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Abstract

We present a numerical approximation of the Giesekus equation which is considered as a realistic model for polymer
flows. We use nonconforming finite elements on quadrilateral grids which necessitate the addition of two stabilization
terms. An appropriate upwind scheme is employed for the convective term. The underlying discrete Stokes problem is
then analysed. Finally, numerical tests are presented in order to validate the code, illustrating its good behavior for
large Weissenberg numbers. Comparisons with Polyflow R© and with the literature are also carried out.
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1. INTRODUCTION

We are interested in the numerical simulation of poly-
meric liquids which are, from a rheological point of view,
non-Newtonian viscoelastic fluids. Their viscoelastic be-
havior can be observed in a variety of physical phenom-
ena, such as die swelling or the Weissenberg effect, which
are unseen with Newtonian liquids and which cannot be
predicted by the Navier-Stokes equations.

Despite numerous efforts, the numerical approximation
of polymer flows is still a challenging research area, due to
the internal coupling between the viscoelasticity of the liq-
uid and the flow, which is quantified by the Weissenberg
number We = λ

.
γ with

.
γ the shear rate and λ the relax-

ation time.
A major issue to be addressed is the breakdown in con-

vergence of the algorithms at critical values of We. The
existing commercial codes are generally only able to deal
with We up to 10, which is insufficient to describe polymer
flows in a processing machine.

The rheological behavior of polymers is so complex that
many different constitutive equations have been proposed
in the literature in order to describe these phenomena, see
for instance [13]. We choose here to study the differential
model of Giesekus which presents two main advantages.
First, it yields a realistic behavior for shear flows, elon-
gational flows and mixed flows. Second, only two mate-
rial parameters (the viscosity η and the relaxation time λ)
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are needed to describe the model. However, the Giesekus
constitutive law is strongly nonlinear since it involves a
quadratic term in the stress tensor.

Our goal is to develop a robust numerical scheme to
obtain realistic simulation for high Weissenberg numbers.
We consider here the 2D steady case and quadrilateral
meshes. We approximate the velocity and the pressure
by means of nonconforming finite elements of Rannacher-
Turek, which are well-known to be inf-sup stable, and the
stress tensor by means of totally discontinuous piecewise
functions. The analysis of the underlying discrete Stokes
problem has highlighted the necessity of adding two sta-
bilization terms, one in order to recover a Korn type in-
equality on nonconforming spaces, and the other to attain
optimal convergence. Concerning the Giesekus equation,
the convective term on the stress tensor is treated using
an upwind scheme, similarly to the well-known Lesaint-
Raviart scheme.

The paper is organized as follows. In Section 2 we in-
troduce the Giesekus model. In Section 3, we describe the
numerical scheme and we perform the numerical analysis of
the underlying Stokes problem. In particular the influence
of the regularization terms is discussed. The last section
is devoted to the numerical results. We first study the
convergence rate for the Giesekus model on an academic
test-case. Then we consider a benchmark problem, the
flow past a cylinder, for which we carry out some compar-
isons and we illustrate the good behavior of the method for
large Weissenberg numbers. The robustness of the scheme
is explained by the positive definiteness of the conforma-
tion tensor, guaranteed by our choice of discretization.
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2. THE GIESEKUS MODEL

In what follows, we write the vectors in bold letters
and the second order tensors in underlined letters.

Giesekus introduced in [6] the following constitutive
law, describing the behavior of a polymeric liquid in a
polygonal domain Ω ⊂ R2:

λ(
O
τ +

α

η
τ τ ) + τ = 2ηD(u) (1)

with τ the viscous stress tensor, D(u) = 1
2 (∇u + ∇uT )

the strain rate tensor and α ∈]0, 1[ a parameter. We take
α = 0.5 which seems to be an appropriate choice. Here
above, ∇u =

(
∂ui

∂xj

)
1≤i,j≤2

and
O
τ is the upper convective

derivative, defined in the steady case by:

O
τ = (u · ∇)τ − τ ∇uT −∇u τ .

The complete Giesekus model is obtained by adding the
mass and the momentum conservation laws, where the
density ρ is supposed to be constant:

∇ · u = 0,
ρ (u · ∇) u−∇ · τ +∇p = f ,

and boundary conditions u = g on ∂Ω, τ = τD on the
inflow boundary ∂Ω− = {x ∈ ∂Ω; u(x) · n(x) < 0}. Other
boundary conditions for u will be considered in subsec-
tion 4.2. We take f ∈ (L2(Ω))2, g ∈ (H1/2(∂Ω))2 and
τD ∈ L2

sym(∂Ω−), with:

L2
sym(ω) =

{
τ = (τij)1≤i,j≤2; τ = τT , τij ∈ L2(ω)

}
.

3. FINITE ELEMENT APPROXIMATION

3.1. Discrete nonlinear formulation
Let (Kh)h>0 be a family of regular meshes of Ω con-

sisting of quadrilaterals: Ω =
⋃
K∈Kh

K. We denote by εinth
the set of internal edges of Kh, by ε∂h the set of boundary
edges and we put εh = εinth ∪ ε∂h. As usually, let hK be the
diameter of the quadrilateral K and let h = max

K∈Kh

hK .

On every edge e belonging to εinth , such that {e} =
∂K1 ∩ ∂K2, we define once and for all a unit normal ne.
For a given function ϕ with ϕ|Ki

∈ C(Ki) (1 ≤ i ≤ 2),
we define on e : ϕin(x) = limε↘0 ϕ(x − εne), ϕex(x) =
limε↘0 ϕ(x + εne) as well as the jump [ϕ] = ϕin − ϕex

and the average {ϕ} = 1
2 (ϕin + ϕex). If e ∈ ε∂h, n is the

outward unit normal and [ϕ] is the trace of ϕ. We agree to
denote the L2(ω)-orthogonal projection of a given function
ϕ ∈ L2(ω) on the polynomial space Pk (k ∈ N) by πωkϕ. As
usually, we denote by ϕ− = min{0, ϕ} the negative part of
ϕ and we set ϕ+ = ϕ− ϕ−. We denote by c any constant
independent of h, η and the stabilization parameters. We
shall use the notation τ : θ =

∑2
i,j=1 τijθij .

We approach the velocity by nonconforming finite el-
ements of Rannacher-Turek (see [14]) whose degrees of

freedom are the mean values across the edges, and the
pressure and the stress tensor by totally discontinuous
piecewise functions. Let K̂ = [−1, 1] × [−1, 1], ΨK :
K̂ → K the bilinear one-to-one transformation and Q̂rot1 =
vect{1, x̂, ŷ, x̂2 − ŷ2}. Then we define the space QK =
{v; v ◦ΨK ∈ Q̂rot1 } and we introduce the discrete spaces:

V h = {vh ∈ (L2(Ω))2; vh|K ∈ (QK)2 ∀K ∈ Kh,
1
|e|

∫
e

[vh]ds = 0 ∀e ∈ εinth },

V g
h = {vh ∈ V h;

∫
e

vhds =
∫
e

gds ∀e ∈ ε∂h},

Qh = {qh ∈ L2
0(Ω); qh|K ∈ P0 ∀K ∈ Kh},

Xh =
{
θh ∈ L

2
sym(Ω); (θh)|K ∈ P 0 ∀K ∈ Kh

}
.

We consider the following discrete formulation:
(uh, ph, τh) ∈ V g

h ×Qh ×Xh

aγ,δ (uh,vh) + b (ph,vh)
+c0(vh, τh) = f (vh) ∀vh ∈ V 0

h

b (qh,uh) = 0 ∀qh ∈ Qh
c (uh, τh; θh) + d (τh, θh) = l(θh) ∀θh ∈ Xh.

(2)
The previous forms are defined by:

aγ,δ (·, ·) = a0 (·, ·) + γ J (·, ·) + δR (·, ·) ,

b(qh,vh) = −
∑

K ∈Kh

∫
K

qh∇ · vh dx,

c (·, ·; ·) = −2η c0(·, ·) + c1 (·, ·; ·)− c2 (·, ·; ·) ,
d (·, ·) = d0 (·, ·) + d1 (·, ·) ,

f(vh) =
∑

K ∈Kh

∫
K

f · vh dx,

l(θh) = −
∑

e∈ε∂
h∩∂Ω−

∫
e

(uh · n)−τD : θhds,

where

c0(τh,vh) =
∑
K∈Kh

∫
K

τh : D(vh)dx,

c2(uh, τh; θh) = λ
∑
K∈Kh

∫
K

(τh∇uTh +∇uhτh) : θhdx,

d0(θh, τh) =
∑
K∈Kh

∫
K

θh : τhdx,

d1(τh, θh) =
λ

2η

∑
K∈Kh

∫
K

(τhτh) : θhdx.

The form c1(·, ·; ·) approximates the convective term
u ·∇τ . We extend the approach of Lesaint-Raviart [10] for
constant vectors u to the present nonconforming approxi-

mation of the velocity. Thus we approach
∫

Ω

u · ∇τ : θdx

by −
∑
e∈εh

∫
e

{uh · ne}−[τh] : θinh ds. Finally, an integration

2



by parts together with the fact that πK0 ∇ ·uh = 0 for any
K ∈ Kh allow us to write the previous term as follows:

c1(uh, τh; θh) = λ
∑
e∈ εh

∫
e

Fe(τh,uh,ne) : [θh] ds,

where Fe(τh,uh,ne) = {uh · ne}+τ in
h + {uh · ne}−τ ex

h is
the numerical flux. We take :

a0 (uh,vh) =
∑
K∈Kh

∫
K

ρ

2
(uh · ∇uh · vh − uh · ∇vh · uh) dx.

The additional forms J(·, ·) and R(·, ·) ensure the discrete
coercivity and are defined by:

J(uh,vh) = η
∑
e∈εint

h

1
|e|

∫
e

[πe1(uh · ne)][πe1(vh · ne)]ds,

R(uh,vh) = η
∑
K∈Kh

∫
K

(D(uh)− πK0 D(uh)) : D(vh)dx.

The stabilization parameters γ, δ are independent of h.
Another possibility for the approximation of viscoelas-

tic flows is to introduce the strain rate tensor d = D(u)
as a fourth unknown and to split the stress tensor τ (see
[7] for the DEVSS method). Then the elimination of d at
the discrete level yields a three-fields formulation with an
additional term similar to our regularization term R(·, ·).

The nonlinear problem (2) is solved by Newton’s method.

3.2. Influence of the stabilization terms
In order to highlight the necessity of adding these reg-

ularization terms, we consider in what follows the Stokes
equations for a Newtonian liquid (λ = 0 and ρ = 0). We
can then recover the stress tensor by τh|K = 2ηπK0 D(uh)
and obtain the following two-fields formulation:

(uh, ph) ∈ V g
h ×Qh

ãγ,δ(uh,vh) + b(ph,vh) = l(vh) ∀vh ∈ V 0
h

b(qh,uh) = 0 ∀qh ∈ Qh
(3)

where

ãγ,δ(·, ·) = e(·, ·) + γJ(·, ·) + δR(·, ·),

e(uh,vh) = 2η
∑
K∈Kh

∫
K

πK0 D(uh) : πK0 D(vh)dx.

It is useful to introduce the semi-norm on H1(Ω) + V h:

[[v]] =

(
2η

∑
K∈Kh

‖D(v)‖20,K + γJ(v,v)

)1/2

,

which is a norm on V 0
h. In order to recover a Korn type in-

equality on the nonconforming space V 0
h, we assume that

the transformation ΨK is affine for all K ∈ Kh and we
apply then a result of [2] for piecewise H1 functions, im-
proved in [11]:

∑
K∈Kh

‖v‖21,K ≤ c

( ∑
K∈Kh

‖D(v)‖20,K +
1
η
J(v,v) + φ2(v)

)
,

where φ : H1(Ω)→ R is a semi-norm such that if φ(v) = 0
for a rigid motion v, then v is constant. By taking φ(v)2 =∑
e∈ε∂

h
‖π0v‖20,e which vanishes on V 0

h, one obtains :

∑
K∈Kh

‖v‖21,K ≤ c

( ∑
K∈Kh

‖D(v)‖20,K +
1
η
J(v,v)

)
, ∀v ∈ V 0

h.

(4)

Theorem 1. Problem (3) has a unique solution.

Proof. We check the discrete hypotheses of the Babuška-
Brezzi theorem with respect to the norms [[·]] and ‖ · ‖0,Ω
on V 0

h and Qh. The proof of the uniform coercivity (w.r.t.
h and γ) of aγ,δh (·, ·) on Kerbh is classical. For δ ≤ 2 the co-
ercivity constant is also independent of δ. For the discrete
inf-sup condition, we use the continuous one, the noncon-
forming interpolation operator and a trace inequality to
bound the term J(·, ·).

We have obtained optimal a priori error bounds:

Theorem 2. Let (u, p) ∈ H2(Ω) × H1(Ω) be the solu-
tion of the continuous Stokes problem. Then the solution
(uh, ph) of (3) satisfies:

[[u− uh]] +
1
√
η
‖p− ph‖0,Ω ≤ ch(

√
η|u|2,Ω +

1
√
η
|p|1,Ω).

(5)

Proof. The solution (u, p) satisfies the following consis-
tency result, for all vh ∈ V 0

h :

aδh(u,vh) + b(p,vh) = f(vh) + Σp(p,vh)
+ Σu(u,vh) + ε(u,vh),

where:

Σp(p,vh) = −
∑
e∈εh

∫
e

p[vh · n]ds,

Σu(u,vh) = 2η
∑
e∈εh

∫
e

D(u) · n[vh]ds,

ε(u,vh) = (2− δ)η
∑
K∈Kh

∫
K

(πK0 D(u)−D(u)) : D(vh)dx.

Then we classically show:

α[[uh − Ihu]] ≤ ch|u|2,Ω + ch|p|1,Ω

+ sup
wh∈V 0

h

|Σp(p,wh)− Σu(u,wh)− ε(u,wh)|
[[wh]]

.

The first two terms of the consistency error, which take
into account the nonconformity of the method, are bounded
similarly to [14], thanks to the Korn inequality (4):
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Σp(p,wh) + Σu(u,wh) ≤ ch(
1
√
η
|p|1Ω +

√
η|u|2,Ω)[[wh]].

Using the Cauchy-Schwarz inequality, we also obtain:

ε(u,wh) ≤ ch√η|u|2,h[[wh]],

which allows us to conclude.

If we omit the term R(·, ·), which may seem natural at
a first glance, then the corresponding two-fields formula-
tion (3) has a unique solution but is not consistent. Indeed,
the norm [[·]] is now replaced by:

[[[v]]] =

(
2η

∑
K∈Kh

‖πK0 D(v)‖20,K + γJ(v,v)

)1/2

.

In order to bound the consistency error with respect to
[[[·]]], one needs the following uniform estimates:

|wh|1,h ≤ c1[[[wh]]], ‖D(wh)‖0,Ω ≤ c2[[[wh]]],

which do not hold on V 0
h. To illustrate numerically this

phenomenon, we show in Fig.1 the results obtained for u2

and τ12 for the driven cavity with (Fig.1(b)) and with-
out (Fig.1(c)) regularization. We have also considered a
triangular mesh (Fig.1(a)) with a Crouzeix-Raviart (see
[3]) nonconforming approximation as a reference solution.
One may clearly see that the velocity given in Fig.1(c)
is not correct. Moreover, τ12 computed without R(·, ·) is
constant (and hence not represented in Fig.1(c)).

4. NUMERICAL RESULTS

We have implemented the previous numerical scheme
in the C++ library Concha1. In order to validate the ap-
proximation, we first study the behavior of the errors with
respect to mesh refinement. Then we consider a popular
benchmark problem, the flow past a cylinder and we com-
pare our results with those obtained with the commercial
code Polyflow R©. Comparisons with drag values found in
the literature for the Oldroyd-B model are also carried out.
Finally, we show that simulations for high Weissenberg
numbers give physically acceptable results and briefly jus-
tify it. We have taken in all the tests γ = 10 and δ = 2.

4.1. Convergence with respect to mesh refinement
No analytical exact solution of the Giesekus model is known,
hence we consider a right-hand side such that the solution
on Ω = [−1, 1]× [−1, 1] with Dirichlet conditions is:

u(x, y) =
(

1 + x+ 2x2 + 2y2 + xy
1− x+ 2x2 − 0.5y2 − 4xy

)
,

p(x, y) = x− y,

τ(x, y) =
(

2x+ 3y 1 + 3x+ 4y
1 + 3x+ 4y 2 + 4x+ 5y

)
.

1http://sites.google.com/site/conchapau

(a) Triangular mesh : u2 and τ12

(b) Quad. mesh with R(·, ·) : u2 and τ12

(c) Quad. mesh with-
out R(·, ·) : u2

Figure 1: Driven cavity : influence of R(·, ·)
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Figure 2: Convergence with respect to mesh refinement

We have shown in Fig.2 theH1(Ω)-error of the velocity and
the L2(Ω)-errors of the pressure and of the stress tensor in
log-log scale, for λ = 0.1 and η = 1. We get the expected
convergence rate O(N−1/2) for the three unknowns.

4.2. Flow past a cylinder
We consider a popular benchmark in the computational

rheology community, a 2D flow past a cylinder. Similar re-
sults were obtained on other test-cases like 4:1 and 4:1:4
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contractions. The geometry is described in Fig.3 where R,
the radius of the cylinder, is equal to 1m. We impose the
same inflow conditions as in [4] , in particular a parabolic
velocity profile with umean = 1m/s. On the outflow we im-
pose a homogeneous Neumann condition, and on the other
boundaries, including the cylinder, no-slip conditions.

Figure 3: Geometry for a flow past a cylinder

4.2.1. Drag comparisons for the Oldroyd-B model
We now carry out some comparisons with results of

the literature, in particular with [12], [8], [5] and [4] where
reference drag values for the following Oldroyd-B model
are given:

−2ηndiv(D(v)) +∇p = divτp
∇ · v = 0

τp + λ
O
τp = 2ηpD(v).

As in the cited papers, we take η = ηn + ηp = 1, ηp = 0.41

and the Weissenberg number defined by We∗ =
λumean
R

,
with umean the inflow mean velocity. The drag along the

cylinder Γc is given by the relation C =
∫

Γc

(1, 0)T ·Πnds,

with Π = τp − pI + 2ηnD(u) the total stress tensor. We
have implemented the same numerical scheme as for the
Giesekus model. In order to obtain accurate drag values,
we have solved the linear system on a very fine mesh thanks
to a multigrid method based on Vanka’s smoother.

The values of C on successive meshes, for λ = 0.6, are
given in Tab.1. The linear convergence obtained leads to
more accurate extrapolated values C∗. nN denotes the
number of Newton iterates whereas nM is the sum of the
multigrid iterates. One may see in Tab.2 that the drag

N nN nM C ∆C C∗
1024 7 19 118.081 - -
4096 6 12 118.421 0.340 -
16384 6 18 118.349 0.072 -
65536 6 24 118.085 0.264 117.821
262144 5 20 117.936 0.149 117.787
1048576 5 31 117.858 0.078 117.780

Table 1: Drag values for λ=0.6

values C∗ obtained with Concha on a mesh consisting of
1048576 elements for different λ are quite close to those of
the literature, in particular with [8] and [4].

λ 0.0 0.3 0.6 0.7
Concha 132.357 123.190 117.780 117.321
Ref. [12] 132.357 - 117.775 -
Ref. [8] 132.358 123.193 117.792 117.29
Ref. [5] 132.33 123.41 - -
Ref. [4] - 123.194 117.779 117.321

Table 2: Comparison of drag values with the literature

Figure 4: Velocity on a vertical axis

Figure 5: Pressure on the symmetry axis

4.2.2. Comparison with Polyflow R©

From now on, we simulate the Giesekus model for which
we compute the Weissenberg number by the relation:

We = λγ̇ = 12λū

where ū is the mean velocity in the thin channel. Note that
the shear-rate γ̇ is computed for an equivalent Newtonian
liquid. We take η = 1000Pa.s and ρ = 1000kg/m3.

We compare in Fig.4 and Fig.5 our results with those
obtained with Polyflow R© which is the most popular com-
mercial code for the simulation of polymer flows. The dis-
cretisation used in Polyflow R© is Q2-continuous elements
for the velocity, Q1-continuous for the pressure and EVSS
method with streamline-upwind for the stress tensor.

In Fig.4, the velocity profiles along the vertical axis
passing through the centre of the cylinder, in the half do-
main, are shown. In Fig.5 we present the pressures ob-
tained along the horizontal symmetry axis of the channel.
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These results are obtained for We = 6 since for higher
values, Polyflow R© has difficulties to converge. One ob-
serves a good agreement between the two approaches, the
differences can be explained by the different meshes used.

4.2.3. Simulations for high Weissenberg numbers

(a) We = 0

(b) We = 24

(c) We = 60

Figure 6: First componenent of the velocity

The loss of convergence of the algorithms for high Weis-
senberg numbers is a major issue in computational rheol-
ogy and is associated with the loss of the positivity of the
so-called conformation tensor at the discrete level. Nu-
merical schemes preserving this property yield energy es-
timates and are more stable. One approach to preserve the
discrete positivity is to re-write the constitutive equation
in terms of the logarithm of the conformation tensor, see
for instance [8] and [4]. At our knowledge, no convergence
analysis is known for this change of variable.

Another approach, introduced by Lee and Xu in [9],
uses the similarity between constitutive laws of viscoelas-
tic flows and Riccati equations. Their result relies on the
characteristics method. It is shown in [1] that our dis-
cretisation allows to write the discrete Giesekus law as an
algebraic Riccati equation, ensuring the positivity of the
discrete conformation tensor under mild conditions.

In this paragraph we illustrate the stability of the scheme
for high Weissenberg numbers. Moreover, the simulations
exhibit the specific behavior of polymers flows which are
related to their elastic character and which increase with
the relaxation time. In Fig.6 one can observe two swellings
after the cylinder, explained by the emergence of impor-
tant normal stresses above and below the cylinder, and
also by the memory effect.

Finally, we show in Fig.7 the velocity profiles along the
same axis as in Fig.4 for a Newtonian liquid (We = 0) and
for We = 48. The asymmetric velocity profile is typical
for a polymeric liquid and is due to the memory effect.

In conclusion, we have proposed a nonconforming ap-
proximation of a realistic polymer model, shown its opti-
mality for the Stokes equations and validated it by means

Figure 7: Velocity profiles for We = 0 and We = 48

of several comparisons . We have illustrated its robustness
for large Weissenberg numbers which can be explained by
the positivity of the conformation tensor, achieved without
a log transformation.
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