they were considered here as discrete variables, since it is practically the case for batch processes. Three equipment item sizes are available for each equipment item: large (L), medium (M), and small (S). Table 5 also presents the classical expressions for computing the investment cost of the equipment items.

Table 6 displays the parameters of the genetic algorithm. In this work, a higher ratio (generation number relative to population size) than usual in monocriterion optimization studies was considered. The survival rate is relatively low as compared to standard values for optimization of test mathematical functions. 5 Moreover, a high mutation rate was set. Although a systematic study was not carried out to find these values, they were chosen from several preliminary tests and agree with previous works 1,5,26 where similar problems were treated. The elitism was used in order to avoid losing the best solution.

Table 7 presents the variable lower and upper bounds of the problem variables. They were established analyzing the model behaviors. The monocriterion design of the batch plant was initially performed in order to obtain the optimal solution for each criterion and to gain knowledge of the problem.

Table 8 presents the best solution obtained with the two campaign policies. Several optimization runs were performed to guarantee the stochastic nature of the GA. The first remark that can be carried out is that there were no important differences in the investment cost criterion between the two campaign policies.

Let us recall that the problem formulation explicitly ban solutions having different equipment items (L, M, S) at one stage. The reason for these results is that, on one hand, the weight in the cost criterion of both the fermentation stage and the chromatographic separation stage is dominant over the other treatment stages (see Figure 19) and these stages are shared among all the manufactured products. On the other hand, it can be observed the differences between the two campaign policies came from the sizing of the homogenizer and of the second microfiltration stage: the predicted behaviors were found again; i.e., the capacity of the homogenizer and the filtration surface of the second microfilter are smaller for the multiproduct campaign operation mode.

Other interesting results for the optimal solutions concern the used rate of the different equipment items (see Table 9) which can be helpful for visualizing bottlenecks. Two kinds of information are given, both real used rate (treatment) and apparent used rate (treatment + storage). It is clearly observed that fermentation represents the critical step for the two policies, mono-and multiproduct cases; the multiproduct case offers more flexibility for the real used rate index.

Table 10 presents the results obtained in the different optimization runs for both mono-and multicampaign policies.

For each simulation run, the average numerical effort spent on solving the problem on a Pentium M monoprocessor with 1.6 Ghz is about 3 h CPU.

Even though the best solution was obtained only in one optimization run (let us recall at this level that the numbers of times that the best solution is reached is generally a good indicator of the performance algorithm), in all the other optimization runs, the obtained solutions reached the best value (they were around 2% worse). The average of the multiproduct campaign was slightly lower than the monoproduct campaign policy, for the reasons explained previously. Let us note that the best solution by run is obtained several times. It corresponds to the same batch plant configuration working at different operating conditions, which shows the flexibility of the batch plant. In the best optimization run for the monoproduct campaign, the solution was obtained 26 times, and for the multiproduct campaign, it was obtained 107 times. In Table 11, the range of values for the environmental criteria for both mono-and multiproduct best optimization runs are presented. In the multiproduct campaign policy, the interval is wider than for the monoproduct campaign policy for both environmental criteria, which corresponds with the number of times that the best solution was found. Even if the use of a multiproduct campaign does not have an important impact in the cost criterion for the reason previously explained (low weight impact of the unshared equipment items in the cost criterion), the advantages are now highlighted: such a policy gives more flexibility to the batch plant and so the possibility of acting over other criteria.

Since the values of the environmental criteria are located over a range, as presented in Table 11, it is interesting to see where the range is situated in combination with the optimal value of each criterion. For this purpose, several monocriterion optimization runs were carried out for both environmental criteria.

For both environmental impact criteria, the optimal value was found in each run. The environmental impact criteria depend only on the operating conditions, i.e., continuous variables, which enables to solve the problem easily. There was no difference between the campaign policies as expected.

The value obtained for biomass index optimization is the same for all the optimization runs (i.e., 13.3) and can be compared to the ideal value (i.e., 11.88). This value comes from the hypothesis of a perfect separation of the interest product from the rest of the biomass: in other words, it means that there is no product loss at the separation stages. It is an ideal value because it would be impossible to obtain it in a real case (i.e., an infinity value for washing water at the microfiltration stage, no product loss at the liquid-liquid back-extraction). The difference between the ideal value and the obtained values came from the upper and lower bounds of the operating conditions, as well as the equipment item number and size bounds.

The obtained operating condition values depend on the product kind.

In the case of extracellular products (insulin and chymosin), the final concentration at the fermentation stage took the lowest value. A diluted solution allows superior proteins recuperation at the microfiltration stage. The final concentration at the first microfiltration had a high value as well as the water added for solution washing.

For the intracellular products (vaccine and protease), the final concentration at the fermentation stage was maximized, and the final concentration at the first microfiltration stage took a low value, which minimizes the extracellular proteins loss at the microfiltration stage. The pass number through the homogenizer was maximized, which also maximizes the amount of proteins released. As for the extracellular products, the water amount is maximized at the stage where proteins are separated of the cell debris. For all the products, the value obtained for phase ratio at the liquid-liquid separation corresponds to a maximization of efficiency.

Concerning solvent index optimization, the most important influence is attributed to the phase ratio at the liquid-liquid extraction. Most of the other operating conditions do not have any influence. It is important to note that the concentration is standardized at the ultrafiltration stage before the liquid-liquid extraction. In the case of extracellular products, the composition is fixed from the fermentation stage, so the final concentration in the fermentor and the first microfilter, as well as the water added at the first microfiltration, does not have any influence. For the intracellular product, the final concentration in the fermentor has a low value and the final concentration at the first microfiltration is maximized in order to eliminate the maximum of extracellular proteins, so the fraction of product is increased when they are released at the homogenization stage.

From the results presented, it must be emphasized that for the monocriterion optimization runs dedicated to the investment cost, several solutions near the best one were found; moreover, the best solution of each optimization run was obtained several times (100 times on average). For each batch plant configuration, several sets of possible operating conditions are found, giving a range of values for the environmental impact criteria, which not surprisingly does not include the optimal values for both environmental criteria. Besides, when the monocriterion environmental impact optimization runs were carried out, several oversized configurations were obtained. From these results, the interest of the multicriteria optimization in where all the criteria are taken into account simultaneously clearly appears and should drive the search to compromise solutions. This aspect is now under investigation.

Conclusions

In this paper, a DES model coupled with simple unit operations models is presented and tested for the solution of the design of multiproduct batch plants. The example of a protein production process illustrates and shows the effectiveness of the approach. This two-stage methodology is embedded in an outer optimization loop, based on a stochastic optimization technique, i.e., a genetic algorithm to evaluate the performance of the batch plant structure and the operating conditions, with both economic and ecological targets. The approach is a clear illustration that environmental impact assessment is an activity closely related to process design and cost estimation: generation of waste from a chemical or biochemical process is dependent upon the process design and the manner in which the process is operated.

Results obtained in the monocriterion case shows the efficiency of the methodology. On one hand, the optimal solution for the environmental impact indexes was easily found, but for the cost investment objective function, the best solution was not always found. It is noticeable that the term "best" is used because the optimality of the solution cannot be established. On the other hand, the other solutions were good and not worse than 5% of the best solution obtained. The optimal solution was obtained several times, since the same batch plant can work for several operating conditions.

The next step of the methodology naturally lies in multicriteria design, to obtain the compromise solutions, by adaptation of the developed genetic algorithm. Fermentor. The first stage is the fermentation where both intracellular and extracellular proteins are produced (Figure 20).

A logistic kinetic expression, constrained by a limiting biomass concentration, is assumed for cell growth:

The same constant kinetic, 0.26 h -1 , is estimated for all the products, as well as the following maximum biomass concentration X i,max ) 55 kg/m 3 .

It is assumed that 40% of biomass is composed of proteins, and a ratio (kg of product i/kg total de proteins) is estimated as 0.05, 0.1, 0.15, and 0.2 for insulin, vaccine, chymosyn, and protease, respectively.

By integrating eq 1 between an initial biomass concentration of 5% of the maximal biomass concentration and the fermentor final concentration, with adding a downtime of 4 h, the fermentation time is then obtained.

First Microfilter. This stage consists of three items: a batch retentate holding vessel, the microfilter itself, and a permeate holding vessel, used only by extracellular proteins (Figure 21).

For intracellular products, the aim of this stage is to reduce the batch size, which is of major importance to reduce the following stages. For the extracellular products, the proteins separated from the cells and water is added to avoid product loss.

The time required to perform the filtration is proportional to the permeate volume, inversely proportional to the membrane surface and also proportional to the membrane permeability.

Homogenizer. The vaccine and protease batches proceed through the homogenizer for cell disruption (Figure 22). 

( 1 -C i,fer 55 ) ) (2)
The homogenizer time is proportional to the volume feed and inversely proportional to the homogenizer capacity. The volume fed to the homogenizer is the batch volume times the number of passes through the homogenizer.

Successive passes through the homogenizer drive the fraction cell disrupted asymptotically to 1, which is also the fraction of proteins released. The same approach is valid to estimate the fraction of proteins released that are denatured by the homogenizer.

Second Microfilter. Cell debris is separated from vaccine and protease at this stage (Figure 23).

Filtration is limited to 50% reduction in the retentate initial volume to avoid operational problems caused by the large concentration of solid matter. Then, water is added, as in the first microfilter stage for extracellular proteins to avoid product loss.

First Ultrafilter. The purpose of this stage is to remove water up to a limit of total protein concentration (Figure 24) estimated as 50 kg/m 3 , to reduce as much as possible the size requirement of the downstream stages, while still avoiding the risk of protein precipitation as NaCl is added to the extractor.

Liquid-Liquid Extractor. The variable decision at this stage is the volumetric ratio of poly(ethylene glycol), PEG, to phosphate phase, R i . Back-extraction is assumed to be conducted with an aqueous phase volume identical to the feed volume, thus obtaining the maximum dilution if NaCl is compatible with the use of the same vessel for the consecutive extraction and backextraction.

For the extraction-back-extraction, a simplified model is used. The kinetics for both mixing and separating was simplified by assuming that these stages are completely achieved after 5 min of mixing and 30 min of settling. Adding 10 min for each charge or discharge and considering the sequence of eight operations (chargemixing-setttling-discharge of the phosphate phasecharge of the fresh phosphate phase-mixing-settlingdischarge) leads to a constant time of 1.8 h.

Second Ultrafilter. The purpose of this stage is simply to raise again the concentration of total proteins to 50 kg/m 3 , to reduce the size of the chromatographic column.

Chromatographic Column. The aim of Chromatographic separation stage (Figure 25) is to obtain a commercial purity degree. 
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  . The process unit performance models are used to compute the operating time of each process step, as well as the flow composition in order to evaluate effluent (see (Pinto et al., 2001 for more details).
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Table 1 . Evolutionary-Classical Optimization Algorithms Comparison

 1 

	evolutionary methods	classical methods
	robust	not robust
	multiobjective	single objective
	multidisciplinary	single discipline
	no derivatives	need derivatives
	low accuracy	high accuracy
	expensive	not expensive

Table 2 . Continuous Optimization Variables: Operating Conditions

 2 

		continuous variables
	name	description (operating conditions)
	Ci,fer	insulin final concentration at the fermentation stage
	Cv,fer	vaccine final concentration at the fermentation stage
	Cc,fer	chymosin final concentration at the fermentation stage
	Cp,fer	protease final concentration at the fermentation stage
	Ci,mf1	insulin final concentration at the first microfiltration stage
	Cv,mf1	vaccine final concentration at the first microfiltration stage
	Cc,mf1	chymosin final concentration at the first microfiltration stage
	Cp,mf1	protease final concentration at the first microfiltration stage
	Wi,mf1	water added at the first microfiltration stage (insulin)
	Wc,mf1	water added at the first microfiltration stage (chymosin)
	NPv,hom	vaccine pass no. trough the homogenization stage
	NPp,hom	protease pass no. trough the homogenization stage
	Wv,mf2	water added at the second microfiltration stage (vaccine)
	Wp,mf2	water added at the second microfiltration stage (protease)
	Ri,ext	phase ratio at the liquid-liquid extraction for insulin
	Rv,ext	phase ratio at the liquid-liquid extraction for vaccine
	Rc,ext	phase ratio at the liquid-liquid extraction for chymosin
	Rp,ext	phase ratio at the liquid-liquid extraction for protease

Table 3 . Discrete Optimization Variables: Equipment Item Numbers and Size discrete

 3 

	Sfer	fermentor volume
	Smf1,ret	first microfilter retentate vessel volume
	Smf1,fil	first microfilter filtration surface
	Smf1,per	first microfilter permeate vessel volume
	Shom	homogeneizer size
	caphom	homogeneizer capacity
	Smf2,ret	second microfilter retentate vessel volume
	Smf2,fil	second microfilter filtration surface
	Smf2,per	second microfilter permeate vessel volume
	Suf1	first ultrafilter retentate vessel volume
	Suf1,fil	first ultrafilter filtration surface
	Sext	liquid-liquid extractor volume
	Suf2	second ultrafilter retentate vessel volume
	Suf2,fil	second ultrafilter filtration surface
	Schr	storage vessel volume
	Schr,col	chromatographic column volume

variables name description (equipment item no. and size) Nsto storage vessel no. Nfer equipment items no. at the fermentation stage Nmf1 equipment items no. at the first micro-filtration stage Nhom equipment items no. at the homogenization stage Nmf2 equipment items no. at the second microfiltration stage Nuf1 equipment items no. at the first ultrafiltration stage Next equipment items no. at the liquid-liquid extraction stage Nuf2 equipment items no. at the second ultrafiltration stage Nchr equipment items no. at the chromatographic separation stage Ssto storage vessel volume

Table 4 . Product Demands

 4 

	product	production (kg/year)
	insulin	1500
	vaccine	1000
	chymosin	3000
	protease	6000

Table 5 . Available Equipment Item Sizes and Cost Coefficients

 5 

	equipment item	large	middle	small	cost
	fermentor [m 3 ]	6	3	1	63400V 0.6
	first microfilter-retentate vessel [m 3 ]	6	3	1	5750V 0.6
	first microfilter-filtration surface A [m 2 ]	5	2.5	1	2900A 0.85
	first microfilter-permeate vessel [m 3 ]	6	3	1	5750V 0.6
	homogenizer-holding vessel [m 3 ]	6	3	1	5750V 0.6
	homogenizer-capacity [m 3 /h]	0.5	0.25	0.1	12100(cap 0.75 )
	second microfilter-retentate vessel [m 3 ]	6	3	1	5750V 0.6
	second microfilter-filtration surface [m 2 ]	5	2.5	1	2900A 0.85
	second microfilter-permeate vessel [m 3 ]	6	3	1	5750V 0.6
	first ultrafilter-filtration surface [m 2 ]	50	25	10	2900A 0.85
	first ultrafilter-permeate vessel [m 3 ]	6	3	1	5750V 0.6
	liquid-liquid extractor Vextr (m 3 ) Vholding (m 3 )	6	3	1	23100V 0.65
					5750V 0.6
	second ultrafilter-permeate vessel [m 3 ]	6	3	1	
	second ultrafilter-filtration surface [m 2 ]	5	2.5	1	
	chromatographic separation-holding vessel	6	3	1	
	chromatographic separation-column	1	0.5	0.25	360000V 0.995
	storage vessel [m 3 ]	6	3	1	5750V 0.6

Table 6 . Genetic Algorithm Parameters

 6 

	population size		200
	generation no.		1000
	survival rate		0.5
	mutation rate		0.4
	elitism		1
	Table 7. Variable Bounds	
	variable	lower bound	upper bound
	Ci,fer [kg/m 3 ]	3 5	5 5
	Cv,fer [kg/m 3 ]	3 5	5 5
	Cc,fer [kg/m 3 ]	3 5	5 5
	Cp,fer [kg/m 3 ]	3 5	5 5
	Ci,mf1 [kg/m 3 ]	150	250
	Cv,mf1 [kg/m 3 ]	150	250
	Cc,mf1 [kg/m 3 ]	150	250
	Cp,mf1 [kg/m 3 ]	150	250
	Wi,mf1 [m 3 /m 3 ]	0.5	3.0
	Wc,mf1 [m 3 /m 3 ]	0.5	3.0
	NPv,hom	1	3
	NPp,hom	1	3
	Wv,mf2 [m 3 /m 3 ]	1	3
	Wp,mf2 [m 3 /m 3 ]	1	3
	Ri,ext [m 3 /m 3 ]	0.05	1.5
	Rv,ext [m 3 /m 3 ]	0.05	1.5
	Rc,ext [m 3 /m 3 ]	0.05	1.5
	Rp,ext [m 3 /m 3 ]	0.05	1.5
	Nsto	0	7
	Nfer	1	8
	Nmf1	1	8
	Nhom	1	4
	Nmf2	1	4
	Nuf1	1	8
	Next	1	8
	Nuf2	1	8
	Nchr	1	8

Table 8 . Best Solution of Batch Plant Design for the Investment Cost Criterion
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	equipment item	monoproduct	multiproduct
		campaign	campaign
	batch plant cost [EURO]	1140990	1139100
	no. of fermentors	5	5
	fermentor size	M	M
	no. of first microfilters	1	1
	first microfilter-retentate vessel [m 3 ]	M	M
	first microfilter-filtration surface [m 2 ]	L	L
	first microfilter-permeate vessel [m 3 ]	M	L
	no. of homogenizers	1	1
	homogenizer-holding vessel [m 3 ]	S	S
	homogenizer-capacity [m 3 /h]	L	M
	no. of second microfilters	1	1
	second microfilter-retentate vessel [m 3 ]	S	S
	second microfilter-filtration surface [m 2 ]	L	M
	second microfilter-permeate vessel [m 3 ]	M	S
	no. of first ultrafilters	1	1
	first ultrafilter-retentate vessel [m 3 ]	M	L
	first ultrafilter-filtration surface [m 2 ]	M	M
	no. of liquid-liquid extractors	1	1
	liquid-liquid extractor	S	S
	no. of second ultrafilters	1	1
	second ultrafilter-retentate vessel [m 3 ]	S	S
	second ultrafilter-filtration surface [m 2 ]	S	S
	no. of chromatographic columns	1	1
	chromatographic separation-holding vessel	S	S
	chromatographic separation-column	L	L
	storage vessel	0	0

a Key: L, low size; M, middle size; L, large size.

Table 9 . Used Rate (%) of Equipment Items Corresponding to Best Solution of Batch Plant Design for the Investment Cost Criterion
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		monoproduct campaign		multiproduct campaign
		RUR	AUR		RUR	AUR
		real used rate	apparent used rate		real used rate	apparent used rate
		(treatment)	(treatment + storage)		(treatment)	(treatment + storage)
	FER	96.71	100.00	FER-01	87.26	100.00
	MF1	82.38	95.15	MF1	86.27	98.32
	HOM	34.53	34.66	HOM	35.93	39.18
	MF2	32.08	32.98	MF2	39.21	72.58
	UF1	80.09	80.09	UF1	81.14	83.74
	EXT	35.93	35.93	EXT	33.38	33.38
	UF2	38.23	38.23	UF2	32.61	32.61
	CHR	8.47	8.47	CHR	7.92	7.92

Figure 19. Weight impact of individual operation units on global investment cost.

Table 10 . Optimization Runs Result for the Investment Cost Criterion
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			% from		% from
	optimization	monoproduct	optimal	multiproduct	optimal
	run	campaign	solution	campaign	solution
	1	1163560	1.98	1173680	3.04
	2	1140990	0.00	1168320	2.57
	3	1168610	2.42	1139100	0.00
	4	1166730	2.26	1148990	0.87
	5	1144770	0.33	1156480	1.53
	6	1169270	2.48	1156850	1.56
	7	1171800	2.70	1184890	4.02
	8	1168610	2.42	1143820	0.41
	9	1166450	2.23	1151120	1.06
	10	1166730	2.26	1175050	3.16
	best value	1140990		1139100	
	average value	1162752	1.91	1159830	1.82
	standard	10 177			
	deviation				

Table 11 . Values for the Environmental Criteria in Mono Criterion Cost Investment Optimization
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	campaign policy	investment cost	biomass related index	solvent related index
	monoproduct campaign	1140990	[14.0067; 14.2079]	[41.3954; 44.2903]
	multiproduct campaign	1139100	[13.8965; 14.7712]	[27.0626; 40.0288]
			Figure 20. Fermentation stage.	
				(1)
			t ) 4 + 3.8 ln (	0.35.C i,fer

dX i,fer dt ) φ i X i,fer ( 1 -X i,fer X i,max )

Table 12 . Operating Conditions

 12 

		insulin	vaccine	chymosyn	protease
	Cfer	50	50	50	50
	Cmf1	200	200	200	200
	Wmf1	1.25		1.25	
	NPhom	3	3	3	3
	Wmf2		1.5		1.5
	R	1	1	1	1

It is assumed that the chromatographic column works at a constant velocity of 4 m/h and that its pack binding has a capacity of 20 kg/m 3 . A 50% capacity of the maximum capacity is used so as to avoid excessive product breakthrough.

A column height of 0.5 m was assumed, which is large enough to allow high resolution and is still compatible with reasonable linear velocities.

Elution plus washing-regeneration solution volumes were assumed to amount to three times the column volume, and the linear velocity for this process was assumed to be the same as that for loading.

Appendix B. Simulation Results

One of the main features of this DES is the use of models for describing the unit operations, having access to the flow composition in the batch plant, in order for example to compute the released waste in the environment. The obtained results correspond to the simulation of a unit size batch for each product at the standard operating conditions presented in Montagna et al.; 11 see Table 12). In Table 13, the batch size and composition after the indicated treatment stage is presented. Table 14 presents the waste released in the environment for each treatment stage.
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