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NUMERICAL CONTROL OF THE WAVE EQUATION AND

HUYGENS’ PRINCIPLE

CAROLE ROSIER AND LIONEL ROSIER

Abstract. The numerical control of the wave equation is investigated in dimension 2 and 3.
Using Huygens’ principle in dimension 3 (resp. the method of descent in dimension 2), we show
that the exact controllability of the wave equation can be obtained numerically on a cuboid
(resp. on a rectangle) in sharp time with a boundary control supported on adjacent sides, by
directly solving the wave equation on a larger domain. As a consequence, the numerical control
of the wave equation is not affected here by the appearance of high frequency spurious numerical
waves, and no filtering is needed.

This paper is dedicated to Professor Marius Tucsnak for his 60th anniversary.

1. Introduction

Let Ω ⊂ Rd, d ∈ {2, 3}, be a bounded open set, and let Γ0 ⊂ Γ := ∂Ω be an open set. The
classical boundary control problem for the wave equation can be stated as follows: given T > 0
and (u0, u1) ∈ L2(Ω) ×H−1(Ω), can we find a control input g ∈ L2(0, T, L2(Γ0)) such that the
solution of the boundary initial-value problem

�u := utt −∆u = 0 in Ω× (0, T ), (1.1)

u = g 1Γ0 on Γ× (0, T ), (1.2)

u(., 0) = u0, ut(., 0) = u1, (1.3)

satisfies
u(., T ) = ut(., T ) = 0 ? (1.4)

That issue has been extensively studied, both theoretically and numerically. Using duality
arguments, the exact controllability of (1.1)-(1.4) was reduced to an observability estimate
for the adjoint equation, that was in turn established with nonharmonic Fourier series in [25,
27, 35], with the multiplier method in [15, 18], and with microlocal analysis in [4, 5]. The
study of the numerical control of the wave equation turned to be a delicate issue, due to the
presence of high frequency spurious numerical waves. Various remedies (multi-grid methods,
filtering, Tychonoff regularization, vanishing viscosity, mixed finite element methods, etc.) were
introduced to overcome this problem, see e.g. [2, 3, 8, 12, 13, 22, 26, 29, 33, 37]. We refer the
reader to [10, 38, 39] for recent and exhaustive surveys about the numerical control of the wave
equation.

The numerical schemes in the references above use finite differences or finite elements methods
combined with the Hilbert Uniqueness Method (HUM) introduced by J.-L. Lions. It should be
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mentioned that some other (more direct) approaches were also introduced since the seventies
for the control of PDEs, using domain extensions [19, 35], fundamental solutions compactly
supported in time [14, 34], resolution of ill-posed problems [20, 21], flatness outputs [16, 23, 24],
or feedback controls achieving a finite-time stabilization [1, 30]. In [6], the numerical control
of a semilinear wave equation on the interval (0, 1) is investigated by using a Picard iterative
scheme and a transparent boundary condition at x = 1.

In this paper, we are interested in developing a direct approach (i.e. not based on the observ-
ability of the adjoint equation) for the numerical control of (1.1)-(1.4). Our approach rests on
the numerical integration (by using spectral methods) of a classical Cauchy problem for the wave
equation in an extended domain for which Huygens’ principle is valid. By Huygens’ principle,
we mean here the following property: for any (x, t) ∈ R3 × R, we have

(v0(y), v1(y),∇v0(y)) = 0 for |y − x| = |t| ⇒ v(x, t) = 0 (1.5)

for any smooth solution v of

� v = 0 in R3 × R, v(., 0) = v0, vt(., 0) = v1. (1.6)

A direct consequence of (1.5) is that if both v0 and v1 are supported in a compact set K ⊂ R3,
and if T > diam (K) := supx1,x2∈K |x1 − x2|, then

v(x, t) = 0, for x ∈ K, t ≥ T. (1.7)

That property has important implications for the control problem (1.1)-(1.4). Assume first that
Γ0 = Γ, and assume given (u0, u1) ∈ L2(Ω)×H−1(Ω). Let (v0, v1) ∈ L2(R3)×H−1(R3) denote
the extension by 0 of (u0, u1), and let v denote the solution of (1.6). Then u = v|Ω×(0,T ) and
g = v|Γ0×(0,T ) solve (1.1)-(1.4) provided that T > diam(Ω), by (1.7) [19].

When Γ0 is a proper subset of Γ, the additional constraint

u(x, t) = 0 (x, t) ∈ (Γ \ Γ0)× (0, T ) (1.8)

imposes to modify the method as follows. We introduce, when it is possible, some unbounded
smooth surface S ⊂ R3 such that

(i) R3 \ S = Ω1 ∪ Ω2, Ω1 and Ω2 being two unbounded, connected open sets with ∂Ω1 =
∂Ω2 = S;

(ii) Ω ⊂ Ω1, Γ \ Γ0 ⊂ S;
(iii) (Huygens’ principle in Ω1) for any compact set K ⊂ Ω1, there exists a time T > 0 such

that for any solution v of

� v = 0 in Ω1 × R, (1.9)

v = 0 in S× R, (1.10)

v(., 0) = v0, vt(., 0) = v1 (1.11)

with v0, v1 supported in K, it holds

v(x, t) = 0 for (x, t) ∈ K × [T,+∞). (1.12)

Next, given (u0, u1) ∈ L2(Ω) × H−1(Ω), we let (v0, v1) ∈ L2(Ω1) × H−1(Ω1) denote the
extension by 0 of (u0, u1), and introduce the solution v of (1.9)-(1.11). Then u = v|Ω×(0,T ) and
g = v|Γ0×(0,T ) solve (1.1)-(1.4)
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Of course, this control method can be carried out at the only condition that Huygens’ principle
is valid and established. To the best knowledge of the authors, Huygens’ principle in open sets
as stated in (iii) was not investigated so far. It should be noticed that it is related to the
Geometric Control Condition introduced in [4] for the control of the wave equation. Indeed,
Huygens’ principle in Ω1 fails whenever there are some trapped rays in Ω1 (see e.g. [32]). The
validity of Huygens’ principle cannot nevertheless be reduced to the absence of trapped rays
in Ω1. Indeed, Huygens’ principle is likely false for the complement of a ball in R3, as it was
noticed to the authors by G. Lebeau in [17].

Here, we shall assume that Ω1 is an unbounded domain in which all the rays of geometric
optics can escape to infinity.

In this paper, we shall prove that Huygens’ principle as stated in (iii) is valid when Ω1 is a
half-space. The proof will be done by an extension of the classical solution of the wave equation
in R3 by spherical means, the spherical wavefronts being replaced by wavefronts in Ω1 taking into
account the reflection of rays on S. As an immediate application of the above method, we shall
derive the exact controllability in optimal time of (1.1)-(1.3) when Ω = (0, L1)× (0, L2)× (0, L3)
and Γ0 is the union of three adjacent sides. We refer to [25, 27] for similar results obtained by
an Ingham-type approach, and to [3, 22, 37] for the numerical control of the wave equation on
a square.

The main goal of this study is to develop efficient numerical schemes for the control problem
(1.1)-(1.4). Even for simple geometries, fast numerical schemes are desirable to study the nu-
merical control of semilinear wave equations (see [6]) or of some equations that may be obtained
from the wave equation by the transmutation method (e.g. the heat equation and Schrödinger
equation [9, 28, 31]).

In practice, when a pair (Ω1, S) as above can be constructed, one solves the wave equation in

an intermediate domain Ω̂ such that Ω ⊂ Ω̂ ⊂ Ω1, Ω̂ is bounded, Γ\Γ0 ⊂ ∂Ω̂, and dist(∂Ω̂\S,Ω)

is large enough so that bounces of waves on ∂Ω̂ \ S do not affect the solution v in Ω × (0, T ).
(See Figure 1.)

If Γ \Γ0 is flat (examples include a cube, a half-ball, a pyramid, etc.), one can solve the wave

equation in Ω̂ = (−L,L)3 by using Fourier series.
All the results discussed so far concern domains Ω ⊂ R3. It is well known that Huygens’

principle fails in R2, so that the above method cannot be applied as it is for domains in R2.
Some stabilization results for domains Ω ⊂ R2 will be obtained by combining the above method
with the classical method of descent.

The paper is outlined as follows. Section 2 is devoted to the derivation of Huygens’ principle
for the half-space. It is based on the extension of solutions of the wave equation to the whole
space as odd functions in one coordinate and on the classical solution of the wave equation on
R3 by spherical means. The same ideas are applied to solve (1.1)-(1.4) when Ω is a product
of intervals. Section 3 contains some numerical experiments in dimensions 2 and 3. Section 4
provides some concluding remarks.
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Γ0

ΩΓ \ Γ0

Ω1

Ω̂

S

Figure 1. The open sets Ω ⊂ Ω̂ ⊂ Ω1 and the surface S.

2. Huygens’ principle for the half-space

The derivation of Huygens’ principle in a half-space Ω1 will follow the same pattern as for
Huygens’ principle in R3. It will be based on some extension of Kirchhoff formula, in which
spherical means will be replaced by (algebraic) means over wavefronts.

2.1. Solution by spherical means and Huygens’ principle in R3. For the reader’s conve-
nience, we briefly recall the main steps in the derivation of Kirchhoff formula for the solution of
the wave equation in R3 (see e.g. [11] for the details). Let (v0, v1) ∈ C2(R3)2 be given, and let
v = v(x, t) denote the classical solution to (1.6). For given x ∈ R3, r > 0 and t > 0, let

V (x, r, t) =
1

4πr2

∫

∂B(x,r)
v(y, t)dσ(y), (2.1)

V 0(x, r) =
1

4πr2

∫

∂B(x,r)
v0(y)dσ(y), V 1(x, r) =

1

4πr2

∫

∂B(x,r)
v1(y)dσ(y). (2.2)

It can be proved by a direct computation that

Vr =
1

4πr2

∫

B(x,r)
∆v(y, t)dy. (2.3)

Using (1.6) this yields

r2Vr =
1

4π

∫

B(x,r)
vtt(y, t)dy,

and hence

(r2Vr)r = r2Vtt. (2.4)
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Let Ṽ := rV , Ṽ 0 := rV 0, and Ṽ 1 := rV 1. Then Ṽ solves the 1D wave equation

Ṽtt − Ṽrr = 0 in (0,+∞)r × (0,+∞)t, (2.5)

Ṽ = 0 in {0}r × (0,+∞)t, (2.6)

(Ṽ (., 0), Ṽt(., 0)) = (Ṽ 0, Ṽ 1) (2.7)

so that, by d’Alembert formula applied to odd solutions of the 1D wave equation

Ṽ (x, r, t) =
1

2
(Ṽ 0(x, t+ r)− Ṽ 0(x, t− r)) +

1

2

∫ t+r

t−r
Ṽ 1(x, z)dz for 0 ≤ r ≤ t.

This yields with (2.1)-(2.2)

v(x, t) = lim
r→0

Ṽ (x, r, t)

r

= Ṽ 0
r (x, t) + Ṽ 1(x, t)

=
∂

∂t

(
1

4πt

∫

∂B(x,t)
v0(y)dσ(y)

)
+

1

4πt

∫

∂B(x,t)
v1(y)dσ(y). (2.8)

Computing the derivative in (2.8) leads to Kirchhoff formula in R3:

v(x, t) =
1

4πt2

∫

∂B(x,t)
[∇v0(y) · (y − x) + v0(y) + tv1(y)]dσ(y), (x, t) ∈ R3 × (0,+∞). (2.9)

Then (1.5) follows at once from (2.9).
Let us turn now to the solution of the wave equation in R2. In order to solve

�w = 0 in R2 × R, (2.10)

(w(., 0), wt(., 0)) = (w0, w1) (2.11)

the method of descent consists in introducing the solution v of (1.6) for

v0(x1, x2, x3) = w0(x1, x2), v1(x1, x2, x3) = w1(x1, x2).

Since v does not depend on x3, the solution w of (2.10)-(2.11) can be written as w(x1, x2, t) =
v(x1, x2, 0, t). Combined with (2.9), this gives after some computations [11] Poisson’s formula:

w(x, t) =
1

2πt2

∫

B(x,t)

t∇w0(y) · (y − x) + tw0(y) + t2w1(y)

(t2 − |y − x|2)
1
2

dy, (x, t) ∈ R2 × (0,+∞). (2.12)

From (2.12), it is clear (taking e.g. w0 ≡ 0 and w1 = 1B(0,1)) that Huygens’ principle fails in R2.

2.2. Solution of the wave equation on the half-space. Assume that Ω1 = (0,+∞) × R2,
so that S = {x1 = 0}. To solve (1.9)-(1.11), we use an odd reflection w.r.t. x1, i.e. we set

ṽ0(x1, x2, x3) := sign(x1)v0(|x1|, x2, x3), x ∈ R3,

ṽ1(x1, x2, x3) := sign(x1)v1(|x1|, x2, x3), x ∈ R3,

ṽ(x1, x2, x3, t) := sign(x1)v(|x1|, x2, x3, t), (x, t) ∈ R3 × (0,+∞).



6 CAROLE ROSIER AND LIONEL ROSIER

Since ṽ solves (1.6) (with (v0, v1) replaced by (ṽ0, ṽ1)), then ṽ is given by (2.8) (or, equivalently
(2.9)).

As Huygens’ principle holds in R3, it holds as well in Ω1. Indeed, if v0 and v1 are some
functions which are smooth and supported in some compact set K ⊂ Ω1, then if we pick R > 0
and x̄ ∈ S such that K ⊂ B(x̄, R), then for T ≥ 2R, x ∈ K and y ∈ ∂B(x, T ), we have y 6∈ K
(for |y − x̄| ≥ R), hence with (2.9)

v(x, T ) = ṽ(x, T ) = 0.

Note that, by an easy density argument, the same conclusion holds if (v0, v1) ∈ L2(Ω1) ×
H−1(Ω1) is supported in the compact set K.

An extension of Kirchhoff formula can also be derived. For any x = (x1, x2, x3) ∈ Ω1 and any
t > 0, we set s1(x) = (−x1, x2, x3) and

Σ+(x, t) := ∂B(x, t) ∩ {x1 > 0}, Σ−(x, t) := ∂B(s1(x), t) ∩ {x1 > 0},

Σ(x, t) :=

{
Σ+(x, t) if 0 < t ≤ x1,
Σ+(x, t) ∪ Σ−(x, t) if t > x1,

and for y ∈ Σ(x, t)

ε(x, y, t) :=

{
1 if y ∈ Σ+(x, t),
−1 if y ∈ Σ−(x, t).

(See Figure 2.)

x1

x2

xs1(x)

Σ+(x, t)

Σ−(x, t)

x3

bb

Figure 2. The wavefronts Σ+(x, t) and Σ−(x, t).

Since ṽ is odd w.r.t. x1, we infer from (2.8) that

v(x, t) =
∂

∂t

(
1

4πt

∫

Σ(x,t)
ε(x, y, t)v0(y)dσ(y)

)
+

1

4πt

∫

Σ(x,t)
ε(x, y, t)v1(y)dσ(y). (2.13)
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2.3. Control problem when Γ \ Γ0 is flat. Assume that Ω ⊂ R3 with Γ \ Γ0 ⊂ {x1 = 0}.
Let S = {x1 = 0} and Ω1 = {x1 > 0}. Let (u0, u1) ∈ L2(Ω)×H−1(Ω). Pick x̄ = (0, x̄2, x̄3) and
R > 0 such that Ω ⊂ B(x̄, R), and let T = 2R and L > 3R. Set

Ω̂ = (0, L)× (x̄2 − L, x̄2 + L)× (x̄3 − L, x̄3 + L). (2.14)

Then the solution v of

� v = 0 in Ω̂× R, (2.15)

v = 0 in ∂Ω̂× R (2.16)

(v(., 0), vt(., 0)) = (1Ωu
0, 1Ωu

1) (2.17)

satisfies
v = vt = 0 on Ω× {t = T}. (2.18)

Indeed, since L > 3R, the solution of (2.15)-(2.17) coincide with those of (1.9)-(1.11) for x ∈ Ω
and 0 ≤ t ≤ T , and hence (2.18) holds according to Huygens’ principle in {x1 > 0}.

Therefore the pair (u, g) = (v|Ω×(0,T ), v|Γ0×(0,T )) solves the control problem (1.1)-(1.4).

Assume now that Ω ⊂ R2 is a bounded domain, and that Γ0 is such that ∂Ω \Γ0 ⊂ {x1 = 0}.
We shall use the classical method of descent (see e.g. [11]). Pick any δ > 0 and set Ω̃ :=
Ω× (−δ, δ). For given (u0, u1) ∈ L2(Ω)×H−1(Ω), let

v0(x1, x2, x3) :=

{
u0(x1, x2) if (x1, x2, x3) ∈ Ω̃,
0 otherwise,

(2.19)

v1(x1, x2, x3) :=

{
u1(x1, x2) if (x1, x2, x3) ∈ Ω̃,
0 otherwise.

(2.20)

Let x̄ = (0, x̄2, 0) ∈ R3 and R > 0 be such that Ω̃ ⊂ B(x̄, R). Let T = 2R, L > 3R, Ω̂ be as in
(2.14), and let v solve (2.15)-(2.17). Then it is easily seen that

u(x1, x2, t) :=
1

2δ

∫ L

−L
v(x1, x2, x3, t)dx3 (2.21)

satisfies

utt − ux1x1 − ux2x2 = 0 in Ω× (0, T ), (2.22)

u = 0 on {x1 = 0} × (0, T ), (2.23)

(u(., 0), ut(., 0)) = (u0, u1). (2.24)

(For (2.22), we noticed that v(x, t) = 0 for t ∈ [0, T ] and x in a neighborhood of Ω × {±L}.)
Since the property

v(x1, x2, x3, T ) = 0 for (x1, x2) ∈ Ω and x3 ∈ (−L,L)

is not necessarily true, we don’t claim that u = ut = 0 for (x1, x2) ∈ Ω and t = T . What is
expected from (2.9) is that ‖v(., T )‖L2(Ω) = O(T−1) (resp. ‖v(., T )‖L2(Ω) = O(T−2)) if v1 6= 0

(resp. v1 = 0). Indeed, for (x1, x2, x3) ∈ Ω× (−L,L), the integration in (2.9) is performed over

the set ∂B(x, t) ∩ Ω̃ whose Lebesgue measure is bounded.

2.4. Control problem when Ω is a box.
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2.4.1. N = 3. We assume that

Ω = (0, L1)× (0, L2)× (0, L3), Γ = ∂Ω,

Γ \ Γ0 = ({x1 = 0} ∩ Γ) ∪ ({x2 = 0} ∩ Γ) ∪ ({x3 = 0} ∩ Γ).

For k = (k1, k2, k3) ∈ R3, we denote |k| =
√
k2

1 + k2
2 + k2

3 and ‖k‖∞ = sup(|k1|, |k2|, |k3|).
Pick any (u0, u1) ∈ L2(Ω)×H−1(Ω) decomposed in sine Fourier series as

u0(x1, x2, x3) =
∑

k∈N∗3
u0
k sin(πk1x1/L1) sin(πk2x2/L2) sin(πk3x3/L3)

u1(x1, x2, x3) =
∑

k∈N∗3
u1
k sin(πk1x1/L1) sin(πk2x2/L2) sin(πk3x3/L3)

with
∑

k∈N∗3(|u0
k|2 + |k|−2|u1

k|2) <∞. Let AΩ = −∆ with domain D(AΩ) = H2(Ω) ∩H1
0 (Ω) ⊂

L2(Ω). Then for any s ≥ 0

(u0, u1) ∈ D(A
s
2
Ω)×D(A

s−1
2

Ω ) ⇐⇒
∑

k∈N∗3
|k|2s(|u0

k|2 + |k|−2|u1
k|2) <∞.

Let ε > 0 and let ρ ∈ C∞(R) be an even function such that ρ(z) = 1 for |z| ≤ 1 and ρ(z) = 0
for |z| ≥ 1 + ε. For x ∈ R3, let

ψ(x) := ρ(x1/L1)ρ(x2/L2)ρ(x3/L3) (2.25)

and

v0(x1, x2, x3) = ψ(x)
∑

k∈N∗3
u0
k sin(πk1x1/L1) sin(πk2x2/L2) sin(πk3x3/L3) (2.26)

v1(x1, x2, x3) = ψ(x)
∑

k∈N∗3
u1
k sin(πk1x1/L1) sin(πk2x2/L2) sin(πk3x3/L3) (2.27)

for x = (x1, x2, x3) ∈ R3. Pick

L > 2(1 + ε)
√
L2

1 + L2
2 + L2

3 + (1 + ε) max(L1, L2, L3)

and set Ω̂ = (−L,L)3. Then for (u0, u1) ∈ D(A
s
2
Ω) × D(A

s−1
2

Ω ), we have (v0, v1) ∈ D(A
s
2

Ω̂
) ×

D(A
s−1

2

Ω̂
), so that the solution v to

� v = 0 in Ω̂× R,
v = 0 on ∂Ω̂× R,

(v(., 0), vt(., 0)) = (v0, v1)
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satisfies v ∈ C(R, D(A
s
2

Ω̂
)) ∩ C1(R, D(A

s−1
2

Ω̂
)). On the other hand, v is odd in x1, x2, and x3.

Decomposing v0 and v1 as

v0(x1, x2, x3) =
∑

k∈N∗3
v0
k sin(πk1x1/L) sin(πk2x2/L) sin(πk3x3/L), (2.28)

v1(x1, x2, x3) =
∑

k∈N∗3
v1
k sin(πk1x1/L) sin(πk2x2/L) sin(πk3x3/L), (2.29)

we have that

v(x, t) =
1

2

∑

k∈N∗3

[
(v0
k − i

Lv1
k

π|k|)e
i π
L
|k|t + (v0

k + i
Lv1

k

π|k|)e
−i π

L
|k|t
]

sin(
πk1x1

L
) sin(

πk2x2

L
) sin(

πk3x3

L
)·

(2.30)

Then (u, g) = (v|Ω×(0,T ), v|Γ0×(0,T )) solves (1.1)-(1.4) for T = 2(1 + ε)
√
L2

1 + L2
2 + L2

3. Indeed,

if v is viewed as a solution of the wave equation on R3 with odd initial data supported in Ω̂,
then the above choice of T gives that v(x, T ) = vt(x, T ) = for all x ∈ Ω by (2.13), (2.25), (2.26)
and (2.27), while the above choice of L ensures that the support of (v, vt) does not meet the

boundary of Ω̂ at time T , so that this solution coincides with the solution of the wave equation

with homogeneous Dirichlet boundary conditions on Ω̂ given by (2.30).
To address the control problem from a numerical viewpoint, we let vN (resp. gN ) denote the

partial sum of the series in (2.30) (resp. its restriction to Γ0 × [0, T ]) restricted to ki ≤ N for
i = 1, 2, 3.

The following theorems give explicit error estimates in terms of the Fourier coefficients of the
initial data.

Theorem 2.1. Let s ≥ 0, (u0, u1) ∈ D(A
s
2
Ω)×D(A

s−1
2

Ω ) and N ≥ 1. Then for any r ≤ s

||v − vN ||C([0,T ],Hr(Ω̂))
≤ C

N s−r
( ∑

‖k‖∞>N

|k|2s(|v0
k|2 + |k|−2|v1

k|2)
) 1

2 (2.31)

≤ C

N s−r
(
||u0||Hs(Ω) + ||u1||Hs−1(Ω)

)
(2.32)

where C > 0 is some universal constant.

Proof. It follows from (2.30) that

||v − vN ||2
C([0,T ],D(A

r
2
Ω̂

))
≤ C

∑

‖k‖∞>N

|k|2r
(
|v0
k|2 + |k|−2|v1

k|2
)

≤ C

N2(s−r)

∑

‖k‖∞>N

|k|2s
(
|v0
k|2 + |k|−2|v1

k|2
)

≤ C

N2(s−r)

(
||v0||2

D(A
s
2
Ω̂

)
+ ||v1||2

D(A
s−1

2
Ω̂

)

)

≤ C

N2(s−r)

(
||u0||2

D(A
s
2
Ω )

+ ||u1||2
D(A

s−1
2

Ω )

)
.
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Since the norms || · ||
D(A

s
2
Ω )

and || · ||Hs(Ω) are equivalent in D(A
s
2
Ω), (2.32) follows. �

Remark 2.2. (1) For r = s, we infer from (2.31) that vN → v in C([0, T ], Hs(Ω̂)).

(2) By Sobolev embedding, (2.32) yields for 1 ≤ r ≤ s

||g − gN ||
C([0,T ],Hr− 1

2 (Γ0))
≤ C

N s−r
(
||u0||Hs(Ω) + ||u1||Hs−1(Ω)

)
.

(3) If (u0, u1) ∈ L2(Ω)×H−1(Ω), taking merely ρ = 1(−1,1) and defining v, u and g as above,

we can solve (1.1)-(1.4) in the sharp time T = 2
√
L2

1 + L2
2 + L2

3. Our approach allows
us to recover the main results in [25] without using any Ingham inequality. Furthermore,
the control input can be expressed explicitly in terms of the Fourier coefficients of the
initial data. Note that the same approach gives the same sharp result in Ω =

∏N
i=1(0, Li)

for any odd integer N ≥ 3, for Huygens’ principle is valid in RN (see e.g. [11, Eq. (31)
p. 77]).

2.4.2. N = 2. We assume here that

Ω = (0, L1)× (0, L2),

Γ \ Γ0 = ({x1 = 0} ∩ Γ) ∪ ({x2 = 0} ∩ Γ).

Let AΩ = −∆ with domain D(AΩ) = H2(Ω) ∩H1
0 (Ω) ⊂ L2(Ω). Pick any (u0, u1) ∈ D(A

s
2
Ω) ×

D(A
s−1

2
Ω ) (s ≥ 0) decomposed in sine Fourier series as

u0(x1, x2) =
∑

k∈N∗2
u0
k sin(πk1x1/L1) sin(πk2x2/L2),

u1(x1, x2) =
∑

k∈N∗2
u1
k sin(πk1x1/L1) sin(πk2x2/L2)

with
∑

k∈N∗2 |k|2s(|u0
k|2 + |k|−2|u1

k|2) < ∞. Pick ε > 0 and let ρ ∈ C∞(R) be an even function
such that ρ(z) = 1 for |z| ≤ 1 and ρ(z) = 0 for |z| ≥ 1 + ε. Pick δ > 0 and denote Iδ =∫
R ρ(z/δ)dz. For x ∈ R2, let

ψ(x) := ρ(x1/L1)ρ(x2/L2)ρ(x3/δ)

and

v0(x1, x2, x3) = ψ(x)
∑

k∈N∗2
u0
k sin(πk1x1/L1) sin(πk2x2/L2)

v1(x1, x2, x3) = ψ(x)
∑

k∈N∗2
u1
k sin(πk1x1/L1) sin(πk2x2/L2)

for x = (x1, x2, x3) ∈ R3. Note that v0 and v1 are odd in x1, x2, and even in x3. Pick

L > 2(1 + ε)
√
L2

1 + L2
2 + δ2 + (1 + ε) max(L1, L2, δ).
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It is well-known that the family (
√

2
π cos((k − 1

2)x))k∈N∗ is an orthonormal basis of L2(0, π).

Decomposing v0 and v1 as

v0(x1, x2, x3) =
∑

k∈N∗3
v0
k sin(πk1x1/L) sin(πk2x2/L) cos(π(k3 −

1

2
)x3/L), (2.33)

v1(x1, x2, x3) =
∑

k∈N∗3
v1
k sin(πk1x1/L) sin(πk2x2/L) cos(π(k3 −

1

2
)x3/L) (2.34)

and denoting µk = π
L

√
k2

1 + k2
2 + (k3 − 1

2)2, we have that the function

w(x1, x2, t)

=
1

2Iδ

∫ L

−L

∑

k∈N∗3

[
(v0
k − i

v1
k

µk
)eiµkt + (v0

k + i
v1
k

µk
)e−iµkt

]
sin(

πk1x1

L
) sin(

πk2x2

L
) cos(π(k3 −

1

2
)x3/L)dx3

=
∑

k∈N∗3

[
(v0
k − i

v1
k

µk
)eiµkt + (v0

k + i
v1
k

µk
)e−iµkt

]
sin(

πk1x1

L
) sin(

πk2x2

L
)

(−1)k3+1L

π(k3 − 1
2)Iδ

solves

�w = 0 in (−L,L)2 × R,
w = 0 on ∂(−L,L)2 × R,

(w(., 0), wt(., 0)) = (u0, u1).

Then (u, g) = (w|Ω×(0,T ), w|Γ0×(0,T )) satisfies (1.1)-(1.3) for T = 2(1 + ε)
√
L2

1 + L2
2 + δ2. Indeed,

if v denotes the solution of the system

� v = 0 in (−L,L)3 × R,
v = 0 on ∂(−L,L)3 × R,

(v(., 0), vt(., 0)) = (v0, v1),

then the support of (v, vt) does not meet ∂(−L,L)3 for 0 ≤ t ≤ T , and hence

wtt − wx1x1 − wx2x2 =
1

Iδ

∫ L

−L
(vtt − vx1x1 − vx2x2)dx3 =

1

Iδ

∫ L

−L
vx3x3dx3 = 0.

We stress that u is expected to be “small” , but not necessarily zero, for t = T .
Furthermore, we have that for some universal constant C > 0 and for r ≤ s

||w − wN ||C([0,T ],Hr(Ω)) ≤
C

N s−r
( ∑

‖k‖∞>N

|k|2s(|v0
k|2 + |k|−2|v1

k|2)
) 1

2

≤ C

N s−r
(
||u0||Hs(Ω) + ||u1||Hs−1(Ω)

)

where

wN (x, t) =
∑

‖k‖∞≤N

[
(v0
k − i

v1
k

µk
)eiµkt + (v0

k + i
v1
k

µk
)e−iµkt

]
sin(

πk1x1

L
) sin(

πk2x2

L
)

(−1)k3+1L

π(k3 − 1
2)Iδ
·
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3. Numerical experiments

3.1. Case Ω ⊂ R3. For the sake of convenience, to avoid the (easy but tedious) scalings in space
variables and in Fourier coefficients, we take

Ω = (0,
1

2
)3 ⊂ Ω̂ = (−π, π)3.

Thus L1 = L2 = L3 = 1
2 and L = π. Let

u0(x1, x2, x3) = exp

(
−200[(x1 −

1

4
)2 + (x2 −

1

4
)2 + (x3 −

1

4
)2]

)

and u1(x1, x2, x3) = 0. We pick ρ = 1(−1,1) and N = 50. The (50)3 Fourier coefficients v0
k in

(2.28) are computed by using the trapezoid rule with (20)3 points. The (free) evolution of the
trajectory for (x1, x2) ∈ (0, π)2 and x3 = 1/8, x3 = 1/4, and x3 = 3/8 is given in Figures 3, 4
and 5, respectively.

Note that the sharp control time is T =
√

3 ≈ 1.73. The evolution of U(t) := ‖u(., t)‖L∞(Ω)

is displayed in Figure 6. We used a uniform mesh with 93 points to estimate U(t) at each time
t. We found that U(1.73) ≈ 5.36 10−5, which shows numerically that the solution vanishes at
t = T for (x1, x2, x3) ∈ (0, 1

2)3, as desired.

3.2. Case Ω ⊂ R2. We take

Ω = (0,
1

2
)2 and Ω̂ = (−π, π)3,

so that L1 = L2 = 1
2 and L = π. Let u0(x1, x2) = exp

(
−200[(x1 − 1

4)2 + (x2 − 1
4)2]

)
and

u1(x1, x2) = 0. We pick ρ = 1(−1,1), δ = 0.15 and N = 50. The (50)3 Fourier coefficients

v0
k in (2.33) are computed by using the trapezoid rule with (20)3 points. Letting x3 = 0 and

(x1, x2) ∈ Ω yields the desired controlled trajectory. The evolution of the trajectory in (0, π)2 is
given in Figure 7. As expected, we observe the propagation of waves from Ω into (0, L)2. At time
t = 1.5, waves are localized in (0, L)2 \Ω. The evolution of U(t) := ‖u(., t)‖L∞(Ω) is displayed in

Figure 8. We recall that the sharp control time is T =
√

2 ≈ 1.44. We used a uniform mesh with
92 points to numerically compute U(t) at each time t. We obtained U(1.44) ≈ 1.5 10−3, a result
which is less good than in the case Ω = (0, 1

2)3 with the same number of Fourier coefficients.
This is consistent with the fact that only a stabilization result is obtained in 2D by applying
the method of descent.

4. Concluding remarks

Using Huygens’ principle in dimension 3, the control of the wave equation on a cuboid can be
reduced to a classical Cauchy problem in a larger domain. A simple numerical scheme, based on
Fourier series, can then be used to solve numerically the control problem without incorporating
dissipation or filtering.

Our control method amounts to associate with a pair (Ω,Γ0) an open set Ω1 ⊂ R3 with
Ω ⊂ Ω1, Γ \ Γ0 ⊂ ∂Ω1, so that Huygens’ principle is satisfied in Ω1, and next to extend the
initial data by 0 on Ω1 \ Ω and to take the restriction to Ω of the free solution of the wave
equation on Ω1 with Dirichlet boundary conditions.
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Figure 3. Control of the wave equation on Ω = (0, 1
2)3. x3 = 1/8.

So far, the above method is limited to geometries for which the complement of the control
region on the boundary is both flat and connected. It would be interesting to remove those
assumptions. This requires first to extend Huygens’ principle on unbounded domains limited
by (convenient) surfaces. One way would be to extend Kirchhoff formula (2.8) as in (2.13) by
replacing spheres by wavefronts.

Combining Huygens’ principle in dimension 3 with the descent method, we obtain numerically
a stabilization result, rather than an exact controllability result. It would be interesting to
modify the above approach in order to obtain an exact controllability result in sharp time.
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Figure 4. Control of the wave equation on Ω = (0, 1
2)3. x3 = 1/4.

We expect that our approach can be applied in some situations when the complement of the
control region is connected, but not necessarily flat. This will be investigated elsewhere.
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Figure 5. Control of the wave equation on Ω = (0, 1
2)3. x3 = 3/8.
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