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Upscaling Fractured
Heterogeneous Media:
Permeability and Mass
Exchange Coefficient
In order to optimize oil recuperation, to secure waste storage, CO2 sequestration and
describe more precisely many environmental problems in the underground, we need to
improve some homogenization methods that calculate petrophysical parameters. In this
paper, we discuss the upscaling of fluid transport equations in fractured heterogeneous
media consisting of the fractures themselves and a heterogeneous porous matrix. Our
goal is to estimate precisely the fluid flow parameters like permeability and fracture/
matrix exchange coefficient at large scale. Two approaches are possible. The first ap-
proach consists in calculating the large-scale equivalent properties in one upscaling step,
starting with a single continuum flow model at the local scale. The second approach is to
perform upscaling in two sequential steps: first, calculate the equivalent properties at an
intermediate scale called the ”unit scale,” and, second, average the flow equations up to
the large scale. We have implemented the two approaches and applied them to randomly
distributed fractured systems. The results allowed us to obtain valuable information in
terms of sizes of representative elementary volume associated to a given fracture
distribution.

Introduction

Many industrial and environmental problems involve flow in
fractured porous media, like oil production, nuclear waste storage,
and groundwater pollution. In this paper, we start from a fractured
reservoir model as described by a geologist sLong et al. f1g, Le
Ravalec et al. f2gd. We focus our study on the flow description at
the scale of a grid-block in a numerical model slarge scaled. In this
paper, we consider only characteristics associated with one-phase
flow, such as the fracture permeability and fracture/matrix ex-
change coefficient.
We distinguish three scales illustrated in Fig. 1: sid the local-

scale characteristic of the fracture aperture; siid an intermediate
scale called unit scale; and siiid the large scale of the reservoir
model also called a block scale. To describe the flow at the block
scale, we have two main possible approaches. We present two
approaches we have developed to identify large-scale parameters.
The first approach consists of upscaling in one step sdirect upscal-
ingd from the local scale to the block scale and the second ap-
proach involves two stages ssequential upscalingd through the in-
termediate unit scale. We assume that the flow at the local scale is
described by a simple Darcy-type equation. We also assume that
the flow at the unit scale is described by a system of matrix-
fracture equations according to the dual continuum model of
Barenblatt and Zheltov f3g. This model was further developed by
Warren and Root f4g, and by many other contributors, e.g., Lough
and Kamath f5g Quintard and Whitaker f6g In this paper, we use
the general formulation developed theoretically by Quintard and
Whitaker f6g
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In this dual medium model, the first equation describes matrix

flow, the second describes fracture flow, and the term with a mod-
els the fluid exchange between the matrix and fracture systems
sNoetinger and Estébenet f7g, Bourbiaux et al. f8gd. Without going
into details, let us emphasize that the upscaling from the unit scale
to the block scale or the direct upscaling, may lead to stwod dif-
ferent classes of flow equations. If conditions are such that a
single continuum model is valid, we only need to identify the
equivalent permeability and the equivalent compressibility. But if
a mechanical nonequilibrium model is required at the large scale,
for instance in the form of a large-scale dual medium model simi-
lar to the one described by Eqs. s1d and s2d, we need to identify a
large-scale parameters that will be denoted by Kf f*, Kmm*, a*.

Direct Upscaling From the Local-Scale to the Block-

Scale

By using the standard laboratory flow configuration, an im-
posed pressure drop and no flow boundaries called permeameter
boundary conditions; we have developed an algorithm to calculate
the full permeability tensor of heterogeneous anisotropic media or
fractured systems f9g. For more details, by simulating a flow along

the ox direction sresp. oyd for a square porous medium of dimen-

sion L3L, the permeameter boundary conditions take this form
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¹px,x = constant

E
Gyy

n . K . ¹px,y=0,L = 0 6sFlow along the ox directiond s3d

5
¹py,y = constant

E
Gxx

n . K . ¹px=0,L,y = 0 6sFlow along the oy directiond s4d

Where px,y=0,L sresp. px=0,L,yd means the pressure calculated at the
Gyy sresp. Gxxd faces for an imposed pressure gradient at the ox

axis sresp. oyd quoted ¹px,x sresp. ¹py,yd. Where Gyy is perpen-

dicular to the oy axis and Gxx is perpendicular to the ox axis ssee
Fig. 2d. For a flow along the ox direction sresp. oyd, the pressure
on the impermeable edge will generate a transverse viscous force

h]p /]yjx sresp. h]p /]xjyd measurable numerically and experimen-
tally. By measuring this additional information coupled to the

fluxes measured on the ox, oy directions, we can calculate the full
permeability tensor of the heterogeneous porous media

kxx =

qxx − qyy

dxy

L
H ]p

]y
J

x

1 −H ]p

]x
J

y

H ]p

]y
J

x

; kyy =

qyy − qxx

dyx

L
H ]p

]x
J

y

1 −H ]p

]x
J

y

H ]p

]y
J

x

s5d

Fig. 1 Two different up-scaling paths: „I… Direct upscaling from
the local-scale „dx… to the block-scale „Lb…, and „II… Up-scaling
in two stages passing through the intermediate unit-scale„lu…

Fig. 2 This figure shows the faces quotation used in this paper for a square porous medium
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Where dyx sresp.dxyd corresponds to the difference between the
two flow barycentre at the outlet edge and the inlet edge of the

sample for a flow imposed according to ox srespectively oyd.
In Fig. 3 stop, leftd, we show a lognormal permeability map

skg=121 Darcy; s2=2d generated with the stochastic code FFTMA

f2g. Locally, the permeability is isotropic sscalard, but its correla-
tion function sor variogramd is anisotropic. Here, it has an orien-
tation of 44.46° with respect to the horizontal axis. Also we
present in the same figure sFig. 3, top, rightd the pressure varia-
tions at the impermeable edges for a horizontal confined flow for
the real medium and its anisotropic homogeneous equivalent me-
dium determined by using the method in Ref. f9g and shortly
described in this paper. In addition, we show, respectively, the
pressure maps for the real medium sFig. 3, bottom, leftd and its
equivalent medium sFig. 3, bottom, rightd. For these calculations,
the effective permeability tensor for the researched equivalent me-
dium provided by this method is

K = S122.05 58.08

58.08 119.86
D s7d

The eigenvalues of this tensor are: kxx8 =179.05, kyy8 =62.86. The
principal axes have an orientation of 44.46° with respect to the
direction of the imposed flow.
Also, we have developed a numerical solver based on a two-

dimensional s2Dd finite volume scheme with a five point stencil
for the “closure problems” presented in Quintard and Whitaker f6g
Landereau et al. f10g which give all the required permeability
tensors and the matrix-fracture exchange coefficient at the differ-
ent large scales sunit scale or block scaled. The flow is described
by a dual continuum model. In Fig. 4, we show a zoom of a
fractured porous media studied in this paper. The volume fraction
of the 26,538 fractures present in the medium is around 9%, and
the ratio of fracture permeability to matrix permeability at local-
scale is around 1000. At local scale, we build a fine grid with

204832048 cells. We then choose to partition the domain into

units of different sizes, leading to several possible partitions s4
34 units, 838 units, 16316 units, and 32332 unitsd. For each
partition, we have calculated a map of the matrix-fracture ex-

change coefficient a and of the first principal component of the

equivalent permeability tensor KEQ
XX , and we have plotted their

histograms in Fig. 4. The histogram for a shows a classical nor-

mal shape for all unit-scale partition. The results for KEQ
XX show a

more complicated structure. For fine unit-scale partition, we ob-
serve a bimodal histogram with a group of low values correspond-
ing to nonpercolating units. This bimodal structure disappears for
unit size “sufficiently” large. This word “sufficiently” will be as-
sociated in the discussion at the end of this paper to the size of a
representative elementary volume sREVd, important notion for
practical applications.

Sequential Upscaling in Two Stages Through the

Intermediate Unit-Scale

Once the permeability and the matrix/fracture exchange coeffi-
cient distributions smapsd are known at the intermediate scale of
the “units,” further averaging is required to obtain the flow behav-
ior at the block scale. We have formulated a dual continuum
model at the block scale starting from the Barenblatt et al. f3g
model at the unit scale. We have obtained two systems of dual
continuum equations in the matrix and fractured regions for aver-

aged pressure sPm or P fd and for pressure deviations sP̃m or P̃ fd.
Without going into details, the equivalent permeability for the
fractured region is obtained by solving the closure problem de-
scribed below

p̃ f = b f · ¹P f s8d

0 = ¹sK f f · ¹b fd + ¹ · K f f s9d

b fsx + lid = b fsxd s10d

hb fj = 0 s11d

K f f
* = hK f fj + hK f f · ¹b fj s12d

which is reminiscent of classical equations obtained for diffusion
problem with heterogeneous diffusion coefficients sSaez et al.
f11g, Bourgeat et al. f12g Quintard and Whitaker f13gd. We applied
those formulas to the permeability map obtained at the unit scale
for each partition of the block ssee Fig. 4d. The equivalent perme-
ability of the fracture network is presented in Fig. 5 as a function

of the unit size lu. Our upscaled permeability called the “double
scale” is compared to that obtained by using the Cardwell and
Parsons f14g technique, Ababou f15g approach, Renard et al. f16g
method. These results will be discussed below.
The determination of a large-scale mass exchange coefficient

from the mapped a is not a trivial matter. Our approach is based
on direct numerical simulation of the dual medium model at the
unit scale and interpretation of the resulting block-scale fields. We

studied the case Km!f fK f. We have shown by numerical simu-
lations that, when the exchange coefficient is large enough, the
fracture pressure diffusion flux is negligible compared to the ex-

change flux. More precisely, this occurs when malu
2 /K f @1. Our

simulation tests show that the asymptotic upscaled exchange co-

efficient a is the harmonic mean of the local coefficient a*. On the
other hand, when the exchange coefficient is small enough, the
fracture pressure gradient becomes negligible because there is a
strong diffusion which tends to homogenize the fracture pressure

in space. More precisely, this occurs when malu
2 /K f !1. Our

simulation tests show that the asymptotic upscaled exchange co-

efficient a is the minimum of the local coefficient a. Similar
results were obtained with a stochastic method presented in the
paper by Kfoury et al. f17g.

Fig. 3 Lognormal permeability map „Darcy… generated using
FFTMA for 200Ã200 cells „at left… and the pressure „bar… evolu-
tion at the impermeable edges for a horizontal confined flow for
the real medium and its anisotropic homogeneous equivalent
„at right…. At bottom, pressure maps for the real medium „at left…
and its equivalent homogeneous medium „at right….



Representative Elementary Volume

While the choice of the block size by reservoir engineers is not
in general truly determined by scientific considerations based on a
detailed analysis of the lower-scale properties, it may be a safe
engineering practice to have the block size a little bit larger than
the spatial correlation length sor REV sized of the heterogeneous
field under consideration within the grid block. The sequential
upscaling technique presented in this paper offers some informa-
tion about this important aspect. This is illustrated in Fig. 5. Re-

sults for luù1/8m are close to those obtained directly with a fine
gridding of the Darcy-scale geometry. This result can also be con-

firmed by looking at the unit-scale repartition of Kff. This is

shown in Fig. 6 that represents the different values of K f f as a

function of f f, for each unit. We observe two populations, the one
with a very low permeability being associated with nonpercolating

fractures. We see that this nonpercolating cloud disappears for lu

ù1/16m, which is compatible with the REV size estimated from
Fig. 5. The REV size can also be analyzed by looking at the

distribution of a. Figure 7 represents the evolution of the arith-

metic and harmonic mean of a, with respect to the unit-size lu. We

Fig. 4 Above: example of a fractured porous medium used in this work „200Ã200 cells…. Below: histogram of matrix-fracture

exchange coefficient a „left…, and histogram of first component KEQ
XX of equivalent permeability „right….

Fig. 5 First component of the equivalent permeability for a

fracture network at the block-scale „k
ff

xx ,m2…



remind the reader that these two values represent the two limiting
behaviors of the system. We observe that the evolution of these

two values is relatively small for luù1/8m. This characteristic
REV length scale is compatible with the estimate obtained from
the analysis of the fracture permeability.

Conclusions

Direct and sequential approaches to upscaling flow properties in
fractured heterogeneous porous media have been presented. Dif-
ferent methods to optimize the calculation of petrophysical param-
eters have been developed. We find that the idea of sequential
upscaling in two steps is interesting in terms of computer effort
sCPU time calculationd and of REV information.
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Nomenclature
b f 5 Vector that map ¹P f onto p̃ f in the new double

continuum model at the block-scale, m

c f 5 Total compressibility in the fracture region,

Pa−1

cm 5 Total compressibility in the matrix region, Pa−1

Kg 5 Geometric average of the permeability distribu-
tion, Darcy

K f 5 Darcy scale permeability tensor in the fracture

region, m2; 1 Darcy<10−12 m2

Km 5 Darcy scale permeability tensor in the matrix

region, m2

K f f 5 Fracture region, unit-scale permeability tensor

in the two-equation model, m2

Kmm 5 Matrix region, unit-scale permeability tensor in

the two-equation model, m2

Kmf=K fm 5 Unit-scale cross-effect permeability tensor in

the two-equation model, m2

K f f
* 5 Fracture region, block-scale permeability ten-

sor, m2

Kmm
* 5 Matrix region, block-scale permeability tensor,

m2

lu 5 Unit size, m

hP fj f 5 Intrinsic macroscopic pressure for the fracture
region, Pa

hPmjm 5 Intrinsic macroscopic pressure for the matrix
region, Pa

P̃ f 5 Large-scale pressure deviation associated with
the fracture region, Pa

P f 5 Superficial regional average pressure for the
fracture region, Pa

q 5 Flux, m2

V` 5 Large-scale averaging volume, m3

V f 5 Volume of the fractured region contained

within V`, m
3

Vm 5 Volume of the matrix region contained within

V`, m
3

a 5 Exchange coefficient at the unit scale

a* 5 Exchange coefficient at the block scale

f f=V f /V` 5 Volume fraction of the fracture region con-
tained in the averaging volume

fm=Vm /V` 5 Volume fraction of the matrix region contained
in the averaging volume

s2 5 Variance of the permeability distribution

m 5 dynamic viscosity, N s/m2
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